М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 3. Методы определения вероятностей

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 3. Методы определения вероятностей"

Транскрипт

1 МВДубатовская Теория вероятностей и математическая статистика Лекция 3 Методы определения вероятностей 0 Классическое определение вероятностей Любой из возможных результатов опыта назовем элементарным исходом Обозначим их, 2,, Эти исходы образуют полную группу попарно несовместных событий, все исходы равновозможны Те элементарные исходы, в которых наступает событие A, называют благоприятствующими событию A Определение Отношение числа благоприятствующих исходов к общему числу элементарных исходов называется вероятностью события A и обозначается P (A) Таким образом,, где - число элементарных исходов, благоприятствующих событию A, - число всех возможных элементарных исходов Основные свойства вероятности: ) Вероятность достоверного события равна единице Каждый элементарный исход опыта в этом случае благоприятствует наступлению события A: 2) Вероятность невозможного события равна нулю Ни один из элементарных исходов опыта не благоприятствует наступлению такого 0 события A: 0 3) Вероятность события, отличного от достоверного и невозможного, есть число, заключенное между нулем и единицей Действительно, в этом случае 0, 0, 0 Итак, вероятность любого события 0 Пример Симметричная монета подброшена один раз Найти вероятность выпадения герба Решение Число возможных исходов опыта 2 (выпадение герба и выпадение решетки) Число исходов опыта, благоприятствующих наступлению события А выпадению герба - Используя классическое определение вероятностей, получим: 2 Пример В урне четыре белых и шесть черных шаров Из нее наудачу вынимают пять шаров Найти вероятность того, что среди вынутых шаров окажется два белых и три черных шара

2 МВДубатовская Теория вероятностей и математическая статистика Решение По условию задачи в урне всего 0 шаров Наудачу 5 вынимают 5 Число возможных исходов такого опыта C 0 Число исходов опыта, благоприятствующих наступлению события А 2 3 (вынуто 2 белых и 3 черных шара) равно C C6 Используя классическое определение, получим искомую вероятность: C 2 3 C6 5 C0! 2!2! 6! 3!3! 5!5! 0! 2 0 Статистическое определение вероятностей Классическое определение предполагает, что число элементарных исходов опыта конечно На практике часто встречается случай, когда число возможных исходов бесконечно Кроме того, результат опыта невозможно представить в виде совокупности элементарных событий или трудно указать основания, позволяющие считать элементарные события равновозможными В этих случаях используют статистическое определение вероятности: в качестве вероятности события принимают относительную частоту появления события или число, близкое к ней Относительной частотой события называют отношение числа испытаний, в которых данное событий появилось, к общему числу фактически проведенных испытаний: W ( A), где - число появлений события A, - общее число испытаний Установлено, что если число испытаний достаточно велико, то относительная частота меняется мало Это называют свойством устойчивости относительных частот Свойства вероятности сохраняются Для существования статистической вероятности события A требуется наличие следующих предпосылок: ) возможность, хотя бы принципиально, производить неограниченное число испытаний, в каждом из которых событие A наступает или не наступает; 2) устойчивость относительных частот появления события A в различных сериях достаточно большого числа испытаний Пример При подбрасываниях симметричной монеты герб выпал 52 раз Относительная частота выпадения герба: 52 w 0, Значит, в качестве вероятности выпадения герба в одном испытании можно взять значение 0,5 0 2

3 МВДубатовская Теория вероятностей и математическая статистика 3 0 Геометрическое определение вероятностей Классическое определение неприменимо к испытаниям с бесконечным числом исходов Этот недостаток можно преодолеть, в частности, введением геометрического определения вероятности Такое определение возможно использовать только в том случае, когда пространство элементарных событий и его подмножества можно интерпретировать как геометрические объекты (кривые, области, фигуры в трехмерном и -мерном пространстве) Пусть отрезок составляет l часть отрезка L На большой отрезок L наудачу поставлена точка Эта точка может совпасть с любой точкой отрезка L, вероятность попадания ее на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L Тогда вероятность попадания точки на отрезок l определяется равенством eas l P eas L Здесь символом eas (сокращенное от английского easure мера) обозначается длина, площадь или объем соответствующего множества Аналогичное определение имеет место и для случая плоских областей, пространственных фигур, -мерных пространственных фигур Пусть - пространство элементарных событий представляет собой множество в -мерном пространстве (в частности,, 2, 3), имеющее конечную меру (те длину, площадь или объем) eas Случайное событие A - некоторое подмножество пространства Тогда вероятность события A вычисляется по формуле eas A eas Пример (задача о встрече) Два друга договорились о встрече вечером между 20 и 2 часами Каждый из них приходит на встречу случайным образом в указанном промежутке времени Пришедший первым ждет не более 5 минут С какой вероятностью они встретятся? Решение Обозначим через x часов и y часов моменты прихода друзей ( 0 x, 0 y ) Тогда пространство событий можно представить единичным квадратом, каждая точка которого ( x, y) задает время прихода друзей Встреча состоится, если модуль разности моментов их приходов не превышает 5 мин или 0,25 часа: x y 0, 25

4 МВДубатовская Теория вероятностей и математическая статистика Указанное неравенство равносильно условию x y, или y x, системе y x Решение системы определяет область A, соответствующую исходам, которые благоприятствуют наступлению интересующего нас события (см рис) Область - единичный квадрат соответствует пространству событий у Ω А / 0 / х Рис Геометрическая интерпретация пространства элементарных исходов и множества А Имеем S ( ), S (A) Ответ: P(A) 6 0 Аксиоматическое определение вероятностей Пусть - произвольное пространство элементарных событий, F такой класс подмножеств, который вместе с любыми двумя событиями содержит их сумму, произведение, разность, а также само множество, те если A F, B F, то A B F, A B F, AB F, F Если пространство бесконечно, то пусть, кроме того, для любого счетного набора событий A k F, k N, объединение этих событий также принадлежит F В этом случае говорят, что F является -алгеброй событий Например, F ={Ø, } или F ={Ø,, A, A } Числовая функций, определенная на совокупности наблюдаемых событий, называется вероятностью, если выполнены следующие аксиомы:

5 МВДубатовская Теория вероятностей и математическая статистика ) Каждому событию A F ставится в соответствие неотрицательное число P (A) (аксиома неотрицательности) 2) Вероятность достоверного события равна единице: P ( ) (аксиома нормировки) 3) Вероятность суммы попарно несовместных событий равна сумме вероятностей этих событий: P ( Ai ) P( Ai ), если i A j Ø (аксиома сложения) i i Тройку (, F, P) называют вероятностным пространством Оно служит моделью случайного эксперимента В системе аксиом, предложенной АН Колмогоровым, неопределяемыми понятиями являются элементарные события и вероятность Исходя из аксиом, свойства вероятностей и зависимости между ними выводятся в виде теорем


ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ СОБЫТИЯ

ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ СОБЫТИЯ ЛЕКЦИЯ ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ СОБЫТИЯ Вероятность события относится к основным понятиям теории вероятностей и выражает меру объективной возможности появления события Для практической деятельности важно

Подробнее

ЛЕКЦИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ ТЕМА 4: ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ СОБЫТИЯ

ЛЕКЦИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ ТЕМА 4: ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ СОБЫТИЯ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЛЕКЦИЯ ПО ТЕОРИИ

Подробнее

Предмет теории вероятностей

Предмет теории вероятностей Предмет теории вероятностей В различных разделах науки и техники нередко возникают ситуации, когда результат каждого из многих проводимых опытов заранее предугадать невозможно, однако можно исследовать

Подробнее

2. Вероятность Определения и формулы для решения задач

2. Вероятность Определения и формулы для решения задач 2. Вероятность 2.1. Определения и формулы для решения задач Классическое определение вероятности Эксперимент E назовем классическим, если он приводит к множеству событий, удовлетворяющих трем условиям:

Подробнее

Событие называется достоверным, если оно обязательно произойдет при осуществлении определенной совокупности условий. Обозначение: Ω (истина).

Событие называется достоверным, если оно обязательно произойдет при осуществлении определенной совокупности условий. Обозначение: Ω (истина). Достоверное событие. Событие называется достоверным, если оно обязательно произойдет при осуществлении определенной совокупности условий. Обозначение: Ω (истина). Невозможное событие. Событие, которое

Подробнее

m раз. Тогда m называется частотой, а отношение f = - относительной

m раз. Тогда m называется частотой, а отношение f = - относительной Лекция Теория вероятностей Основные понятия Эксперимент Частота Вероятность Теория вероятностей раздел математики, изучающий закономерности случайных явлений Случайные события это события, которые при

Подробнее

Перейти на страницу с полной версией»

Перейти на страницу с полной версией» ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Челябинская государственная академия культуры и искусства» Кафедра информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Подробнее

Тема Основные теоремы и формулы теории вероятностей

Тема Основные теоремы и формулы теории вероятностей Лекция 3 Тема Основные теоремы и формулы теории вероятностей Содержание темы Алгебра событий. Теоремы сложения вероятностей. Условная вероятность. Теоремы умножения вероятностей. Формула полной вероятности.

Подробнее

Составитель: доцент кафедры медицинской и биологической физики Романова Н.Ю. Теория вероятностей. 1 лекция

Составитель: доцент кафедры медицинской и биологической физики Романова Н.Ю. Теория вероятностей. 1 лекция Составитель: доцент кафедры медицинской и биологической физики Романова Н.Ю. Теория вероятностей 1 лекция Введение. Теория вероятностей это математическая наука, изучающая закономерности случайных явлений.

Подробнее

АКСИАМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 2

АКСИАМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 2 ЧАСТЬ АКСИАМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ Лекция ТЕОРЕТИКО-МНОЖЕСТВЕННАЯ ТРАКТОВКА ОСНОВНЫХ ПОНЯТИЙ ТЕОРИИ ВЕРОЯТНОСТЕЙ АКСИОМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И ИХ СЛЕДСТВИЯ ЦЕЛЬ ЛЕКЦИИ: познакомить с

Подробнее

Лекция 3. Тема. Содержание темы. Основные категории. Основные теоремы и формулы теории вероятностей

Лекция 3. Тема. Содержание темы. Основные категории. Основные теоремы и формулы теории вероятностей Лекция 3 Тема Основные теоремы и формулы теории вероятностей Содержание темы Алгебра событий. Теоремы сложения вероятностей. Условная вероятность. Теоремы умножения вероятностей. Основные категории алгебра

Подробнее

Теория вероятностей. Лекция 1 Случайные события Классическая схема

Теория вероятностей. Лекция 1 Случайные события Классическая схема Теория вероятностей Лекция 1 Случайные события Классическая схема 1 Литература Письменный Д.Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам. М.: Айрис-пресс,

Подробнее

Теория вероятностей. Случайные события. Параграф 1: Общие понятия.

Теория вероятностей. Случайные события. Параграф 1: Общие понятия. Параграф : Общие понятия Теория вероятностей Случайные события Определение : Теория вероятностей математическая наука, изучающая количественные закономерности в случайных явлениях Теория вероятностей не

Подробнее

{ σ-алгебра - поле случайных событий - первая группа аксиом Колмогорова - вторая группа аксиом Колмогорова - основные формулы теории вероятностей -

{ σ-алгебра - поле случайных событий - первая группа аксиом Колмогорова - вторая группа аксиом Колмогорова - основные формулы теории вероятностей - { σ-алгебра - поле случайных событий - первая группа аксиом Колмогорова - вторая группа аксиом Колмогорова - основные формулы теории вероятностей - теорема сложения вероятностей - условная вероятность

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Комбинаторика, правила произведения и суммы. Виды соединений

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Комбинаторика, правила произведения и суммы. Виды соединений ТЕОРИЯ ВЕРОЯТНОСТЕЙ Комбинаторика, правила произведения и суммы Комбинаторика как наука Комбинаторика это раздел математики, в котором изучаются соединения подмножества элементов, извлекаемые из конечных

Подробнее

Вероятность события, классическое определение вероятности. Графическое представление в виде диаграмм Эйлера Венна.

Вероятность события, классическое определение вероятности. Графическое представление в виде диаграмм Эйлера Венна. Лекция 2 Тема Основные понятия теории вероятностей Содержание темы Предмет ТВ. Случайное событие. Вероятность события, классическое определение вероятности. Операции с событиями. Графическое представление

Подробнее

{ определения - случайное событие - операции над событиями вероятность на дискретном пространстве элементарных исходов классическое определение

{ определения - случайное событие - операции над событиями вероятность на дискретном пространстве элементарных исходов классическое определение { определения - случайное событие - операции над событиями вероятность на дискретном пространстве элементарных исходов классическое определение вероятности пример гипергеометрическое распределение пример

Подробнее

ЛЕКЦИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ ТЕМА 5: ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

ЛЕКЦИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ ТЕМА 5: ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЛЕКЦИЯ ПО ТЕОРИИ

Подробнее

Лекция 2. Теоремы сложения и умножения вероятностей. Сумма и произведение события

Лекция 2. Теоремы сложения и умножения вероятностей. Сумма и произведение события Лекция 2. Теоремы сложения и умножения вероятностей Сумма и произведение события Суммой или объединением, нескольких событий называется событие, состоящее в появлении наступления хотя бы одного из этих

Подробнее

Теория вероятностей. Алгебра событий. , или обоих этих событий; б) Умножение (пересечение) событий. Произведением событий B = A 1

Теория вероятностей. Алгебра событий. , или обоих этих событий; б) Умножение (пересечение) событий. Произведением событий B = A 1 Теория вероятностей В контрольную работу по этой теме входят четыре задания Приведем основные понятия теории вероятностей необходимые для их выполнения Для решения задач 50 50 необходимо знание темы Случайные

Подробнее

М.П. Харламов Конспект

М.П. Харламов  Конспект М.П. Харламов http://vlgr.ranepa.ru/pp/hmp Конспект Теория вероятностей и математическая статистика Краткий конспект первого раздела (вопросы и ответы) Доктор физ.-мат. наук профессор Михаил Павлович Харламов

Подробнее

ТЕМА 3. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ

ТЕМА 3. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ ТЕМА. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ Операции над случайными событиями. Алгебра событий. Понятие совместности событий. Полная группа событий. Зависимость и независимость случайных событий. Условная

Подробнее

Лекция 4. Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса.

Лекция 4. Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса. МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Теоремы сложения и умножения вероятностей Формула полной вероятности Формула Байеса Пусть и B - несовместные события и вероятности

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ В.

Подробнее

4. Теория вероятностей

4. Теория вероятностей 4. Теория вероятностей В контрольную работу по этой теме входят четыре задания. Приведем основные понятия теории вероятностей, необходимые для их выполнения. Для решения задач 50 50 необходимо знание темы

Подробнее

Лекция 1. Комбинаторные формулы и определения вероятности ВВЕДЕНИЕ

Лекция 1. Комбинаторные формулы и определения вероятности ВВЕДЕНИЕ Лекция 1. Комбинаторные формулы и определения вероятности ВВЕДЕНИЕ СТОХАСТИКА СЕГОДНЯ. Начиная со второй половины прошлого века наблюдается все более возрастающий интерес к теории вероятностей, математической

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 5. Тема: Комбинаторика, введение в теорию вероятностей 1 Тема: Комбинаторика Комбинаторика это раздел математики, изучающий

Подробнее

НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СИБИРСКАЯ АКАДЕМИЯ ФИНАНСОВ И БАНКОВСКОГО ДЕЛА

НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СИБИРСКАЯ АКАДЕМИЯ ФИНАНСОВ И БАНКОВСКОГО ДЕЛА Кафедра математики и информатики Математика Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль 6 Элементы теории вероятностей и математической статистики

Подробнее

Случайные события. Лекция 1

Случайные события. Лекция 1 Лекция Случайные события Определение. Элементарным исходом (или элементарным событием) называют любой простейший (т.е. неделимый в рамках данного опыта) исход опыта. Множество всех элементарных исходов

Подробнее

Рассмотрим событие: брошенная на отрезок [ 0; 1] точка, попала в промежуток [ 0,4; 0,7].

Рассмотрим событие: брошенная на отрезок [ 0; 1] точка, попала в промежуток [ 0,4; 0,7]. 1.2 Геометрическое определение вероятности. Классическая формула вычисления вероятности p(a) = m оказывается эффективной для решения n целого спектра задач, но с другой стороны, обладает и рядом ограничений.

Подробнее

Теория вероятностей Предметом теории вероятностей Классическое определение вероятности исходами, благоприятствующими

Теория вероятностей Предметом теории вероятностей Классическое определение вероятности исходами, благоприятствующими Лекция 9. Классическое определение вероятности Теория вероятностей математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо

Подробнее

Основные положения теории вероятностей

Основные положения теории вероятностей Основные положения теории вероятностей Случайным относительно некоторых условий называется событие, которое при осуществлении этих условий может либо произойти, либо не произойти. Теория вероятностей имеет

Подробнее

ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ. КЛАССИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ВЕРОЯТНОСТИ

ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ. КЛАССИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ВЕРОЯТНОСТИ ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ. КЛАССИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ВЕРОЯТНОСТИ Предмет теории вероятностей. Понятие случайного события. Пространство элементарных событий. Классическое и геометрическое

Подробнее

ВЕРОЯТНОСТЬ СЛУЧАЙНОГО СОБЫТИЯ

ВЕРОЯТНОСТЬ СЛУЧАЙНОГО СОБЫТИЯ ВЕРОЯТНОСТЬ СЛУЧАЙНОГО СОБЫТИЯ Аксиомы Колмогорова В 1933 г. А. Н. Колмогоров в книге «Основные понятия теории вероятностей» дал аксиоматическое обоснование теории вероятностей. «Это означает, что, после

Подробнее

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения.

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Варианты контрольной работы

Подробнее

I. Определение вероятности и основные правила ее вычисления 1.1 Вероятностный эксперимент. Предмет теории вероятностей Результаты эксперимента

I. Определение вероятности и основные правила ее вычисления 1.1 Вероятностный эксперимент. Предмет теории вероятностей Результаты эксперимента I Определение вероятности и основные правила ее вычисления Вероятностный эксперимент Предмет теории вероятностей Результаты эксперимента зависят в той или иной степени от комплекса условий, при которых

Подробнее

8. Вероятность попадания в цель для двух стрелков равна соответственно 0.7 и 0.8. Тогда вероятность поражения цели равна

8. Вероятность попадания в цель для двух стрелков равна соответственно 0.7 и 0.8. Тогда вероятность поражения цели равна Тема: Теория вероятностей Дисциплина: Математика Авторы: Нефедова Г.А. Дата: 9.0.0. Вероятность случайного события может быть равна. 0.5. 3. 0. 0.7 5..5 6. - 7. 0.3. Вероятность достоверного события равна.

Подробнее

2. Действия над событиями

2. Действия над событиями Ответы 1.10. 14 17 = 238. 1.11. A 5 12 = 95040. 1.12. A3 7 = 7 3 = 343. 1.13. 6. 1.14. 4536. 1.15. 1120. 1.16. 720. 1.17. 125. 1.18. 165. 1.19. а) 126; б) 15. 1.20. P(4, 5, 6) = 630630. 1.21. а) P 4 =

Подробнее

Комбинаторные формулы

Комбинаторные формулы Комбинаторные формулы Пусть имеется множество, состоящее из n элементов. Обозначим его U n. Перестановкой из n элементов называется заданный порядок во множестве U n. Примеры перестановок: 1)распределение

Подробнее

М. М. Попов Теория вероятности Конспект лекций

М. М. Попов Теория вероятности Конспект лекций 2009 М. М. Попов Теория вероятности Конспект лекций Выполнил студент группы 712 ФАВТ А. В. Димент СПбГУКиТ Случайное событие всякий факт, который в результате опыта может произойти или не произойти, и

Подробнее

Коломиец Э.И. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. КОНСПЕКТ ЛЕКЦИЙ

Коломиец Э.И. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. КОНСПЕКТ ЛЕКЦИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

Решение типовых задач

Решение типовых задач типовых задач Теоремы сложения и умножения вероятностей 1) В урне 5 белых и 10 черных шаров. Из урны последовательно достают два шара. Найти вероятность того, что: а) шары будут одинакового цвета (шары

Подробнее

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ Роганов В. Р., Роганова С. М., Новосельцева М. Е. Учебное пособие Пенза, 007 УДК 59.73;59.68;59.764800.9

Подробнее

СОДЕРЖАНИЕ Раздел 1. Вероятностные модели

СОДЕРЖАНИЕ Раздел 1. Вероятностные модели СОДЕРЖАНИЕ Раздел 1. Вероятностные модели 1.1. Случайные события..... 7 1.2. Определение вероятности.... 12 1.3. Элементы комбинаторики; непосредственный подсчет вероятностей.... 15 1.4. Условная вероятность;

Подробнее

Определение. Произведение всех натуральных чисел от 1 до n включительно называют n-факториалом и пишут. 6 Перестановки

Определение. Произведение всех натуральных чисел от 1 до n включительно называют n-факториалом и пишут. 6 Перестановки 1 Основные понятия комбинаторики 1 Приложение Определение Произведение всех натуральных чисел от 1 до n включительно называют n-факториалом и пишут Пример Вычислить 4! 3! n! 1 3 n 4!-3!= 1 3 4 1 3 4 18

Подробнее

ЗАНЯТИЕ 1 СЛУЧАЙНЫЕ СОБЫТИЯ

ЗАНЯТИЕ 1 СЛУЧАЙНЫЕ СОБЫТИЯ ЗАНЯТИЕ 1 СЛУЧАЙНЫЕ СОБЫТИЯ Основным понятием естествознания является понятие эксперимента, независимо от него, осуществляет этот эксперимент природа или исследователь Условно будем считать, что эксперимент

Подробнее

Лекция 4 Тема. Содержание темы. Основные категории. Введение в случайные величины

Лекция 4 Тема. Содержание темы. Основные категории. Введение в случайные величины Лекция 4 Тема Введение в случайные величины Содержание темы Случайная величина. Понятия дискретной и непрерывной случайной величины. Ряд распределения дискретной случайной величины. Функция распределения,

Подробнее

n, тем реже встречаются сколько-либо значительные отклонения

n, тем реже встречаются сколько-либо значительные отклонения Лекция 3. Статистические методы обработки информации в нефтегазовом деле. Составитель асс. каф. БНГС СамГТУ, магистр Никитин В.И... Вероятность. ТЕОРИЯ ВЕРОЯТНОСТИ Вероятность - числовая характеристика

Подробнее

Число способов, которыми можно разбить 10 женщин на 5 групп по 3 1 женщине в каждой, равно числу неупорядоченных разбиений 2, 2, 2, 2, 2

Число способов, которыми можно разбить 10 женщин на 5 групп по 3 1 женщине в каждой, равно числу неупорядоченных разбиений 2, 2, 2, 2, 2 ВАРИАНТ.. Группа состоит из 5 мужчин и 0 женщин. Найти вероятность того, что при случайной группировке их на 5 групп по три человека в каждой группе будет мужчина. Решение: Для решения задачи будем использовать

Подробнее

Лекция 12. Понятие о системе случайных величин. Законы распределения системы случайных величин

Лекция 12. Понятие о системе случайных величин. Законы распределения системы случайных величин МВДубатовская Теория вероятностей и математическая статистика Лекция Понятие о системе случайных величин Законы распределения системы случайных величин Часто возникают ситуации когда каждому элементарному

Подробнее

Кафедра высшей математики. Лекции по теории вероятностей и математической статистике

Кафедра высшей математики. Лекции по теории вероятностей и математической статистике Кафедра высшей математики Лекции по теории вероятностей и математической статистике Раздел. Теория вероятностей Предмет теории вероятностей изучение специфических закономерностей в массовых однородных

Подробнее

. Число случаев, когда среди этих двух шаров будут два белых, равно

. Число случаев, когда среди этих двух шаров будут два белых, равно 1.1. Классическое определение вероятности Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Министерство образования Республики Беларусь Учреждение образования «Витебский государственный университет имени ПМ Машерова» Кафедра геометрии и математического анализа СМ Бородич, ТВ Кавитова ТЕОРИЯ

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА КОНСПЕКТ ЛЕКЦИЙ

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА КОНСПЕКТ ЛЕКЦИЙ ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА КОНСПЕКТ ЛЕКЦИЙ Ю В Щербакова Данная книга представляет собой полный конспект лекций по курсу «Теория вероятности и математическая статистика» Предназначена

Подробнее

Вероятность. Что это? Теория вероятностей случайного события Как решать задачи: классическая вероятность Вероятностью события

Вероятность. Что это? Теория вероятностей случайного события Как решать задачи: классическая вероятность Вероятностью события Вероятность. Что это? Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов.

Подробнее

Анализ понятия вероятности с социально-исторических позиций показывает, что его формирование заняло длительный промежуток времени,

Анализ понятия вероятности с социально-исторических позиций показывает, что его формирование заняло длительный промежуток времени, Теория и практика проектирования 48 Григорян Мара Эдиковна, аспирант Нижегородского государственного педагогического университета им. Н.И. Лобачевского Залесский Михаил Львович, кандидат педагогических

Подробнее

Лекция 1. Понятие случайного процесса и его распределение

Лекция 1. Понятие случайного процесса и его распределение Лекция 1 Понятие случайного процесса и его распределение Настоящий курс является продолжением общего курса по теории случайных процессов, в котором было рассмотрено значительное число различных классов

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Н.В.НИГЕЙ ЭЛЕМЕНТЫ

Подробнее

Е. В. Морозова. Теория вероятностей

Е. В. Морозова. Теория вероятностей Е. В. Морозова Теория вероятностей 0 МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

ЛЕКЦИЯ 1 ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Теория вероятностей это наука, изучающая закономерности в случайных явлениях.

ЛЕКЦИЯ 1 ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Теория вероятностей это наука, изучающая закономерности в случайных явлениях. ЛЕКЦИЯ 1 ТЕОРИЯ ВЕРОЯТНОСТЕЙ Теория вероятностей это наука, изучающая закономерности в случайных явлениях. Случайное явление это такое явление, которое при неоднократном воспроизведении одного и того же

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль СЛУЧАЙНЫЕ СОБЫТИЯ

Подробнее

ЧАСТЬ 1 ВВЕДЕНИЕ. Лекция 1 ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ

ЧАСТЬ 1 ВВЕДЕНИЕ. Лекция 1 ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ ЧАСТЬ 1 ВВЕДЕНИЕ Лекция 1 ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ ЦЕЛЬ ЛЕКЦИИ: определить предмет курса; ввести понятия опыта, случайного явления, случайного события, а также вероятности и частоты события;

Подробнее

Основные понятия и важнейшие формулы теории вероятностей

Основные понятия и важнейшие формулы теории вероятностей Основные понятия и важнейшие формулы теории вероятностей Случайным событием называется событие, которое при данных условиях может произойти, а может не произойти Комплекс условий, которые необходимы для

Подробнее

Конспект лекций по теории вероятностей Механико-математический факультет МГУ, 4-й семестр, 2014 г. Лектор А.М.Зубков. Оглавление

Конспект лекций по теории вероятностей Механико-математический факультет МГУ, 4-й семестр, 2014 г. Лектор А.М.Зубков. Оглавление Конспект лекций по теории вероятностей Механико-математический факультет МГУ, 4-й семестр, 2014 г. Лектор А.М.Зубков Оглавление 1. Введение....................................................................

Подробнее

Теория Вероятностей и Математическая Статистика. Ю. Л. Калиновский

Теория Вероятностей и Математическая Статистика. Ю. Л. Калиновский Теория Вероятностей и Математическая Статистика Ю. Л. Калиновский Введение Элементы комбинаторики Урновые схемы. События и операции над ними Пространство элементарных исходов. Операции над событиями.

Подробнее

ВВЕДЕНИЕ ГЛАВА 1. ОСНОВНЫЕ ПОНЯТИЯ И ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. 1. Пространство элементарных событий

ВВЕДЕНИЕ ГЛАВА 1. ОСНОВНЫЕ ПОНЯТИЯ И ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. 1. Пространство элементарных событий ВВЕДЕНИЕ Предметом теории вероятностей являются только те случайные явления, исходы которых в принципе возможно наблюдать в одних и тех же условиях много раз Такие случайные явления называют массовыми

Подробнее

Интернет-экзамен в сфере профессионального образования

Интернет-экзамен в сфере профессионального образования Интернет-экзамен в сфере профессионального образования Специальность: 230201.65 Информационные системы и технологии Дисциплина: Математика (ТВ и МС) Время выполнения теста: 20 минут Количество заданий:

Подробнее

С k n = n! / (k! (n k)!)

С k n = n! / (k! (n k)!) ПРКТИКУМ Основные формулы комбинаторики Виды событий Действия над событиями Классическая вероятность Геометрическая вероятность Основные формулы комбинаторики Комбинаторика изучает количества комбинаций,

Подробнее

1.5. Вероятность события в статистической формулировке

1.5. Вероятность события в статистической формулировке Лекция 2 Цель лекции приступить к изучению свойств вероятностей План лекции 1.5 Вероятность события. Статистическая формулировка 1.6 Аксиомы теории вероятностей 1.7 Основные свойства вероятности событий

Подробнее

3 Операции над матрицами: сложение и вычитание

3 Операции над матрицами: сложение и вычитание Определение детерминанта матрицы Квадратная матрица состоит из одного элемента A = (a ). Определитель такой матрицы равен A = det(a) = a. ( ) a a Квадратная матрица 2 2 состоит из четырех элементов A =

Подробнее

вероятность того, что произведение очков не превзойдет в) Подсчитаем количество благоприятствующих исходов: , в) p 5

вероятность того, что произведение очков не превзойдет в) Подсчитаем количество благоприятствующих исходов: , в) p 5 ) Бросаются две игральные кости. Определить вероятность того, что: а) сумма числа очков не превосходит N ; б) произведение числа очков не превосходит N ; в) произведение числа очков делится на N. Решение:

Подробнее

Решение задач по теории вероятностей. Тема 1: «Вероятность случайного события».

Решение задач по теории вероятностей. Тема 1: «Вероятность случайного события». Задание Решение задач по теории вероятностей Тема : «Вероятность случайного события». Задача. Монета подбрасывается три раза подряд. Под исходом опыта будем понимать последовательность X, X, X 3., где

Подробнее

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ МІЖНАРОДНИЙ УНІВЕРСИТЕТ ФІНАНСІВ ДОНЕЦЬКА ФІЛІЯ Н А В Ч А Л Ь Н И Й П О С І Б Н И К

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ МІЖНАРОДНИЙ УНІВЕРСИТЕТ ФІНАНСІВ ДОНЕЦЬКА ФІЛІЯ Н А В Ч А Л Ь Н И Й П О С І Б Н И К МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ МІЖНАРОДНИЙ УНІВЕРСИТЕТ ФІНАНСІВ ДОНЕЦЬКА ФІЛІЯ Н А В Ч А Л Ь Н И Й П О С І Б Н И К по ТЕОРІЇ ЙМОВІРНОСТЕЙ І МАТЕМАТИЧНОЇ СТАТИСТИКИ та індивідуальні завдання для студентів

Подробнее

появлений события к числу n всех произведенных опытов: A

появлений события к числу n всех произведенных опытов: A Практическая работа 16 Определение вероятности. Геометрическая вероятность. Сложение и умножение вероятностей Цель работы: вычисление вероятностей событий по классической формуле определения вероятности

Подробнее

Предмет теории вероятностей. Историческая справка

Предмет теории вероятностей. Историческая справка Лекция 1. Тема: ОСНОВНЫЕ ПОДХОДЫ К ОПРЕДЕЛЕНИЮ ВЕРОЯТНОСТИ Предмет теории вероятностей. Историческая справка Предметом теории вероятностей является изучение закономерностей, возникающих при массовых, однородных

Подробнее

игральных костях): C6 C6 а) Подсчитаем количество благоприятствующих исходов:

игральных костях): C6 C6 а) Подсчитаем количество благоприятствующих исходов: Задачник Чудесенко, теория вероятностей, вариант Бросаются две игральные кости. Определить вероятность того, что: а сумма числа очков не превосходит N ; б произведение числа очков не превосходит N ; в

Подробнее

УДК СОСТАВИТЕЛЬ кандидат технических наук, доцент Л. В. Березина. ОБСУЖДЕНО на заседании кафедры высшей математики

УДК СОСТАВИТЕЛЬ кандидат технических наук, доцент Л. В. Березина. ОБСУЖДЕНО на заседании кафедры высшей математики УДК 57. Теория вероятностей: программа учебной дисциплины и методические указания к выполнению контрольной работы / Сост. Л.В. Березина; РГАТУ имени П. А. Соловьева. Рыбинск, 0. 4 с. (Заочная форма обучения/

Подробнее

ЭЛЕМЕНТЫ СТАТИСТИЧЕСКОЙ ФИЗИКИ

ЭЛЕМЕНТЫ СТАТИСТИЧЕСКОЙ ФИЗИКИ Лекция 14 ЭЛЕМЕНТЫ СТАТИСТИЧЕСКОЙ ФИЗИКИ Термины и понятия Вероятность Внешнее воздействие на что? Достоверный Дискретный Закон Максвелла Микросостояние Находиться в интервале Невозможный Непрерывный Статистика

Подробнее

а) отношение числа случаев, благоприятствующих событию А к общему числу

а) отношение числа случаев, благоприятствующих событию А к общему числу ТЕОРИЯ ВЕРОЯТНОСТЕЙ. РАСПРЕДЕЛЕНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН Задание. Выберите правильный ответ:. Относительной частотой случайного события А называется величина, равная... а) отношению числа случаев, благоприятствующих

Подробнее

. Таким образом, вероятность того, что на каждом этаже выйдет по одному пассажиру. m n. которая носит название формулы полной вероятности.

. Таким образом, вероятность того, что на каждом этаже выйдет по одному пассажиру. m n. которая носит название формулы полной вероятности. МВДубатовская Теория вероятностей и математическая статистика Методические рекомендации к решению задач из экзаменационного задания Семь человек вошли в лифт на первом этаже восьмиэтажного дома Считая,

Подробнее

Тема урока: «Простейшие вероятностные задачи».

Тема урока: «Простейшие вероятностные задачи». Тема урока: «Простейшие вероятностные задачи». 11 класс Учитель математики Переверзьева Н.С. МОУ Лицей 6 Замечательно, что наука, которая начала с рассмотрения азартных игр, обещает стать наиболее важным

Подробнее

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. К. Э. ЦИОЛКОВСКОГО Кафедра Высшая математика Н. Д. ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ.

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Теория вероятностей - раздел математики, изучающий закономерности, возникающие в случайных испытаниях. Исход испытания - случайный по отношению к испытанию, если в ходе этого

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ. КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. И.РАЗЗАКОВА. ДЖАМАНБАЕВ М.Дж.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ. КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. И.РАЗЗАКОВА. ДЖАМАНБАЕВ М.Дж. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. И.РАЗЗАКОВА ДЖАМАНБАЕВ М.Дж. КРАТКИЙ КУРС ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ КОНТРОЛЬНЫЕ

Подробнее

Элементы теории вероятностей. План.

Элементы теории вероятностей. План. Элементы теории вероятностей. План. 1. События, виды событий. 2. Вероятность события а) Классическая вероятность события. б) Статистическая вероятность события. 3. Алгебра событий а) Сумма событий. Вероятность

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Схема Бернулли.

Лекция 5 Тема. Содержание темы. Основные категории. Схема Бернулли. Лекция 5 Тема Схема Бернулли. Содержание темы Схема Бернулли. Формула Бернулли. Наивероятнейшее число успехов в схеме Бернулли. Биномиальная случайная величина. Основные категории бином Ньютона, схема

Подробнее

Содержание учебного предмета. 7-й класс Алгебра (105 часов)

Содержание учебного предмета. 7-й класс Алгебра (105 часов) Результаты обучения 1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность)

Подробнее

М.В.Дубатовская Теория вероятностей и математическая статистика. Основные законы распределения дискретных случайных величин

М.В.Дубатовская Теория вероятностей и математическая статистика. Основные законы распределения дискретных случайных величин МВДубатовская Теория вероятностей и математическая статистика Лекция 9 Основные законы распределения случайных величин Основные законы распределения дискретных случайных величин Биномиальное распределение

Подробнее

Лекция 1. Понятие случайного процесса. Процесс Пуассона

Лекция 1. Понятие случайного процесса. Процесс Пуассона Лекция 1 Понятие случайного процесса. Процесс Пуассона В теории вероятностей основными объектами исcледований являются случайные величины и векторы. Напомним их определение. Пусть задано некоторое вероятностное

Подробнее

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема3. «Функция распределения вероятностей случайной величины» Кафедра теоретической и прикладной

Подробнее

ПРАКТИЧЕСКИЕ ЗАДАНИЯ "ТЕОРИЯ ВЕРОЯТНОСТЕЙ". Составитель: В.П.Белкин

ПРАКТИЧЕСКИЕ ЗАДАНИЯ ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Составитель: В.П.Белкин ПРАКТИЧЕСКИЕ ЗАДАНИЯ "ТЕОРИЯ ВЕРОЯТНОСТЕЙ" Составитель: ВПБелкин Занятие Классическая вероятность Пример Монета брошена два раза Найти вероятность того, что хотя бы один раз появится "герб" Построить пространство

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1. Кафедра. Направление подготовки. Дисциплина (модуль) Математики, физики и информационных

Подробнее

Обязательный образовательный минимум

Обязательный образовательный минимум Обязательный образовательный минимум Класс 9 Предмет Математика Четверть II 1 Числовая последовательность Числовая последовательность a 1, a 2, a 3,, a n, это упорядоченный набор чисел. a 1 называют первым

Подробнее

Определение 1. Событие это множество возможных исходов.

Определение 1. Событие это множество возможных исходов. Раскин М. А. «Условные вероятности..» L:\materials\raskin Мы рассматриваем ситуацию, дальнейшее развитие которой мы не можем предсказать точно. При этом некоторые исходы (сценарии развития) для текущей

Подробнее

Тестовые задания по теории вероятностей и математической статистике

Тестовые задания по теории вероятностей и математической статистике ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет С. Г. Валеев С. В. Куркина Тестовые

Подробнее

Решение задач по теории вероятностей. Тема 1: «Вероятность случайного события».

Решение задач по теории вероятностей. Тема 1: «Вероятность случайного события». Задание Решение задач по теории вероятностей Тема : «Вероятность случайного события». Задача. Монета подбрасывается три раза подряд. Под исходом опыта будем понимать последовательность X X X. где каждый

Подробнее

3. Классическое определение вероятности

3. Классическое определение вероятности чив через S событие, состоящее в том, что система незамкнута, можно записать: S = A 1 A 2 +B = (A 1 + A 2 )+B. 2.18. Аналогично решению задач 2.5, 2.6 получаем S = A(B 1 +B 2 ) C D; S = A + B 1 B 2 + C

Подробнее

2. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

2. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ СОДЕРЖАНИЕ. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ.. Введение.. Основные понятия и термины теории вероятностей.3. Случайное событие.3.. Виды событий в теории вероятностей.3.. Виды случайных событий.3.3. Классическое

Подробнее

1. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Случайные события и вероятности Случайные события

1. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Случайные события и вероятности Случайные события ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Случайные события и вероятности Случайные события Одним из основных понятий теории вероятностей является случайное событие Случайным событием называется событие, которое должно

Подробнее