Линейная алгебра Лекция 7. Векторы

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Линейная алгебра Лекция 7. Векторы"

Транскрипт

1 Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление зародилось вместе с геометрической моделью комплексных чисел (Гаусса 8 г) Термин вектор (лат vector, несущий) предложил ирландский математик Уильям Гамильтон (85-865) и описал некоторые операции векторного анализа В 88-е годы вышли «Элементы векторного анализа» американского математика Джозайя Гиббса (89-9), затем английский математик Оливер Хевисайд (85-95) разработал векторный анализ в современном виде (9 г) В разных разделах математики понятие вектор определяется по-разному от определения общего вида в абстрактной алгебре до частных случаев в линейной алгебре и геометрии Вектор в арифметическом евклидовом -мерном пространстве Определение -мерный вектор Х - упорядоченная совокупность чисел x x,, x (компоненты) Обозначение вектора ( x, x,, x ), O (,,, ) нулевой вектор Например, сила, действующая на материальную точку, есть векторная величина, так как обладает направлением, скорость материальной точки - тоже вектор Линейные операции Равенство векторов Два вектора равны Y тогда и только тогда, когда равны их соответствующие компоненты x y,,, Сложение векторов Суммой векторов и Y называется вектор + Y Z, компоненты которого равны сумме соответствующих компонент слагаемых векторов, z x + y,,,, Умножение вектора на число Произведением вектора на число является вектор Y, компоненты которого вычисляются по формуле x y,,, 4 и - противоположные векторы Определение Множество всех -мерных векторов, в котором определены выше перечисленные линейные операции, называется арифметическим векторным пространством размерности Обозначение R (или R ) Определение Алгебраическая сумма Y,, где коэффициенты, называется линейной комбинацией векторов, компоненты вектора Y представляют собой линейную комбинацию соответствующих компонентов векторов,,, Если, где не все, то векторы,,, линейно зависимы Если некоторые из векторов,,, линейно зависимые, то и все они линейно зависимые, так как все оставшиеся векторы можно включить в равенство с нулевыми коэффициентами Из равенства x + x + + x x x x, получим систему однородных уравнений x + x + + x Если других решений нет, кроме нулевого решения, то есть все, то векторы,,, - линейно независимые векторы

2 Примеры ) (-,,5), (6,-,5) линейно независимы, ) (,,,), (,,,), (-,,-,) линейно зависимые ( ) + 6 Действительно, из равенства + получаем систему + ( ), решением которой является, Значит, векторы линейно независимые Решение примера Из равенства + + получаем систему + + ( ) ( ) + + Решаем ее методом Гаусса, получим ~ 6 6 ~ Общее решение системы, Следовательно, существуют ненулевые решения системы Поэтому векторы линейно зависимые Размерность векторного пространства Определение Любая совокупность векторов некоторого векторного пространства называется базисом этого пространства, если все векторы данной совокупности линейно независимы и любой вектор пространства является линейной комбинацией векторов данной совокупности Пусть e,,, e e базис в пространстве R Тогда, где называют координатами вектора в данном базисе Если в качестве базиса выбрать векторы e (,,,), e (,,, ),, e (,,, ), то компоненты вектора совпадают с его координатами в этом базисе, то есть x x,,, x e + e + + e x Для нахождения e + e + + e x нужно решить систему e + e + + e x Пример В базисе e (,, ), e (,, ), e (,, ) даны векторы (,, ), a (,,), b (,, ), c (,,) Найти координаты вектора в базисе a, b, c Решение Убедимся, что векторы a, b, c образуют базис Для этого вычислим определитель, составленный из координат этих векторов - Определитель отличен от нуля, значит, векторы a, b, c линейно независимы Покажем, что вектор представим линейной комбинацией векторов данной совокупности Найдем коэффициенты в линейной комбинации векторов a + b + c Это векторное уравнение равносильно системе + ( ) + + +, или Решение этой системы, 7, 4 Тогда 8a + 7b 4c, и (8, 7, -4) координаты вектора в базисе 8 a, b, c e

3 Определение Размерностью векторного пространства называется максимальное число линейно независимых векторов этого пространства Размерность равна числу его базисных векторов Рангом системы векторов,,, называется наибольшее число ее линейно независимых векторов Евклидово пространство Введем способ измерять длины и углы Это сделаем с помощью скалярного произведения Определение Скалярным произведением Y двух векторов и Y называется сумма произведений одноименных координат этих векторов, то есть Y x y Скалярное произведение можно записывать в круглых скобках (, Y ), или применять знак умножения в виде точки Применять квадратные скобки или знак умножения в виде крестика для обозначения скалярного произведения нельзя Они предназначены для обозначения векторного произведения Пример 4 Пусть заданы два вектора своими координатами (,,) и Y (,,5) Найти их скалярное произведение Решение Y + ( ) Свойства скалярного произведения: Y Y Сомножители в скалярном произведении можно менять местами, то есть произведение коммутативно Действительно, ( + Y ) Z Z + Y Z Y - распределительное свойство x y y x Y Из определения суммы векторов имеем + Y ( x + y, x + y,, x + y ) Тогда скалярное произведение ( + Y ) Z ( x + y ) z ( z + y z ) x x z + y z Z + Y Z (, Y ) (, Y ) Постоянный множитель можно выносить за знак скалярного произведения В самом деле, Действительно,, Y ) x y ( 4 > нуля x y (, Y ), если Скалярный квадрат ненулевого вектора больше x x x > Определение Пространство R, в котором задано скалярное произведение векторов, удовлетворяющее свойствам -4, называется Евклидовым Модуль вектора (длина вектора или норма) в евклидовом пространстве называется корень квадратный из его скалярного квадрата, то есть x вектора, удовлетворяющий следующим свойствам: - корень квадратный из суммы квадратов координат O Модуль вектора равен нулю тогда и только тогда, когда вектор нулевой

4 Модуль произведения вектора на число равен произведению модуля числа на модуль вектора Y Y - неравенство Коши-Буняковского Модуль скалярного произведения векторов меньше или равен произведению модулей этих векторов Определим число так, чтобы вектор Y был перпендикулярным вектору Y Это Y возможно, потому что ( Y )Y, или Y Y Отсюда На основании Y свойств модуля вектора имеем ( Y )( Y ) Раскроем скобки, получим Y + Y Учитывая величину, последнее неравенство запишется в виде ( Y ) / Y или Y Y 4 + Y + Y Модуль суммы векторов меньше или равен сумме модулей этих векторов Оценим длину вектора, используя предыдущее свойство, + Y ( + Y )( + Y ) + Y + Y + Y + Y ( Y ) или + + Y + Y Определение Ненулевые векторы называются параллельными или коллинеарными, если они лежат на одной прямой или на параллельных прямых Определение Единичным вектором называется вектор, длина которого равна единице Обозначение и вычисление единичного вектора сонаправлен с вектором, Вектор параллелен и Следовательно, признаком параллельности (коллинеарности) ненулевых векторов Y будет равенство в векторной форме Y,, или в координатной форме пропорциональность координат, то есть x x Y y y x y При значении > векторы сонаправлены, при значении < направлены противоположно Если в знаменателе одной из дробей будет ноль, то отношение надо понимать так, что и в числителе этой дроби тоже должен быть ноль Нуль-вектор параллелен любому вектору Пример 5 Дан вектор ( 4,, ) Найти его единичный вектор Решение Вычислим длину вектора ( ) Найдем координаты единичного вектора (4/5,, / 5) Пример 6 Найти вектор, параллельный вектору Y (,, ), длина которого равна 5 Решение Из условия параллельности векторов следует пропорциональность координат, то x x x есть или x, x, x Вычисляя длину вектора, получим или 5 5 Тогда значение ± 5 В результате будем иметь два вектора, параллельных вектору Y, с длиною, равной 5 ( 5,, 5) и ( 5,, 5) 4

5 Величина угла между двумя ненулевыми векторами евклидова пространства определяется числом, косинус которого равен отношению скалярного произведения этих векторов к Y произведению их длин, то есть cos( Y ) Y x y + x y + + x y Или в координатной форме cos( Y ) x + x + + x y + y + + y Пример 7 Найти угол между векторами, заданными своими координатами, (,, ) и Y (,,) Решение Воспользуемся формулой вычисления косинуса в координатной форме cos( Y ) Следовательно, угол между векторами равен arccos 45 Признак перпендикулярности векторов Пусть ( x, x,, x ) и Y ( y, y,, y ) - ненулевые векторы Тогда Y (, Y ), то есть два ненулевых вектора взаимно перпендикулярны, если их скалярное произведение равно нулю И наоборот, если ненулевые векторы взаимно перпендикулярны, то их скалярное произведение равно нулю В координатной форме x y + x y + + x y Например, в евклидовом пространстве E базисные векторы (,,), j (,, ), (,, ) взаимно попарно ортогональны (В скалярном произведении участвуют только два вектора), j,, (, j) (, ) ( j, ) Нуль-вектор можно считать перпендикулярным к любому вектору Пример 8 При каком значении векторы (,, ) и Y + 4 j + будут взаимно перпендикулярны? Решение Вычислим скалярное произведение этих векторов Y ( ) ( ) Оно должно равняться нулю по условию перпендикулярности векторов Это возможно при значении, 5 Альтернативное определение скалярного произведения Скалярное произведение векторов равно произведению модулей этих векторов на косинус угла между ними Y Y cos( Y ) Это свойство можно принять за определение скалярного произведения векторов Тогда определение скалярного произведения через координаты векторов будет свойством Пример 9 Найти скалярное произведение двух векторов Y, если m, Y + m, где m,, ( m ) π / 6 Решение Y ( m )( + m) m + ( m,m) (,m ) 5m + mm π 5 m cos + m Физический смысл скалярного произведения Если вектор S изображает смещение материальной точки, а вектор F - силу, действующую на материальную точку, то скалярное произведение S F численно равно работе силы F Пространство E вещественная прямая, E евклидова плоскость, E евклидово трехмерное пространство В них геометрическое изображение вектора имеет наглядность 5

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства. ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве

ЛИНЕЙНАЯ АЛГЕБРА Лекция 10. Прямая и плоскость в пространстве ЛИНЕЙНАЯ АЛГЕБРА Лекция Прямая и плоскость в пространстве Содержание: Уравнение плоскости Взаимное расположение плоскостей Векторно-параметрическое уравнение прямой Уравнения прямой по двум точкам Прямая

Подробнее

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1. Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

Линейная алгебра Лекция 8. Векторы (продолжение)

Линейная алгебра Лекция 8. Векторы (продолжение) Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости

Подробнее

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р.

Векторная алгебра. Аналитическая геометрия. Ищанов Т.Р. Векторная алгебра Аналитическая геометрия Ищанов ТР h://schowru/veor-lger-lches-geomerhml Задача Написать разложение вектора по векторам r 8 r Требуется представить вектор в виде r где числа Найдем их

Подробнее

Основы векторной алгебры

Основы векторной алгебры ) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе

Подробнее

Лекция 3: Скалярное произведение векторов

Лекция 3: Скалярное произведение векторов Лекция 3: Скалярное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции вводится

Подробнее

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2.

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2. Тема 04 Скалярное произведение векторов Координатное представление скалярного произведения Векторное произведение векторов Координатное представление векторного произведения Смешанное произведение тройки

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее

ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1 Скалярное произведение векторов. Заметив, что есть проекция вектора на направление вектора, мы можем записать

ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1 Скалярное произведение векторов. Заметив, что есть проекция вектора на направление вектора, мы можем записать ЛЕКЦИЯ 4 ПРОИЗВЕДЕНИЯ ВЕКТОРОВ 1 Скалярное произведение векторов Скалярным произведением двух векторов называется число, равное произведению их длин (модулей), умноженному на косинус угла между ними. Скалярное

Подробнее

Глава IX. Евклидовы и унитарные пространства. 35. Скалярное произведение в векторном пространстве

Глава IX. Евклидовы и унитарные пространства. 35. Скалярное произведение в векторном пространстве Глава IX. Евклидовы и унитарные пространства 35. Скалярное произведение в векторном пространстве Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

Лекция 3. Алгебра векторов. Скалярное произведение

Лекция 3. Алгебра векторов. Скалярное произведение Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB

Подробнее

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами.

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами. ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ 1 Основные понятия. Линейные операции над векторами. Отрезок, имеющий определенную длину и определенное направление, называется вектором. Вектор служит для геометрического

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x.

Демонстрационный вариант Найдите общее и базисное решения системы уравнений: выбрав в качестве базисных переменных x и x. Демонстрационный вариант 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. 2. Найдите базис системы

Подробнее

11. Скалярное произведение векторов

11. Скалярное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение скалярного произведения векторов Материал этого параграфа, как и предыдущего,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Лекция 17: Евклидово пространство

Лекция 17: Евклидово пространство Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания При решении многих задач возникает необходимость иметь числовые

Подробнее

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В

Подробнее

6. Базис и координаты вектора. Прямоугольная декартова система координат

6. Базис и координаты вектора. Прямоугольная декартова система координат 6. Базис и координаты вектора. Прямоугольная декартова система координат Понятия вектора и линейных операций над векторами алгебраизируют геометрические высказывания т.е. заменяют геометрические утверждения

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Высшая математика»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Высшая математика» Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Высшая математика» Е Б Павельева В Я Томашпольский Линейная алгебра Методические указания

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее

Лекция 31 Глава 3. Аналитическая геометрия в пространстве

Лекция 31 Глава 3. Аналитическая геометрия в пространстве Лекция Глава Аналитическая геометрия в пространстве Плоскость в пространстве Уравнение плоскости проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка ) и ненулевой

Подробнее

Основы векторной алгебры

Основы векторной алгебры Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Основы векторной алгебры Раздел электронного учебника для сопровождения лекции Изд. 4-е, испр. и

Подробнее

Базис. Координаты вектора в базисе

Базис. Координаты вектора в базисе Тема 0 Базис Существование и единственность разложения вектора по базису Координатное представление векторов Действия с векторами в координатном представлении Необходимое и достаточное условие линейной

Подробнее

Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА

Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА 0. План лекции 1. Скалярное произведение. 1.1. Определение скалярного произведения. 1.2. Эквивалентная запись через проекции. 1.3. Доказательство линейности по

Подробнее

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7.

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7. 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. Ответ: Если в качестве базисных переменных выбрать

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ВОПРОСЫ К ЭКЗАМЕНУ ПО ЛИНЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МАТРИЦЫ: а) Определение, виды матриц, операции над матрицами (сложение матриц, умножение матрицы на число, умножение матриц, транспонирование),

Подробнее

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения.

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения. ЛЕКЦИЯ Поверхности в пространстве и их уравнения Поверхность Поверхность, определенная некоторым уравнением в данной системе координат, есть геометрическое место точек, координаты которых удовлетворяют

Подробнее

Образцы базовых задач по ЛА

Образцы базовых задач по ЛА Образцы базовых задач по ЛА Метод Гаусса Определенные системы линейных уравнений Решите систему линейных уравнений методом Гаусса x 6 y 6 8, 6 x 6 y 6 Решите систему линейных уравнений методом Гаусса 6

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

14. Евклидовы пространства

14. Евклидовы пространства 9 4 Евклидовы пространства Большое многообразие фактов которыми так богата геометрия в значительной степени объясняется возможностью измерять длины отрезков и углы между прямыми В абстрактном линейном

Подробнее

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.

Подробнее

Линейная алгебра Лекция 9. Прямая линия на плоскости

Линейная алгебра Лекция 9. Прямая линия на плоскости Линейная алгебра Лекция 9 Прямая линия на плоскости Пусть дана декартовая прямоугольная система координат Oxy на плоскости Геометрическое место точек (ГМТ) Определение Уравнением линии на плоскости Оху

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1 Кафедра Математики, физики и информационных технологий 2 Направление подготовки 010302

Подробнее

Уравнения прямой в пространстве. Лекция 7

Уравнения прямой в пространстве. Лекция 7 Уравнения прямой в пространстве Лекция 7 1 Параметрические уравнения прямой Перейдём в векторном уравнении прямой в пространстве к координатной форме r ( x; y; z), r ( x ; y ; z ), a ( m; n; p) r r t a

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Скалярное произведение в арифметическом пространстве 1.1 Определение. Основные свойства Скалярное произведение (X, Y ) векторов X = (x 1, x 2,..., x n ), Y =

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

Глава 1. Элементы линейной алгебры.

Глава 1. Элементы линейной алгебры. Глава Элементы линейной алгебры Матрицы О п р е д е л е н и е Матрицей размерности m n называется прямоугольная таблица чисел, расставленных в m строк и n столбцов Обозначаются матрицы латинскими буквами,,

Подробнее

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) 8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) Общие сведения 1. Кафедра Информатики, вычислительной техники и информационной безопасности 2. Направление

Подробнее

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейная алгебра Лекция 3 ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейное (векторное) пространство Определение Множество элементов произвольной природы X называется линейным (или векторным) пространством если для любых

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и

АЛГЕБРА (ЧАСТЬ 2) Материалы для практических занятий и самостоятельной работы для студентов направлений и МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

«Элементы векторной алгебры и аналитической геометрии»

«Элементы векторной алгебры и аналитической геометрии» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

Скалярное произведение векторов

Скалярное произведение векторов Скалярное произведение векторов Рассматриваем векторы на плоскости или в пространстве. b a a, b длины векторов, ϕ угол между векторами 0 ϕ π. Скалярное произведение векторов можно определить так: a, b

Подробнее

Министерство образования Российской Федерации

Министерство образования Российской Федерации Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

1. a + b = b + a. 2. (a + b) + c = a + (b + c).

1. a + b = b + a. 2. (a + b) + c = a + (b + c). Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется

Подробнее

МНОГОМЕРНАЯ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Б.В. Заятуев

МНОГОМЕРНАЯ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Б.В. Заятуев МНОГОМЕРНАЯ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В пособии изложены необходимые теоретические сведения из линейной алгебры и многомерной геометрии базовые примеры с подробными решениями и задачи для самостоятельного

Подробнее

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости Тема 5 Способы задания прямой на плоскости Условие совпадения прямых задаваемых разными линейными уравнениями Геометрические свойства линейных неравенств Способы задания плоскости в пространстве Способы

Подробнее

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона. Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция

Подробнее

Глава 7 Плоскость в пространстве

Глава 7 Плоскость в пространстве Глава 7 Плоскость в пространстве Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:, где А, В, С координаты вектора i j k -вектор нормали к плоскости. Возможны

Подробнее

Векторная алгебра. Глава Векторы на плоскости и в пространстве

Векторная алгебра. Глава Векторы на плоскости и в пространстве Глава 6 Векторная алгебра 6.1. Векторы на плоскости и в пространстве Геометрическим вектором, или просто вектором, называется направленный отрезок, т. е. отрезок, в котором одна из граничных точек названа

Подробнее

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только ~ ~ ВЕКТОРНАЯ АЛГЕБРА калярные и векторные величины, виды векторов. Определение: калярной называется величина, которая характеризуется только o своим значением m, T C. Определение: Векторной называется

Подробнее

Е.Е. Корякина ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К ГЛАВНЫМ ОСЯМ

Е.Е. Корякина ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К ГЛАВНЫМ ОСЯМ ЕЕ Корякина ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К ГЛАВНЫМ ОСЯМ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЕЕ Корякина ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К ГЛАВНЫМ ОСЯМ

Подробнее

Вращения твердых тел

Вращения твердых тел Вращения твердых тел. Группа вращений твердого тела с закрепленной осью: O(2). 2. Группа вращений твердого тела закрепленной точкой: O(3). 3. Основные формулы тригонометрии. 4. Существование неподвижной

Подробнее

1. Перечень компетенций с указанием этапов (уровней) их формирования.

1. Перечень компетенций с указанием этапов (уровней) их формирования. 1. Перечень компетенций с указанием этапов (уровней) их формирования. ОК-7: способность к самоорганизации и самообразованию. Знать: Уровень 1 Основные определения курса аналитической геометрии и линейной

Подробнее

РЕШЕНИЯ ЗАДАЧ по теме "ВЕКТОРНАЯ АЛГЕБРА" Составитель: В.П.Белкин. Занятие 1. Действия над векторами. x 1

РЕШЕНИЯ ЗАДАЧ по теме ВЕКТОРНАЯ АЛГЕБРА Составитель: В.П.Белкин. Занятие 1. Действия над векторами. x 1 РЕШЕНИЯ ЗАДАЧ по теме "ВЕКТОРНАЯ АЛГЕБРА" Составитель: ВПБелкин Пример Занятие Действия над векторами Построить векторы,,, где ( 4;) и ( ; ) Найти их проекции на координатные оси Решение Построим точки

Подробнее

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны.

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны. Лекция 3 Тема: Уравнение прямой на проективной плоскости Принцип двойственности Теорема Дезарга Проективные отображения и проективные преобразования План лекции 1 Уравнение прямой на проективной плоскости

Подробнее

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица.

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица. ВОПРОСЫ ТЕОРИИ I. МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ 1) Дать определение матрицы. Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными? Как выполняется операция транспонирования? Когда

Подробнее

2 Два вектора x, y R n будем считать равными тогда и только тогда, когда x k = y k для всех k = 1,..., n.

2 Два вектора x, y R n будем считать равными тогда и только тогда, когда x k = y k для всех k = 1,..., n. ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА 1 1. Пространства R n и C n. Пространство R n это множество всех упорядоченных наборов x = (x 1, x 2,..., x n ) вещественных чисел, n 1 фиксированное целое число. Элементы

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? . КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов

Подробнее

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения»

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Государственное образовательное учреждение Среднего профессионального образования «Котовский индустриальный техникум» МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Котовск, 4 г. Учебное

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 4 ВЕКТОРЫ. БАЗИС 1. Базис векторов Определение 1. Векторы a 1,a 2,...,a n называются упорядоченными, если указано какой вектор из этой системы является первым, какой

Подробнее

УДК [ ](075.8) ISBN ISBN УДК [ ](075.8)

УДК [ ](075.8) ISBN ISBN УДК [ ](075.8) ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ КОМПЛЕКСНЫЕ ЧИСЛА Учебное пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение

Подробнее

Элементы линейной алгебры

Элементы линейной алгебры Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный университет путей сообщения» Институт экономики и финансов Кафедра «Математика»

Подробнее

Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число

Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число Рассмотрены Линейные операции над векторами: сложение, вычитание векторов, умножение вектора на число Далее - несколько нелинейных операций над векторами Для пары векторов, число вектор скалярное произведение

Подробнее

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b.

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b. ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» А.Н. Канатников, А.П. Крищенко

Подробнее

Тема 2-14: Евклидовы и унитарные пространства

Тема 2-14: Евклидовы и унитарные пространства Тема 2-14: Евклидовы и унитарные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

Плоскость. Прямая в пространстве 1

Плоскость. Прямая в пространстве 1 Объект изучения геометрические элементы: точки, прямые, линии, плоскости, поверхности; Метод изучения метод координат; Основные задачи 1. Задано ГМТ, т.е. совокупность точек, обладающих характерным свойством.

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее

Дисциплина «Алгебра и геометрия»

Дисциплина «Алгебра и геометрия» Методические материалы для преподавателей. Примерные планы лекционных занятий. Раздел «Алгебра: основные алгебраические структуры, линейные пространства и линейные отображения» Лекция 1 по теме «Комплексные

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Лекция 5. Лекция 6. Лекция 7. Лекция 8.

Лекция 5. Лекция 6. Лекция 7. Лекция 8. Очная форма обучения. Бакалавры. I курс, I семестр. Направление 220700- «Автоматизация технологических процессов и производств» Дисциплина - «Математика». Лекции Лекция 1. Векторные и скалярные величины.

Подробнее

y = равносильно системе двух равенств: , a обозначают, соответственно, матрицу

y = равносильно системе двух равенств: , a обозначают, соответственно, матрицу Тензоры Тензоры объединяют целый ряд понятий, находящих применение в физике и математике, в частности, в аналитической геометрии Частными случаями тензоров являются векторы, линейные операторы, квадратичные

Подробнее

Тема 2-15: Ортогональность

Тема 2-15: Ортогональность Тема 2-15: Ортогональность А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Методические указания для студентов заочного факультета

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Методические указания для студентов заочного факультета Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный

Подробнее

на множестве векторов Понятие линейного пространства

на множестве векторов Понятие линейного пространства Линейная алгебра и аналитическая геометрия Тема: Векторы. Линейные операции на множестве векторов Понятие линейного пространства Лектор Рожкова С.В. 2012 г. Глава II. Векторная алгебра. Элементы теории

Подробнее

Раздел 6. ПРЯМАЯ НА ПЛОСКОСТИ. Лекция 12. Тема: Прямая на плоскости. 6.1 Системы координат на плоскости (простейшие задачи)

Раздел 6. ПРЯМАЯ НА ПЛОСКОСТИ. Лекция 12. Тема: Прямая на плоскости. 6.1 Системы координат на плоскости (простейшие задачи) Раздел 6 ПРЯМАЯ НА ПЛОСКОСТИ Лекция Тема: Прямая на плоскости 6 Системы координат на плоскости (простейшие задачи) Прямая, которая служит для изображения действительных чисел, на которой выбраны начальная

Подробнее

1. Векторные пространства и линейные операторы

1. Векторные пространства и линейные операторы ЛИНЕЙНАЯ АЛГЕБРА 1 Векторные пространства и линейные операторы Определение 1 Множество V называется векторным пространством (над полем действительных чисел R), если его элементы можно складывать между

Подробнее

С.В. Пчелинцев. Вопросы и задачи по линейной алгебре

С.В. Пчелинцев. Вопросы и задачи по линейной алгебре ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РФ Кафедра «Математика и финансовые приложения» СВ Пчелинцев Вопросы и задачи по линейной алгебре для студентов всех специальностей Москва 6 ФИНАНСОВАЯ АКАДЕМИЯ ПРИ

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения.

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Лекция 7 Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Определение 1. Углом между векторами ~a 6= ~ 0 и ~ b 6= ~ 0 называется наименьший угол между

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее