определяется матрицей A.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "определяется матрицей A."

Транскрипт

1 Задание.Мебельная фабрика планирует выпуск двух видов продукции А и Б. Спрос на продукцию не определен, однако можно предполагать, что он может принимать одно из трех состояний (I, II и III). В зависимости от этих состояний прибыль предприятия различна и определяется матрицей A. 6 4 Найдите оптимальное соотношение между объемами выпуска каждого вида продукции, при котором предприятию гарантируется средняя величина прибыли при любом состоянии спроса. Решение. Найдем нижнюю и верхнею цену игры.найдем в каждой строке платежной матрицы минимальный элемент (запишем в дополнительный столбец), а затем найдем максимальный элемент дополнительного столбца, это будет нижняя цена игры. Найдем в каждом столбце платежной матрицы максимальный элемент (запишем в дополнительную строку), а затем найдем минимальный элемент дополнительной строки, это будет верхняя цена игры. Составим таблицу. Таблица Стратегия «В» Стратегия «А» B B 2 B 3 Минимумы строк A A Максимумы столбцов 6 5 Нижняя цена игры равна:α = 3. Верхняя цена игры равна:β = 5. Нижняя цена игры верхней цене игры, т.е. α β, платежная матрица не содержит седловой точки.это значит, что игра не имеет решения в чистых минимаксных стратегиях, но она всегда имеет решение в смешанных стратегиях.

2 Через концы горизонтального отрезка [;] проведем 2 перпендикуляра к нему. На левом перпендикуляре от точки отложим элементы 3, 4, 5. На правом перпендикуляре от точки отложим элементы 4, 6,. Соединим отрезками элементы 3 и, 4 и 6, 5 и 4. Выделим нижнюю огибающую всех построенных отрезков, и найдем максимальную точку. Точка является пересечением отрезков стратегию можно найти при помощи матрицы Таблица 2 Составим таблицу2. Стратегия «В» Стратегия «А» B B 3 A 3 5 A 2 4 3; и 4; 5. Оптимальную Найдем оптимальную смешанную стратегию для игрока "A". S A = A A 2 p p 2 Если предположить что игрок «В», будет пользоваться чистой стратегией B, тогда средний выигрыш составит: 3p + p 2 = v () Если предположить что игрок «В», будет пользоваться чистой стратегией B 3, тогда средний выигрыш составит: 5p + 4p 2 = v (2)

3 Приравняем левые части уравнений () и (2). Также учитываем, что p + p 2 =. 3p + p = 5p + 4 p (3) p = 3 5, тогда p 2 = 3 5 = 2 5. Найдем цену игры из уравнения () = ; v = 5 5 Овет: Данный результат означает, что предприятие должно выпустить 6 % продукции А и 4% продукции Б, при любом состоянии спросапредприятию гарантируется средняя величина прибыли 23 5 этой величины. д. ед.,прибыль будет не меньше Задание2.Найдитерешениеигры, определяемойматрицей. Решение Считаем, что -й игрок выбирает свою стратегию так, чтобы получить максимальный выигрыш, а 2-ой игрок выбирает свою стратегию так, чтобы минимизировать выигрыш -го игрока. Составим дополнительную таблицу3 с помощью, которой найдем нижнюю и верхнюю цену игры. Найдем в каждой строке матрицы минимальный элемент и запишем его в дополнительный столбец. Затем найдем максимальный элемент дополнительного столбца, это будет нижняя цена игры α. Найдем в каждом столбце матрицы максимальный элемент и запишем его в дополнительную строку. Потом найдем минимальный элемент дополнительной строки, это будет верхняя цена игры β.

4 Таблица 3 Стратегия «В» Стратегия «А» B B 2 B 3 B 4 B 5 Минимумы строк A A A A Максимумы столбцов Нижняя цена игры равна: α = 6. Верхняя цена игры равна: β = 8. Нижняя цена игры верхней цене игры, т.е. α β, платежная матрица не содержит седловой точки.это значит, что игра не имеет решения в чистых минимаксных стратегиях, но она всегда имеет решение в смешанных стратегиях. Проверяем платежную матрицу на доминирующие строки и доминирующие столбцы. Стратегия A 3 доминирует над стратегией A ( все элементы строки 3 больше элементов строки. Исключаем -ю строку платежной матрицы. Доминирующие столбцы отсутствуют. Получили матрицу: Запишем математические модели пары двойственных задач. Найти минимум функцииz(y)при следующих ограничениях: 3y +y 2 + 8y 3 8y +6y 2 + 5y 3 6y +y 2 + 4y 3 (4) 5y +8y 2 + y 3 6y +y 2 + 3y 3

5 Z y = y + y 2 + y 3 min Найти максимум функции F x при ограничениях: 3x + 8x 2 + 6x 3 + 5x 4 + 6x 5 x + 6x 2 + x 3 + 8x 4 + x 5 (5) 8x + 5x 2 + 4x 3 + x 4 + 3x 5 F x = x + x 2 + x 3 + x 4 + x 5 max Решим системы симплекс методом. Определим максимальное значение целевой функции F x = x + x 2 + x 3 + x 4 + x 5 при следующих ограничениях: 3x + 8x 2 + 6x 3 + 5x 4 + 6x 5 x + 6x 2 + x 3 + 8x 4 + x 5 (6) 8x + 5x 2 + 4x 3 + x 4 + 3x 5 Перейдем к канонической форме. Введем дополнительные переменные. В -м неравенстве введем базисную переменную x 6. В 2-м неравенстве введем базисную переменную x. В 3-м неравенстве введем базисную переменную x 8. 3x + 8x 2 + 6x 3 + 5x 4 + 6x 5 + x 6 + x + x 8 = x + 6x 2 + x 3 + 8x 4 + x 5 + x 6 + x + x 8 = 8x + 5x 2 + 4x 3 + x 4 + 3x 5 + x 6 + x + x 8 = Решим систему уравнений относительно базисных переменных: x 6, x, x 8. Таблица 4 Базис В x x 2 x 3 x 4 x 5 x 6 x x 8 x x 6 8 x F(X)

6 Текущий опорный план не оптимален, т.к. в индексной строке находятся отрицательные коэффициенты.в качестве ведущеговыберем столбец 5, т.к. столбец содержит наибольший коэффициент по модулю. Разделим b i a i5 из них выберем наименьшее. min ; ; =.Следовательно, ведущей будет 2-ая строка. 6 3 Переменную x следует вывести из базиса, апеременную x 5 необходимо ввести в базис.на пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (). Сделаем пересчет симплекс таблицы методом Жордано Гаусса (таблицы 4), результат пересчета в таблице5. Таблица 5 Базис В x x 2 x 3 x 4 x 5 x 6 x x 8 x 6 5 x 5 x 8 8 F(X) Текущий опорный план не оптимален, т.к. в индексной строке находятся отрицательные коэффициенты. В качестве ведущего выберем столбец 2, т.к. столбец содержит наибольший коэффициент по модулю. Разделим b i a i2 из них выберем наименьшее. min 5 : ; : 6 ; 8 : 3 = 5.Следовательно, ведущей будет -ая строка. Переменную x 6 следует вывести из базиса, а переменную x 2 необходимо ввести в базис.на пересечении ведущих строки и

7 столбца находится разрешающий элемент (РЭ), равный ( ). Сделаем пересчет симплекс таблицы методом Жордано Гаусса (таблицы 5), результат пересчета в таблице 6. Таблица 6 Базис В x x 2 x 3 x 4 x 5 x 6 x x 8 x 2 5 x 5 x 8 2 F(X2) Текущий опорный план не оптимален, т.к. в индексной строке находятся отрицательные коэффициенты. В качестве ведущего выберем столбец, т.к. столбец содержит наибольший коэффициент b по модулю. Разделим i из них выберем наименьшее. a i min ; : ; 2 : 34 =.Следовательно, ведущей будет 2-ая строка. Переменную x 5 следует вывести из базиса, а переменную x необходимо ввести в базис.на пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный ( ). Сделаем пересчет симплекс таблицы методом Жордано Гаусса (таблицы 6), результат пересчета в таблице. Таблица Базис В x x 2 x 3 x 4 x 5 x 6 x x 8 x

8 x x 8 F(X3) Среди значений индексной строки нет отрицательных. Поэтому таблица5 определяет оптимальный план задачи. Оптимальный план: x 2 = 2 ; F x = x = ; + 2 = 3 Изтеоремыдвойственностиследует, что Y = C A. СоставимматрицуAизкомпонентоввекторов, входящих в оптимальныйбазис. A = A 2, A, A 8 = A =

9 Y = C A =,, Оптимальный план двойственной задачи: = ; 5 ; Z y = y = ; y 2 = 2 ; y 3 = ; = 3 Критерий оптимальности полученного решения. Если существуют такие допустимые решения X и Y прямой и двойственной задач, для которых выполняется равенство целевых функций F(x) = Z(y), то эти решения X и Y являются оптимальными решениями прямой и двойственной задач соответственно. игроков: Цена игры будет равна g = F(x) g = : 3 = 3 p = 3 = 6 p 2 = 3 5 = 5 6 p 3 = 3 = Оптимальнаясмешаннаястратегияигрока I:, а вероятности применения стратегий

10 P = ( 6 ; 5 6 ; ) q = 3 = 3 q 2 = 3 2 = 2 3 q 3 = 3 = q 4 = 3 = q 5 = 3 = Оптимальнаясмешаннаястратегияигрока II: Q = ( ; 2 ; ; ; ) 3 3 т.к. из матрицы удалялась первая строка к векторур нужно добавить координату =. Ответ: цена игры v = 3 ; Оптимальнаясмешаннаястратегияигрока I:P = (; 6 ; 5 6 ; ) Оптимальнаясмешаннаястратегияигрока II:Q = ( ; 2 ; ; ; ) 3 3


Методы оптимальных решений Контрольная с решением

Методы оптимальных решений Контрольная с решением Методы оптимальных решений Контрольная с решением Задача 1 Составить математическую модель задачи и решить ее двумя способами: симплексметодом и графически. Для полученной задачи составить двойственную,

Подробнее

Решенная контрольная работа по МОР

Решенная контрольная работа по МОР Решенная контрольная работа по МОР. Построить симплексную таблицу ЗЛП Q = x 3x x 3 max при ограничениях: 3x + x x3 3 x 3x + x3 = x + x + 3x3 x 0; x 0; x 0. Решение Приводим задачу к каноническому виду.

Подробнее

Задание 1. Найти оптимальные стратегии игры (с седловой точкой): Решение

Задание 1. Найти оптимальные стратегии игры (с седловой точкой): Решение Сделаем ваши задания на отлично. htts://www.matburo.ru/sub_subect.h?ti Теория игр Матричные игры. Игры с природой Задание Найти оптимальные стратегии игры (с седловой точкой): Решение ma min a i } min

Подробнее

Решение задачи целочисленного программирования методом Гомори. Решение двойственной задачи

Решение задачи целочисленного программирования методом Гомори. Решение двойственной задачи Решение задачи целочисленного программирования методом Гомори. Решение двойственной задачи ЗАДАНИЕ.. Найти целочисленное решение задачи линейного программирования..составить двойственную задачу и решить

Подробнее

Математическое программирование. 1-я задача. Симплекс-метод решения задачи.

Математическое программирование. 1-я задача. Симплекс-метод решения задачи. Математическое программирование. 1) Решить графически следующие задачи линейного программирования. 2) Решить обе задачи перебором базисных решений. 3) Решить первую задачу симплекс методом. 1-я задача:

Подробнее

СОДЕРЖАНИЕ 1. ЗАДАНИЕ ЭТАПЫ РАБОТЫ Формирование математической модели задачи Решение прямой задачи симплекс-методом...

СОДЕРЖАНИЕ 1. ЗАДАНИЕ ЭТАПЫ РАБОТЫ Формирование математической модели задачи Решение прямой задачи симплекс-методом... СОДЕРЖАНИЕ. ЗАДАНИЕ.... ЭТАПЫ РАБОТЫ..... Формирование математической модели задачи..... Решение прямой задачи симплекс-методом..... Построение двойственной задачи... 6.4. Решение прямой и двойственной

Подробнее

Контрольная работа Теория игр. Оглавление. Задание Задание Задание Задание Задание

Контрольная работа Теория игр. Оглавление. Задание Задание Задание Задание Задание Контрольная работа Теория игр Оглавление Задание Задание 9 Задание 3 4 Задание 4 9 Задание 5 3 Задание Сельскохозяйственное предприятие планирует посеять на площади 000 га одну или две (в равной пропорции)

Подробнее

Контрольная работа по ММУ. Вариант 1. Задание 1. Решить графическим методом задачу линейного программирования:

Контрольная работа по ММУ. Вариант 1. Задание 1. Решить графическим методом задачу линейного программирования: Контрольная работа по ММУ Вариант Задание Решить графическим методом задачу линейного программирования: а) найти область допустимых значений многоугольник решений); б) найти оптимумы целевой функции. Дано:

Подробнее

Точка пересечения не принадлежит области. Построим область допустимых решений.

Точка пересечения не принадлежит области. Построим область допустимых решений. Задача. Решить графически ma F Находим точки пересечения прямых определяющих неравенства. Отсюда Точка пересечения не принадлежит области. Построим область допустимых решений. Построим вектор направления

Подробнее

Линейное программирование

Линейное программирование Линейное программирование Задача 1... 2 Задача 2... 3 Задача 3... 5 Задача 4... 7 Задача 5... 10 Задача 6... 12 Задача 7... 15 Задача 8... 19 Задача 9... 21 Задача 10... 24 Задача 11... 27 Задача 1. Составить

Подробнее

Графическое решение задачи

Графическое решение задачи Решить задачу линейного программирования, где 3x12x2 8 x14x2 10 x1 0 x 2 0 LX3x14x2 max а) геометрическим способом, б) перебором базисных решений, в) симплекс-методом. Графическое решение задачи L X 3x14

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 4. Решение и геометрическая интерпретация игровых моделей размера 2 x 2, 2 x n, m x 2

ЛАБОРАТОРНАЯ РАБОТА 4. Решение и геометрическая интерпретация игровых моделей размера 2 x 2, 2 x n, m x 2 ЛАБОРАТОРНАЯ РАБОТА Решение и геометрическая интерпретация игровых моделей размера x x n m x В решении игр используется следующая теорема: если один из игроков применяет свою оптимальную смешанную стратегию

Подробнее

ВАРИАНТ 5. Контрольная работа выполнена на сайте МатБюро. Решение задач по математике, статистике, теории вероятностей

ВАРИАНТ 5. Контрольная работа выполнена на сайте  МатБюро. Решение задач по математике, статистике, теории вероятностей ВАРИАНТ 5 Для изготовления различных изделий А, В, С предприятие использует различных вида сырья. Используя данные таблицы: Вид сырья Нормы затрат сырья Кол-во сырья А В С I II III 18 6 5 15 4 12 8 540

Подробнее

Контрольные задания по курсу «Экономико-математические методы»

Контрольные задания по курсу «Экономико-математические методы» Контрольные задания по курсу «Экономико-математические методы» Задание. Найти экстремум функции z = x + x + x + x extr, при x + x + x + 5x = 0, x + x + 5x + 6x = 5 Решение. Используем метод множителей

Подробнее

Экономико-математические методы и модели.

Экономико-математические методы и модели. ИНСТИТУТ МИРОВОЙ ЭКОНОМИКИ И ИНФОРМАТИЗАЦИИ НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Экономико-математические методы и модели. МОСКВА - 00 Практические задания

Подробнее

Моделир.экон.процес.и систем_рус_2кр_вес_мадияровак_уиа(2к4, 1к3 очн)

Моделир.экон.процес.и систем_рус_2кр_вес_мадияровак_уиа(2к4, 1к3 очн) Моделир.экон.процес.и систем_рус_2кр_вес_мадияровак_уиа(2к4, 1к3 очн) 1 Транспортная задача называется закрытой, если выполняется условия: 2 В транспортной задаче план является невырожденным, если: 3 В

Подробнее

Системный анализ Решенная контрольная работа

Системный анализ Решенная контрольная работа Системный анализ Решенная контрольная работа Задача 1 В соответствии с теорией полезности оценить ожидаемую полезность действий Д1 (угадать вазу типа А) или Д2 (угадать вазу типа В) для задачи с вазами

Подробнее

33. f(x)= 5x1 +2x2 3x3 + 4x4 max х1+ 4х2 5х3 4х4 = -8 2х2 + х3 + 3х4 = 10 хj 0 (j = 1, 2, 3, 4).

33. f(x)= 5x1 +2x2 3x3 + 4x4 max х1+ 4х2 5х3 4х4 = -8 2х2 + х3 + 3х4 = 10 хj 0 (j = 1, 2, 3, 4). 33. f(x)= 5x1 +2x2 3x3 + 4x4 max х1+ 4х2 5х3 4х4 = -8 2х2 + х3 + 3х4 = 10 хj 0 (j = 1, 2, 3, 4). Найти наибольшее значение функции F = 5 x 1 + 2 x 2-3 x 3 + 4 x 4 при следующих ограничениях: x 1 + 4 x

Подробнее

Предназначено для студентов специальности: Учет и аудит (2 курс 4 г.о., 1 курс 3 г.о.), очное

Предназначено для студентов специальности: Учет и аудит (2 курс 4 г.о., 1 курс 3 г.о.), очное Автор теста: Мадиярова К.З. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и аудит (2 курс 4 г.о., 1 курс 3 г.о.), очное Количество кредитов:

Подробнее

Двойственность в линейном программировании

Двойственность в линейном программировании Двойственность в линейном программировании Двойственными называются пары следующих задач: z b b, k k,, r r, w, k k, b, r r, Принципы составления двойственных задач: Если исходная задача на максимум, то

Подробнее

Задача 1. (необходимо решить графическим методом) Найти максимум целевой функции L=4x+3y при следующих ограничениях:

Задача 1. (необходимо решить графическим методом) Найти максимум целевой функции L=4x+3y при следующих ограничениях: Задача. (необходимо решить графическим методом) Найти максимум целевой функции L=4+y при следующих ограничениях: Решить задачу при дополнительном условии (ДУ): ДУ: Найти минимум целевой функции L=-y при

Подробнее

О б р а з е ц в ы п о л н е н и я э т а п а 3 Р Г Р. б) Найти максимум и минимум в задаче. симплекс-методом. = 4, проходящей через точки:

О б р а з е ц в ы п о л н е н и я э т а п а 3 Р Г Р. б) Найти максимум и минимум в задаче. симплекс-методом. = 4, проходящей через точки: Задание: Вариант # f (X) = x + x extr x + x x + x 4 x, x Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы 4-6 Иванов И.И. Вариант Этап. Тема: Методы

Подробнее

три вида ресурсов. Известны технологическая матрица A 6 ресурсов на производство единицы каждого вида продукции, вектор b 150

три вида ресурсов. Известны технологическая матрица A 6 ресурсов на производство единицы каждого вида продукции, вектор b 150 Линейная производственная задача. Предприятие может выпускать четыре вида продукции, используя при этом три вида ресурсов. Известны технологическая матрица A затрат 7 8 ресурсов на производство единицы

Подробнее

Практическая работа. «Экономико-математические методы и модели» Вариант 2. Задание 1. Решить графически.

Практическая работа. «Экономико-математические методы и модели» Вариант 2. Задание 1. Решить графически. Практическая работа «Экономико-математические методы и модели» Вариант 2 Задание 1. Решить графически. 150x + 70x max, 30x1 + 75x2 900, 3x1 + 2x2 30, x, x 0. Решение. Построим область допустимых решений

Подробнее

Теория игр Решение контрольной работы

Теория игр Решение контрольной работы Теория игр Решение контрольной работы Задача Решить задачу графическим методом Решение Очевидно, матрица не имеет седловой точки, поэтому будем искать решение в смешанных стратегиях Решим задачу графическим

Подробнее

Тема: Симплекс-метод решения задачи линейного программирования.

Тема: Симплекс-метод решения задачи линейного программирования. Тема: Симплекс-метод решения задачи линейного программирования Общая математическая формулировка основной задачи линейного программирования: дана система m линейных уравнений с n неизвестными a11x1 a12

Подробнее

Глава 7. ЭЛЕМЕНТЫ ТЕОРИИ МАТРИЧНЫХ ИГР

Глава 7. ЭЛЕМЕНТЫ ТЕОРИИ МАТРИЧНЫХ ИГР Глава 7. ЭЛЕМЕНТЫ ТЕОРИИ МАТРИЧНЫХ ИГР В теории игр исследуется процесс принятия решений в конфликтных ситуациях, т. е. в случаях, когда существует несколько сторон с разными интересами. Различают игры

Подробнее

Этап 3 Методы решения задачи линейного программирования (1)

Этап 3 Методы решения задачи линейного программирования (1) стр. Этап 3 Методы решения задачи линейного программирования Дано: f (X) = x + 3x 2 extr + x x 2 () 2x + x 2 (2) x, x 2 0 (3) а) Решить задачу графически Алгоритм графического решения задачи. Построить

Подробнее

Лекции подготовила доц. Мусина М.В. Лекция 2. Основная задача линейного программирования. (в матричной форме A x b, где b 0 )

Лекции подготовила доц. Мусина М.В. Лекция 2. Основная задача линейного программирования. (в матричной форме A x b, где b 0 ) Лекция 2. Основная задача линейного программирования. Все задачи линейного программирования могут быть приведены к стандартной форме, в которой целевая функция должна быть максимизирована, а все ограничения

Подробнее

4 Методы нахождения первоначальной крайней точки

4 Методы нахождения первоначальной крайней точки 4 Методы нахождения первоначальной крайней точки 4. Переход к решению двойственной задачи Рассмотрим метод решения задач линейного программирования путем перехода к двойственной задаче и решения полученной

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ Московский государственный университет путей сообщения Императора

Подробнее

Автор теста: Мухаметжанова Ж.С. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и

Автор теста: Мухаметжанова Ж.С. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и Автор теста: Мухаметжанова Ж.С. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и аудит курс, 3 г.о., ДОТ Семестр: 2 Количество кредитов:

Подробнее

2.4. Решение матричных игр в смешанных стратегиях 2х2

2.4. Решение матричных игр в смешанных стратегиях 2х2 2.4. Решение матричных игр в смешанных стратегиях 2х2 1 Аналитический метод Графический метод Аналитический метод решения игры 2х2 2 A 1) оптимальное решение в смешанных стратегиях: S A = p 1, p 2 и S

Подробнее

Занятие 4. ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ.

Занятие 4. ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. Занятие. ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. Найти максимум функции при ограничениях А. СИМПЛЕКС-МЕТОД ДАНЦИГА А. Решение канонической задачи Постановка задачи f ( x) c j x j x ij j bi, i,, m; m j j, x

Подробнее

Контрольная работа. F=6*x 1 +3*х 2, (3)

Контрольная работа. F=6*x 1 +3*х 2, (3) Контрольная работа Задача 5 На предприятии имеется сырье видов 1, 2, 3 Из него можно изготавливать изделия типов А и В Пусть запасы видов сырья на предприятии составляют b 1, b 2, b 3 ед соответственно,

Подробнее

Построение математической модели задачи. Симплекс-метод решения задачи, метод искусственного базиса.

Построение математической модели задачи. Симплекс-метод решения задачи, метод искусственного базиса. ) Задача о планировании производства. Производственному участку может быть запланировано к изготовлению на определённый плановый период времени два вида изделий: A и B. На производство единицы изделия

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 3 СИМПЛЕКСНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

ЛАБОРАТОРНАЯ РАБОТА 3 СИМПЛЕКСНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ЛАБОРАТОРНАЯ РАБОТА СИМПЛЕКСНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. ЦЕЛЬ РАБОТЫ Приобретение навыков решения задач линейного программирования симплексным методом.. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.

Подробнее

Занятие 6. ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. РЕШЕНИЕ КАНОНИЧЕСКОЙ ЗАДАЧИ

Занятие 6. ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. РЕШЕНИЕ КАНОНИЧЕСКОЙ ЗАДАЧИ Занятие 6. ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. РЕШЕНИЕ КАНОНИЧЕСКОЙ ЗАДАЧИ Найти максимум функции при ограничениях А. СИМПЛЕКС-МЕТОД ДАНЦИГА А. Решение канонической задачи n = Постановка задачи n f ( x)

Подробнее

Лекции КЛАССИФИКАЦИЯ ИГР.

Лекции КЛАССИФИКАЦИЯ ИГР. Лекции 5-6 КЛАССИФИКАЦИЯ ИГР. Классификацию игр можно проводить: по количеству игроков, количеству стратегий, характеру взаимодействия игроков, характеру выигрыша, количеству ходов, состоянию информации

Подробнее

Решение задачи линейного программирования графическим методом, симплекс-методом и через «Поиск решения» в Excel ЗАДАНИЕ. кг сырья первого типа, a

Решение задачи линейного программирования графическим методом, симплекс-методом и через «Поиск решения» в Excel ЗАДАНИЕ. кг сырья первого типа, a Решение задачи линейного программирования графическим методом, симплекс-методом и через «Поиск решения» в Ecel ЗАДАНИЕ. Предприятие выпускает два вида продукции: Изделие и Изделие. На изготовление единицы

Подробнее

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Исследование операций Определение Операция - мероприятие, направленное на достижение некоторой цели, допускающее несколько возможностей и их управление Определение Исследование операций совокупность математических

Подробнее

Пример из лекции. Торговец на сумму 250 у.е. может закупить зонтики по цене 0,5 у.е. за штуку и солнечные очки по цене 0,2 у.е. за штуку.

Пример из лекции. Торговец на сумму 250 у.е. может закупить зонтики по цене 0,5 у.е. за штуку и солнечные очки по цене 0,2 у.е. за штуку. торговец Пример из лекции Торговец на сумму у.е. может закупить зонтики по цене у.е. за штуку и солнечные очки по цене у.е. за штуку. Он продает зонтики по у.е. за штуку очки по у.е. за штуку. Если идет

Подробнее

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ Глава 2 МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 2.1. Симплекс-метод решения задачи линейного программирования Для решения задач линейного программирования симплексметодом следует выполнить ряд

Подробнее

c m,1 c m,2 c m,n x m,1 x m,2 x m,n a m b 1 b 2 b n Рис. 1. Структура транспортной таблицы

c m,1 c m,2 c m,n x m,1 x m,2 x m,n a m b 1 b 2 b n Рис. 1. Структура транспортной таблицы Транспортная задача. 1. Транспортная задача в матричной постановке Транспортная задача формулируется следующим образом. Пусть m поставщиков располагают a i (i = 1, 2,..., m) единицами некоторой продукции,

Подробнее

ПРИЛОЖЕНИЯ МЕТОДОВ МАТРИЧНЫХ ИГР, ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ И ТЕОРИИ ВЕРОЯТНОСТЕЙ К ПЛАНИРОВАНИЮ ВОЕННЫХ ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТЕЙ

ПРИЛОЖЕНИЯ МЕТОДОВ МАТРИЧНЫХ ИГР, ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ И ТЕОРИИ ВЕРОЯТНОСТЕЙ К ПЛАНИРОВАНИЮ ВОЕННЫХ ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТЕЙ Ýêîíîìèêà УДК 5985 ПРИЛОЖЕНИЯ МЕТОДОВ МАТРИЧНЫХ ИГР ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ И ТЕОРИИ ВЕРОЯТНОСТЕЙ К ПЛАНИРОВАНИЮ ВОЕННЫХ ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТЕЙ 00 АИ Чегодаев* Ключевые слова: чистые

Подробнее

Метод сокращения отрицательных индексных элементов при поиске начального базисного псевдооптимального решения задачи линейного программирования

Метод сокращения отрицательных индексных элементов при поиске начального базисного псевдооптимального решения задачи линейного программирования Истомин Леонид Александрович Кандидат физико-математических наук, доцент кафедры математического обеспечения и администрирования информационных систем Уральский государственный экономический университет

Подробнее

Математики и математических методов в экономике 2. Направление подготовки

Математики и математических методов в экономике 2. Направление подготовки 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения. Кафедра Математики и математических методов в экономике. Направление подготовки 8.0.0

Подробнее

Методы оптимальных решений Шишкин Владимр Андреевич (http://www.vsh1791.ru)

Методы оптимальных решений Шишкин Владимр Андреевич (http://www.vsh1791.ru) Методы оптимальных решений Шишкин Владимр Андреевич (http://www.vsh1791.ru) Содержание 1 Вопросы к экзамену 2 2 Примеры задач 3 2.1 Линейное программирование......................... 3 2.2 Теория двойственности............................

Подробнее

Решение задачи по предмету «Теория принятия решений»

Решение задачи по предмету «Теория принятия решений» Решение задачи по предмету «Теория принятия решений» Фирма «Х» производит три типа химикатов. На предстоящий месяц эта фирма заключила контракт на поставку следующих количеств трех типов химикатов; Тип

Подробнее

ВАРИАНТ 5 0,2 0,3 0,0 A 0,3 0,1 0, 2, 0,1 0, 0 0,3

ВАРИАНТ 5 0,2 0,3 0,0 A 0,3 0,1 0, 2, 0,1 0, 0 0,3 ВАРИАНТ 5 Задание 1. Рассмотрим три отрасли промышленности: I, II, III, каждая из которых производит свой однородный продукт и для обеспечения производства нуждается в продукции других отраслей. Процесс

Подробнее

Графическое решение задачи

Графическое решение задачи На приобретение машин для участка выделены 30 т.р. Производственная площадь участка - 70 м 2. Можно закупить машины двух видов: стоимостью 3 т.р. и 5 т.р. олее дорогая машина требует для установки 12 м

Подробнее

Математические модели в экономике Теория игр Контрольная работа

Математические модели в экономике Теория игр Контрольная работа Математические модели в экономике Теория игр Контрольная работа Задача. Используя теорию игр проанализировать ситуацию и принять решение. Рассмотреть ситуацию, как антогонистическую игру и игру с природой.

Подробнее

ТЕОРИЯ ИГР В ЗАДАЧАХ

ТЕОРИЯ ИГР В ЗАДАЧАХ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) М.Л. ОВЕРЧУК ТЕОРИЯ ИГР В ЗАДАЧАХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

ГУМРФ им. адмирала С.О. Макарова. х х

ГУМРФ им. адмирала С.О. Макарова. х х Постановка задачи Для перевозки изделий, состоящи из дву контейнеров А и В, у компании «Транзит» имеются три транспортны средства разны типов, возможности которы приведены в таблице. Перевозка дву различны

Подробнее

Лекция 3. Решение игр в смешанных стратегиях.

Лекция 3. Решение игр в смешанных стратегиях. Лекция 3. Решение игр в смешанных стратегиях. 18.09.2014 1 3.1 Нахождение смешанных стратегий в играх 2 2 3.2 Упрощение матричных игр 3.3 Решение матричных игр в смешанных стратегиях 2xn и mx2 2 Аналитический

Подробнее

Метод сокращения отрицательных компонент при поиске допустимого базисного решения задачи линейного программирования

Метод сокращения отрицательных компонент при поиске допустимого базисного решения задачи линейного программирования Истомин Леонид Александрович Кандидат физико-математических наук, доцент кафедры высшей математики Уральский государственный экономический университет 62144, РФ, г Екатеринбург, ул 8 Марта/Народной воли,

Подробнее

Нахождение решения задачи параметрического программирования.

Нахождение решения задачи параметрического программирования. Нахождение решения задачи параметрического программирования. ешение задачи, целевая функция которой содержит параметр. Продолжим рассмотрение задачи (1)-(3). Считая значение параметра t равным некоторому

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ По выполнению контрольных работ По дисциплине «Теория игр» Для студентов заочного отделения специальности «Прикладная информатика в экономике» Хабаровск Задачи теории игр Если имеется

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) Общие сведения 1. Кафедра Информатики, вычислительной техники и информационной безопасности 2. Направление

Подробнее

МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЭКОНОМИКЕ И ФИНАНСАХ

МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЭКОНОМИКЕ И ФИНАНСАХ Федеральное агентство по образованию Нижегородский государственный университет им. Н.И. Лобачевского Е.В. Кошелев МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЭКОНОМИКЕ И ФИНАНСАХ Учебное пособие Нижний Новгород Издательство

Подробнее

К теме «Линейное программирование. Симплексный метод решения задач ЛП.»

К теме «Линейное программирование. Симплексный метод решения задач ЛП.» К теме «Линейное программирование. Симплексный метод решения задач ЛП.» Задачи оптимального планирования, связанные с отысканием оптимума заданной целевой функции (линейной формы) при наличии ограничений

Подробнее

Введение. 1. Задача линейного программирования. Основные понятия

Введение. 1. Задача линейного программирования. Основные понятия Введение Данные методические указания адресованы студентам заочной формы обучения всех специальностей, которые будут выполнять контрольную работу т 4 по высшей математике, и охватывают раздел математического

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Восточно-Сибирский государственный технологический университет. И.В.Корытов С.С.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Восточно-Сибирский государственный технологический университет. И.В.Корытов С.С. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Восточно-Сибирский государственный технологический университет ИВКорытов ССДашиева ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ в примерах и задачах Симплекс-метод Метод искусственного

Подробнее

2. Методы решения общей задачи линейного программирования

2. Методы решения общей задачи линейного программирования . Методы решения общей задачи линейного программирования Современные методы ЛП делятся на две большие группы: - координатные методы и итерационные, позволяющие находить приближенные решения задач ЛП. Наиболее

Подробнее

К теме Теория игр. Для каждой формализованной игры вводятся правила, т.е. система условий, определяющая:

К теме Теория игр. Для каждой формализованной игры вводятся правила, т.е. система условий, определяющая: К теме Теория игр На практике часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределенности, т.е. возникают ситуации, в которых две (или более) стороны преследуют

Подробнее

Симплекс-метод линейного программирования

Симплекс-метод линейного программирования Симплекс-метод линейного программирования Симплекс-метод является основным в линейном программировании. Решение задачи начинается с рассмотрений одной из вершин многогранника условий. Если исследуемая

Подробнее

на тему «Модели организации и планирования производства»

на тему «Модели организации и планирования производства» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНО ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» (МИИТ)

Подробнее

Метод гомори онлайн. >>> Метод гомори онлайн

Метод гомори онлайн. >>> Метод гомори онлайн Метод гомори онлайн >>> Метод гомори онлайн Метод гомори онлайн По технологическим нормам на производство одного изделия типа А и одного изделия типа В требуется определенное количество сырья и некоторый

Подробнее

Метод гомори онлайн. >>> Метод гомори онлайн

Метод гомори онлайн. >>> Метод гомори онлайн Метод гомори онлайн >>> Метод гомори онлайн Метод гомори онлайн По технологическим нормам на производство одного изделия типа А и одного изделия типа В требуется определенное количество сырья и некоторый

Подробнее

Линейная алгебра

Линейная алгебра Линейная алгебра 08.12.2012 Линейные модели в экономике Линейное программирование Линейная алгебра (лекция 13) 08.12.2012 2 / 25 Задача линейного программирования: F (x 1, x 2,..., x n ) = n c j x j max(min),

Подробнее

Нормы расхода ресурсов на одно изделие. шкафов. По смыслу задачи эти переменные неотрицательны, x1, x2

Нормы расхода ресурсов на одно изделие. шкафов. По смыслу задачи эти переменные неотрицательны, x1, x2 Составление, решение и анализ задачи линейного программирования в Excel ЗАДАНИЕ. Построить математическую модель задачи и решить её средствами Excel. Записать сопряжённую задачу. Провести анализ и сделать

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Ижевский государственный технический университет кафедра САПР МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по дисциплине "Системный анализ" на тему

Подробнее

Теория принятия решений

Теория принятия решений Теория принятия решений Литература О.И. Ларичев «Теория и методы принятия решений» А.И. Орлов «Теория принятия решений» А.Т. Зуб «Принятие управленческих решений» А.Г. Мадера «Моделирование и принятие

Подробнее

5. Элементы теории матричных игр

5. Элементы теории матричных игр 5 Элементы теории матричных игр a m В теории игр исследуются модели и методы принятия решений в конфликтных ситуациях В рамках теории игр рассматриваются парные игры (с двумя сторонами) или игры многих

Подробнее

ТЕОРИЯ МАТРИЧНЫХ ИГР. Задачи выбора в условиях неопределенности

ТЕОРИЯ МАТРИЧНЫХ ИГР. Задачи выбора в условиях неопределенности ТЕОРИЯ МАТРИЧНЫХ ИГР Задачи выбора в условиях неопределенности Имеется набор возможных исходов y Y, из которых один окажется совмещенным с выбранной альтернативой, но с какой именно в момент выбора неизвестно,

Подробнее

Краткая теория Пусть требуется найти максимальное значение функции. 1 max (1) при условиях

Краткая теория Пусть требуется найти максимальное значение функции. 1 max (1) при условиях Лабораторная работа Тема: «Симплексный метод» Цель работы: Получить практические навыки решения задач линейного программирования симплексным методом. Предварительная подготовка: спец. дисциплина «Математические

Подробнее

Симплекс-метод решения задачи.

Симплекс-метод решения задачи. 1) Решить симплекс-методом задачу линейного программирования 10x1 7x2 5x3 min 6x1+ 15x2 + 6x3 9 14x1+ 42x2 + 16x3 21 2x1+ 8x2 + 2x3 4 x j 0 ( j = 1, 2, 3) Симплекс-метод решения задачи. Симплексный метод

Подробнее

Линейная алгебра

Линейная алгебра Линейная алгебра 22.12.2012 Линейные модели в экономике Линейное программирование Теория двойственности Линейная алгебра (лекция 15) 22.12.2012 2 / 28 Линейное программирование Каждой задаче линейного

Подробнее

Симплекс-метод для решения задач линейного программирования

Симплекс-метод для решения задач линейного программирования для решения задач линейного программирования Арсений Мамошкин СПбГУ ИТМО Кафедра КТ 2010 г. Мамошкин А. М. (СПбГУ ИТМО КТ) http://rain.ifmo.ru/cat 1 / 28 Содержание Формулировка задачи 1. Формулировка

Подробнее

Лекция 9. I. После введения добавочных переменных систему уравнений и линейную функцию записываем в виде, который называется расширенной системой:

Лекция 9. I. После введения добавочных переменных систему уравнений и линейную функцию записываем в виде, который называется расширенной системой: Лекция 9 ТАБЛИЧНАЯ РЕАЛИЗАЦИЯ СИМПЛЕКС-МЕТОДА Практические расчеты при решении реальных задач симплексным методом выполняются в настоящее время с помощью компьютеров. Однако если расчеты осуществляются

Подробнее

Решение задач квадратичного программирования онлайн

Решение задач квадратичного программирования онлайн Решение задач квадратичного программирования онлайн >>> Решение задач квадратичного программирования онлайн Решение задач квадратичного программирования онлайн Условия Куна-Таккера записываются в виде

Подробнее

Матричные игры. Решение конфликта в условиях антагонизма: кто кого победит? Одесcкий национальный университет имени И.И. Мечникова. Кичмаренко О.Д.

Матричные игры. Решение конфликта в условиях антагонизма: кто кого победит? Одесcкий национальный университет имени И.И. Мечникова. Кичмаренко О.Д. цена. Матричные. Решение конфликта в условиях антагонизма: кто кого победит? Кичмаренко О.Д. Одесcкий национальный университет имени И.И. Мечникова цена. Определение. Матричная игра - это бескоалиционная

Подробнее

МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ЗАБАЙКАЛЬСКИЙ АГРАРНЫЙ ИНСТИТУТ - филиал ФГБОУ ВО «Иркутский государственный аграрный университет имени А.А.Ежевского» Экономический факультет Кафедра

Подробнее

ν = sup inf gu (, u) 2.3. Антагонистические игры. Седловые точки

ν = sup inf gu (, u) 2.3. Антагонистические игры. Седловые точки .3. Антагонистические игры. Седловые точки Антагонистическая игра. Она представляет собой частный случай игры в нормальной форме Г, когда имеется два игрока (n = ) и сумма функций выигрыша этих игроков

Подробнее

Нелинейная задача оптимизации.

Нелинейная задача оптимизации. Нелинейная задача оптимизации. Кольцов С.Н 2014 www.linis.ru Задача безусловной оптимизации Задача оптимизации формулируется следующим образом: заданы множество Х (допустимое множество задачи) и функция

Подробнее

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг.

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг. А.В. Колесников Вариационное исчисление Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Некоторые специальные экстремальные задачи Дискретная транспортная задача (задача Монжа-Канторовича)

Подробнее

x j 0, Еще раз повторим формулировку задачи из нашего примера. = 2x 1 + 4x 2 max; 4x 1 +6x 2 120, 2x 1 +6x 2 72, x 2 10; x 1 0, x 2 0.

x j 0, Еще раз повторим формулировку задачи из нашего примера. = 2x 1 + 4x 2 max; 4x 1 +6x 2 120, 2x 1 +6x 2 72, x 2 10; x 1 0, x 2 0. 1 Симплексный метод решения ЗЛП Шаг 1. Формулировка ЗЛП (формирование целевой функции и системы ограничений). Для определенности будем считать, что решается задача на отыскание максимума. Ниже приведем

Подробнее

МАТЕМАТИКА ЭЛЕМЕНТЫ ТЕОРИИ ИГР

МАТЕМАТИКА ЭЛЕМЕНТЫ ТЕОРИИ ИГР Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу ЭЛЕМЕНТЫ ТЕОРИИ ИГР К Л Самаров, 009 ООО «Резольвента», 009 ООО «Резольвента»,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ Экономический факультет. В. Ф. Ходыкин МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ Экономический факультет. В. Ф. Ходыкин МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ Экономический факультет В. Ф. Ходыкин МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ (Тексты лекций для студентов экономических специальностей)

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНО ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНО ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНО ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» (МИИТ)

Подробнее

МЕТОДЫ ПРИНЯТИЯ ОПТИМАЛЬНЫХ РЕШЕНИЙ

МЕТОДЫ ПРИНЯТИЯ ОПТИМАЛЬНЫХ РЕШЕНИЙ ЦЕНТР ДИСТАНЦИОННОГО ОБУЧЕНИЯ Министерство образования и науки РФ Уральский государственный экономический университет МЕТОДЫ ПРИНЯТИЯ ОПТИМАЛЬНЫХ РЕШЕНИЙ Учебно-методический комплекс Екатеринбург 0 Составители:

Подробнее

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра нелинейного анализа и аналитической экономики В. И. БАХТИН, И. А. ИВАНИШКО, А. В. ЛЕБЕДЕВ, О. И. ПИНДРИК ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Подробнее

Курсовая работа. по дисциплине «Методы оптимальных решений» тема: «Модели организации и планирования производства»

Курсовая работа. по дисциплине «Методы оптимальных решений» тема: «Модели организации и планирования производства» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНО ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА

Подробнее

Курсовая работа. по дисциплине «Макроэкономическое планирование и прогнозирование» Выполнила: студентка гр. ЭЭР-312. Землянская Марина Андреевна

Курсовая работа. по дисциплине «Макроэкономическое планирование и прогнозирование» Выполнила: студентка гр. ЭЭР-312. Землянская Марина Андреевна ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» (МИИТ)

Подробнее

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Федеральное Агентство по образованию Российской Федерации ГОУ ВПО ЮЖНО-РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА (ЮРГУЭС) Филькин Г.В. ЛЕКЦИИ ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ для студентов экономических

Подробнее

Лекция 12 Задачи нелинейного и квадратичного программирования

Лекция 12 Задачи нелинейного и квадратичного программирования Лекция Задачи нелинейного и квадратичного программирования Нелинейное программирование (НЛП). НЛП это такая задача математического программирования, F когда-либо целевая функция, либо ограничения, либо

Подробнее

( ) Методы оптимальных решений Контрольная работа с подробным решением. Задача 1

( ) Методы оптимальных решений Контрольная работа с подробным решением. Задача 1 Методы оптимальных решений Контрольная работа с подробным решением Задача 1 Определить методом множителей Лагранжа условные экстремумы функций: 2 2 Z = 3x + 2y x + 1 x + y = 4 2 2 Составим функция Лагранжа.

Подробнее

Банк заданий для промежуточного контроля

Банк заданий для промежуточного контроля Банк заданий для промежуточного контроля Тест. Тема «Линейное программирование» Состоит из - 3 теоретических вопроса по теме и 4 6 практических заданий, предусматривающих умения и навыки: составлять математические

Подробнее

Ýêîíîìèêà О МОДЕЛИРОВАНИИ КОНФЛИКТА МАТРИЧНОЙ ИГРОЙ И ПРИМЕНЕНИИ СВОЙСТВ ЕЕ РЕШЕНИЙ К ПРИКЛАДНЫМ ЗАДАЧАМ ЭКОНОМИКИ И ВОЕННОГО ДЕЛА

Ýêîíîìèêà О МОДЕЛИРОВАНИИ КОНФЛИКТА МАТРИЧНОЙ ИГРОЙ И ПРИМЕНЕНИИ СВОЙСТВ ЕЕ РЕШЕНИЙ К ПРИКЛАДНЫМ ЗАДАЧАМ ЭКОНОМИКИ И ВОЕННОГО ДЕЛА Ýêîíîìèêà УДК 0 О МОДЕЛИРОВАНИИ КОНФЛИКТА МАТРИЧНОЙ ИГРОЙ И ПРИМЕНЕНИИ СВОЙСТВ ЕЕ РЕШЕНИЙ К ПРИКЛАДНЫМ ЗАДАЧАМ ЭКОНОМИКИ И ВОЕННОГО ДЕЛА 009 АИ Чегодаев Ключевые слова: антагонистическая игра множество

Подробнее

Двойственные задачи. Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов 2

Двойственные задачи. Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов 2 Двойственные задачи Содержание Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов 2 Взаимно двойственные задачи линейного программирования и их свойства 5 Теоремы двойственности

Подробнее