3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий."

Транскрипт

1 Лекция 4 3 Непрерывная зависимость решения задачи Коши от параметров и начальных условий Постановка задачи Простейшим примером параметра, от которого зависит решение задачи Коши = f ( xy, ), yx ( ) = y = μ является начальное значение Выбирая различные значения y = μ, получаем семейство решений yxμ (, ), зависящее от параметра μ От различных параметров могут зависеть также и правые части уравнения, те f = f ( x, y, μ) При этом часто некоторые величины, входящие в правую часть уравнения, определяются экспериментально и, следовательно, известны с погрешностью Поэтому вопрос о непрерывной зависимости решений дифференциальных уравнений от параметров важен и с практической точки зрения Покажем, что изучение зависимости решения от параметров, содержащихся в правой части и начальных условиях, может быть проведено единым образом Действительно, если в задаче Коши = f ( xy, ) yx ( ) = y = μ сделать замену z = y μ, то для новой функции z получим задачу dz = f ( xz, + μ) f( xz,, μ), zx ( ) = в которой от параметра теперь зависит правая часть уравнения Поэтому далее будем рассматривать следующую задачу Коши с параметром в правой части: = f( x, y, μ) () yx ( ) = y 2 Теоремы о непрерывной зависимости решения от параметра Рассмотрим задачу () при следующих условиях (У) Функция f ( xyμ,, ) определена и непрерывна по совокупности переменных в области {,, μ μ } D = x x a y y b c и, следовательно, ограничена, те существует постоянная M = max f( x, y, μ D (У2) Функция f ( xyμ,, ) удовлетворяет в области D условию Липшица f ( xy,, μ) f( xy, 2, μ) Ny y2, где постоянная N не зависит от параметра μ на отрезке μ μ c

2 Теорема Пусть выполнены условия (У) и (У2) Тогда на отрезке [ x, x + H], где H min a, b =, существует единственное решение задачи M (), непрерывное по параметру μ при μ μ c Доказательство этой теоремы дословно повторяет доказательство теоремы существования и единственности решения задачи Коши (см 2) и основано на равномерной сходимости функциональной последовательности { (, )}: (, ) = + (, (, ), ) y x μ y x μ y f ξ y ξ μ μ dξ n n n x x Замечание Результат теоремы очевидным образом обобщается на случай, когда правая часть зависит от нескольких параметров, те μ = { μ, μ2,, μ m }, среди которых μ i = y Теорема 2 Пусть функция f ( xyμ,, ) непрерывна и при каждом μ μ c удовлетворяет условию Липшица в полосе [ x, x + a], y R Тогда задача () имеет единственное решение на отрезке [ x, x + a], непрерывное по параметру μ Для доказательства этой теоремы достаточно повторить доказательство теоремы 2 из 2 4 Теоремы сравнения Метод дифференциальных неравенств Постановка задачи Теоремы сравнения, лежащие в основе принципа сравнения, играют важную роль в исследовании различных классов нелинейных задач как для обыкновенных дифференциальных уравнений, так и для уравнений в частных производных Они гарантируют существование (а при некоторых естественных требованиях и единственность) решения задач при условии существования так называемых верхних и нижних решений Этот подход в исследовании нелинейных дифференциальных уравнений носит также название метода дифференциальных неравенств и является развитием идей метода «вилки» решения нелинейных конечных уравнений Указанный метод будет продемонстрирован нами на примере решения задачи Коши для скалярного ОДУ первого порядка Эта задача впервые с точки зрения метода дифференциальных неравенств была рассмотрена СА Чаплыгиным в начале 2-х годов прошлого века и положила начало одному из наиболее эффективных методов качественной теории нелинейных дифференциальных уравнений Отметим, что важность этих результатов подчеркивалась одним из основоположников курса дифференциальных уравнений на физическом факультете МГУ академиком АН Тихоновым, по инициативе которого теоремы Чаплыгина были включены в основной учебник для студентов-физиков [] Рассмотрим скалярную задачу Коши вида = f ( xy, ) < x a () y() = y Основной особенностью задачи () является то, что она рассматривается на фиксированном промежутке времени x a и значение a входит в постановку задачи Такая постановка является естественной для приложений, где задача () может выступать в качестве математической модели Классическая теорема существования и единственности (см Теорему из 2, лекция 3), являющаяся локальной и гарантирующая существование решения в

3 некоторой достаточно малой окрестности начальной точки, как правило, становится мало пригодной Напомним формулировки двух теорем, доказанных в предыдущей лекции (см Теоремы и 2 из 2, лекция 3) Теорема Пусть функция f ( x, y ) определена и непрерывна в прямоугольнике {, } D = x a y y b и, следовательно, существует постоянная M = max f( x, y) Пусть, кроме того, функция f ( x, y ) удовлетворяет в области D условию Липшица по переменной y : f ( xy, ) f( xy, 2) Ny y2 Тогда на промежутке x min a, b задача Коши () имеет единственное решение M Очевидно, что при больших значениях M сформулированная теорема дает слишком грубую оценку промежутка существования решения Это особенно ярко проявляется для так называемых сингулярно возмущенных задач, когда правая часть имеет вид f ( xy, ), где μ - μ малый параметр В этом случае M и, следовательно, промежуток существования решения, μ гарантированный этой теоремой, имеет оценку H ~ μ, те является асимптотически малым Теорема 2 Пусть функция f ( x, y ) определена, непрерывна и удовлетворяет Липшица по переменной y в полосе { x a, y } < <+ D условию Тогда на промежутке x a задача Коши () имеет единственное решение Данная теорема уже не является локальной, однако класс функций f ( x, y, ) удовлетворяющих сформулированным в ней условиям, достаточно узкий Поэтому во многих случаях более эффективным для исследования задачи () является метод дифференциальных неравенств Чаплыгина Изложение этого подхода начнем со следующего классического результата 2 Теорема Чаплыгина о дифференциальных неравенствах Теорема 3 (сравнения, Чаплыгина) Пусть существует классическое решение yx ( ) задачи () и существует функция zx ( ) такая, что dz zx ( ) C ( ; a] C[ ; a], z() < y и f ( xzx, ( )), x ( ; a] < Тогда при всех x [; a] имеет место неравенство zx ( ) < yx ( ) Доказательство При x = неравенство выполняется Пусть оно первый раз нарушается в точке x (, a], те имеем zx ( ) = yx ( ) Это означает, что при x = x кривые y= y( x) и y= z( x) либо пересекаются, либо касаются Следовательно, dz ( x) ( x) = f ( x, y( x)) = f( x, z( x)), что противоречит условию теоремы Замечание СА Чаплыгин называл функцию ( ) zx нижней функцией Аналогично определяется верхняя функция

4 3 Теорема Чаплыгина о существовании и единственности решения задачи Коши Используя результат Теоремы 3 можно доказать теорему существования и единственности решения задачи () Для этого нам понадобится определение нижнего и верхнего решений Так в современной литературе принято называть нижние и верхние функции Чаплыгина α( x) C, a C[, a] называется нижним решением задачи (), если выполнены неравенства dα < f ( x, α( x)), < x a, α() < y Функция β ( x) C (, a] C[, a] называется верхним решением задачи (), если выполнены неравенства dβ > f ( x, β( x)), < x a, β() > y Определение Функция ( ] Замечание Используя схему доказательства теоремы сравнения, можно показать, что между нижним решением α ( x) и верхним решением β ( x) имеет место неравенство α ( x) < β ( x) Теорема 4 (существования и единственности, Чаплыгина) Пусть существует нижнее α ( x) и верхнее β ( x) решения задачи (), такие что α ( x) < β ( x), x [ ; a] Пусть функция (, ) переменной y те при каждом x [ ; a] f x y непрерывна и удовлетворяет условию Липшица по выполнено неравенство f ( xy, ) f( xy, 2) Ny y2, y, y2 [ α( x), β( x) ] Тогда задача Коши () имеет единственное решение yx, ( ) причем α ( x) < yx ( ) < β ( x), x a Доказательство Продолжим f ( x, y ) так, чтобы она была непрерывна и удовлетворяла условию Липшица в полосе { x a, y } где функция hxy (, ) выбрана, например, так: < <+, и рассмотрим вместо () задачу = hxy (, ), < x a, y() = y, f( x, β( x)) + ( y β( x)), y β hxy (, ) = f( xy, ), α y β ( x a) f( x, α( x)) + ( y α( x)), y α Очевидно, что функция hxy (, ) удовлетворяет условию Липшица с константой L = max( N;), где N - постоянная Липшица функции f ( x, y, ) введенная в условии теоремы Поэтому, в силу Теоремы 2 решение задачи (2) существует и единственно Это решение, лежащее в начальный момент между нижним и верхним решением, не может покинуть область между ними в силу Теоремы 3 Следовательно, для указанных значений y имеет место равенство hxy (, ) = f( xy, ), те решение задачи (2) является решением задачи () Замечание Можно показать, что в определении верхнего и нижнего решений допустимы нестрогие знаки неравенств В частности, в качестве нижнего (верхнего) решения задачи () может быть взято решение уравнения в () y ( x ), которое в начальный момент (2)

5 ( ) y () < y y () > y Действительно, в этом случае предположение о том, что кривая y = y ( x) пересекает кривую y = y( x) в некоторой точке x, приводит к нарушению условия единственности решения в окрестности этой точки Замечание 2 Пусть нижнее и верхнее решения определены на множестве x <, а функция f ( x, y ) непрерывна и удовлетворяет условию Липшица по переменной y с константой N, не зависящей от x Тогда Теорема 4 остается справедливой на всем промежутке x < Этот факт будет использован далее при изучении некоторых задач теории устойчивости 4 Примеры Пример Рассмотрим начальную задачу 2 = y, < x a, y() = y >, точное решение которой есть yx ( ) = x + y Классическая теорема существования и единственности дает оценку для промежутка существования решения x (убедитесь в этом самостоятельно) Заметим также, что 4y условие Липшица в полосе { x a, y } < <+ не выполняется Выберем в качестве нижнего решения функцию α = (см замечание ) Действительно, d соответствующее определение выполняется, так как α f( x,) = В качестве верхнего решения возьмем β ( x) = d = const > y Определение верхнего dβ 2 решения тоже выполнено, так как f( x, β ) = + d > Так как частная производная f ( xy, ) = 2yограничена при y [; d] и x a, где y 2 a > - любое число, то функция f ( xy, ) = y удовлетворяет условию Липшица в этой области Отсюда на основании Теоремы 4 можно утверждать, что при всех x < существует решение yx, ( ) причем yx ( ) d Пример 2 Рассмотрим начальную задачу = f ( xy, ), < x a y() = y, где функция f ( x, y ) удовлетворяет условиям Теоремы 2 и при каждом x имеет вид, изображенный на рисунке

6 Пусть ϕ ( x) - наибольший отрицательный корень уравнения f ( x, y ) =, ϕ ( x) - 2 наименьший положительный корень этого уравнения Обозначим ϕ = max ϕ( x), ϕ = min ϕ2( x) и предположим, что начальное значение y удовлетворяет [, a] условию ϕ [, a] < y < ϕ Тогда существует постоянная ε > такая, что ϕ ε y ϕ ε + < < Выберем в качестве нижнего решения функцию α = ϕ + ε, а в качестве верхнего функцию β = ϕ ε В силу того, что f ( α ) >, а f ( β ) < (см рисунок), соответствующие дифференциальные неравенства выполнены Поэтому из теоремы Чаплыгина (Теорема 4) следует, что существует решение рассматриваемой задачи yx, ( ) удовлетворяющее неравенствам ϕ ( ) < yx < ϕ

Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина.

Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В.Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т А.Б. Васильева, Н.Н. Нефедов Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина. (некоторые разделы

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Локальная теорема Коши Пикара.

Локальная теорема Коши Пикара. Локальная теорема Коши Пикара. Теорема (о существовании и единственности локального решения). Пусть дана задача Коши x = f(t, x) x(t 0 ) = x 0, (1) где правая часть f(t, x) определена и непрерывна в прямоугольнике

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

Нелинейные краевые задачи

Нелинейные краевые задачи МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им МВЛомоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т АБ Васильева НН Нефедов Нелинейные краевые задачи (дополнительные разделы к курсу лекций «Дифференциальные уравнения»)

Подробнее

Уравнения первого порядка

Уравнения первого порядка Глава 1. Введение Лекция 1 1. Понятие дифференциального уравнения. Основные определения. 2. Общее решение дифференциального уравнения, общий интеграл. 3. Постановка основных задач для обыкновенных дифференциальных

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

ЛЕКЦИЯ 4В Теорема Коши. 1. Определения. Рассмотрим задачу Коши { (1)

ЛЕКЦИЯ 4В Теорема Коши. 1. Определения. Рассмотрим задачу Коши { (1) ЛЕКЦИЯ 4В Теорема Коши В этой лекции будет доказана теорема о существовании и единственности решения задачи Коши. 1. Определения Рассмотрим задачу Коши { y = f(t, y), y( ) = y 0. (1) Пусть функция f(t,

Подробнее

Дифференциальные уравнения Т С

Дифференциальные уравнения Т С Дифференциальные уравнения. 1999. Т.35. 6. С.784-792. УДК 517.957 ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ КРАЕВЫХ ЗАДАЧ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С НЕЛИНЕЙНОСТЯМИ Ю. В. Жерновый 1. Введение. Постановка задачи. Наиболее

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. f f(x, y 1,..., y n ), (x, y) D. y(x 0 ) = y 0. (1.

Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. f f(x, y 1,..., y n ), (x, y) D. y(x 0 ) = y 0. (1. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений 1. Постановка задачи Пусть в области D = {a x b, y i y i 0 b i } R n+1 Необходимо найти решение удовлетворяющее начальному

Подробнее

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости ГЛАВА УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ В этой главе исследуется устойчивость самого простого класса дифференциальных систем линейных систем В частности, устанавливается, что для линейных систем с постоянными

Подробнее

О системах дифференциальных уравнений, содержащих параметры

О системах дифференциальных уравнений, содержащих параметры Математический сборник т 7(69) 95 А Н Тихонов О системах дифференциальных уравнений содержащих параметры Рассмотрим систему дифференциальных уравнений n и решение этой системы определяемое условиями Это

Подробнее

9. Принцип сжимающих отображений. Теоремы о неподвижной точке.

9. Принцип сжимающих отображений. Теоремы о неподвижной точке. Лекция 6 9 Принцип сжимающих отображений Теоремы о неподвижной точке Пусть D оператор, вообще говоря, нелинейный, действующий из банахова пространства B в себя Определение Оператор D, действующий из банахова

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова.

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова. 8 Устойчивость решений систем обыкновенных дифференциальных уравнений Прямой метод Ляпунова ВДНогин 1 о Введение Для того чтобы можно было поставить задачу об устойчивости, необходимо располагать объектом,

Подробнее

ЛЕКЦИИ 8 9 Теорема Хилле Иосиды

ЛЕКЦИИ 8 9 Теорема Хилле Иосиды ЛЕКЦИИ 8 9 Теорема Хилле Иосиды S 3. Определение и элементарные свойства максимальных монотонных операторов Всюду на протяжении этих двух лекций символом H обозначено гильбертово пространство со скалярным

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

1 Экспонента линейного оператора.

1 Экспонента линейного оператора. 134 1. ЭКСПОНЕНТА ЛИНЕЙНОГО ОПЕРАТОРА. 1 Экспонента линейного оператора. 1.1 Напоминание: геометрическая формулировка основной задачи ОДУ. Напомним, что векторное поле это отображение, которое каждой точке

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Интегралы и дифференциальные уравнения. Лекции 18-19

Интегралы и дифференциальные уравнения. Лекции 18-19 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 18-19 Линейные

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

Лекция 1. Дифференциальные уравнения первого порядка

Лекция 1. Дифференциальные уравнения первого порядка Лекция 1 Дифференциальные уравнения первого порядка 1 Понятие дифференциального уравнения и его решения Обыкновенным дифференциальным уравнением 1-го порядка называется выражение вида F( x, y, y ) 0, где

Подробнее

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА А. Н. Мягкий Интегральные уравнения и вариационное исчисление Лекция Пусть задан функционал V = V [y(x)], y(x) M E. Зафиксируем функцию y (x) M. Тогда любую другую функцию

Подробнее

1 о. Определение асимптотически устойчивого решения. Рассмотрим нормальную систему дифференциальных уравнений в векторной форме (1)

1 о. Определение асимптотически устойчивого решения. Рассмотрим нормальную систему дифференциальных уравнений в векторной форме (1) 29. Асимптотическая устойчивость решений систем обыкновенных дифференциальных уравнений, область притяжения и методы ее оценки. Теорема В.И. Зубова о границе области притяжения. В.Д.Ногин 1 о. Определение

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

Интегралы и дифференциальные уравнения. Лекция 22

Интегралы и дифференциальные уравнения. Лекция 22 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция Нормальные

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Лекция 4. Дифференцирование сложных функций Неявное дифференцирование

Лекция 4. Дифференцирование сложных функций Неявное дифференцирование СА Лавренченко wwwlawrencenkoru Лекция 4 Дифференцирование сложных функций Неявное дифференцирование Вспомним правило дифференцирования для функций одной переменной также называемое цепным правилом (см

Подробнее

Лекция 13. Методы решения равновесных задач и вариационных неравенств

Лекция 13. Методы решения равновесных задач и вариационных неравенств Лекция 13. Методы решения равновесных задач и вариационных неравенств Вспомним основные определения равновесных задач и вариационных неравенств. Пусть D R n - непустое замкнутое выпуклое множество. Определение

Подробнее

О ЛОКАЛЬНО ЯВНОЙ МОДЕЛИ ЛЮФТА

О ЛОКАЛЬНО ЯВНОЙ МОДЕЛИ ЛЮФТА УДК 579353 О ЛОКАЛЬНО ЯВНОЙ МОДЕЛИ ЛЮФТА И Н Прядко Воронежский государственный университет В статье предлагается новая модель люфта записываемая в виде локально явного уравнения В отличие от известной

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, 214, том 5, 6, с. 726 744 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ УДК 517.925.52+519.218 ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

Подробнее

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП Функции нескольких переменных 11. Определение функции нескольких переменных. Предел и непрерывность ФНП 1. Определение функции нескольких переменных ОПРЕДЕЛЕНИЕ. Пусть X = { 1 n i X i R } U R. Функция

Подробнее

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих Лекция НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА Определение и сходимость несобственных интегралов, зависящих от параметра Признаки равномерной сходимости несобственных интегралов, зависящих от параметра

Подробнее

14. Задача Штурма-Лиувилля.

14. Задача Штурма-Лиувилля. Лекция 8 4 Задача Штурма-Лиувилля Рассмотрим начально-краевую задачу для дифференциального уравнения в частных производных второго порядка описывающего малые поперечные колебания струны Струна рассматривается

Подробнее

Тема: Предел функции

Тема: Предел функции Математический анализ Раздел: Введение в анализ Тема: Предел функции предел функции и его свойства, бесконечно большие функции и их свойства Лектор Янущик ОВ 215 г 3 Предел функции 1 Определение предела

Подробнее

Аннотация: Установлены связи между решениями широкого класса систем обыкновенных

Аннотация: Установлены связи между решениями широкого класса систем обыкновенных Сибирский математический журнал Январь февраль, 26. Том 47, УДК 57.9+57.929 ОБ ОДНОМ КЛАССЕ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ОБ УРАВНЕНИЯХ С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ Г. В. Демиденко, В. А. Лихошвай,

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие Министерство общего и профессионального образования Российской Федерации Санкт-Петербургский государственный технический университет Аксёнов АП СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Учебное пособие

Подробнее

Тема: Степенные ряды.

Тема: Степенные ряды. Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

Подробнее

Г. Н. Яковлев. Функциональные пространства

Г. Н. Яковлев. Функциональные пространства Г. Н. Яковлев Функциональные пространства УДК 517 Я47 Пособие содержит краткое введение в теорию метрических, нормированных и евклидовых пространств, а также в теорию обобщённых функций, и является заключительной

Подробнее

Лекция 9 СЛАБЫЙ ПРИНЦИП МАКСИМУМА. 1. Слабый принцип максимума в случае ограниченного решения

Лекция 9 СЛАБЫЙ ПРИНЦИП МАКСИМУМА. 1. Слабый принцип максимума в случае ограниченного решения Лекция 9 СЛАБЫЙ ПРИНЦИП МАКСИМУМА 1. Слабый принцип максимума в случае ограниченного решения Рассмотрим эллиптическое уравнение с переменными коэффициентами следующего вида: Lu(x) def a ij (x)u xi x j

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

СОДЕРЖАНИЕ. ВВЕДЕНИЕ.. 5 Тема 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 1. Пространство R..

СОДЕРЖАНИЕ. ВВЕДЕНИЕ.. 5 Тема 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 1. Пространство R.. СОДЕРЖАНИЕ ВВЕДЕНИЕ 5 Тема ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция Пространство R 6 Лекция Предел и непрерывность функции нескольких переменных 5 Лекция 3 Функции многих переменных

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Тема: Понятие устойчивости решения ДУ и решения системы ДУ

Тема: Понятие устойчивости решения ДУ и решения системы ДУ Математический анализ Раздел: дифференциальные уравнения Тема: Понятие устойчивости решения ДУ и решения системы ДУ Лектор Пахомова Е.Г. 2012 г. 5. Понятие устойчивости решения 1. Предварительные замечания

Подробнее

О ЗАВИСИМОСТИ ЗАДАЧИ БЫСТРОДЕЙСТВИЯ ДЛЯ ЛИНЕЙНОЙ СИСТЕМЫ ОТ ДВУХ МАЛЫХ ПАРАМЕТРОВ

О ЗАВИСИМОСТИ ЗАДАЧИ БЫСТРОДЕЙСТВИЯ ДЛЯ ЛИНЕЙНОЙ СИСТЕМЫ ОТ ДВУХ МАЛЫХ ПАРАМЕТРОВ А. Р. ДАНИЛИН, О. О. КОВРИЖНЫХ О ЗАВИСИМОСТИ ЗАДАЧИ БЫСТРОДЕЙСТВИЯ ДЛЯ ЛИНЕЙНОЙ СИСТЕМЫ ОТ ДВУХ МАЛЫХ ПАРАМЕТРОВ Рассматривается задача о быстродействии для одной линейной системы с быстрыми и медленными

Подробнее

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Лекция 7. Несобственные интегралы, зависящие от параметра. Равномерная сходимость несобственного интеграла -го рода. Критерий Коши. Признаки

Подробнее

Простейшие задачи вариационного исчисления

Простейшие задачи вариационного исчисления Глава VI. Простейшие задачи вариационного исчисления 1. Функционалы в линейном нормированном пространстве Опр. 6. 1. Функционалом J[y] в линейном нормированном пространстве E называется закон соответствия,

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г.

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г. Дифференциальные уравнения Тема: Уравнения n-го порядка, допускающие понижение порядка Лектор Янущик О.В. 2012 г. Глава II. Дифференциальные уравнения высших порядков 12. Основные понятия и определения

Подробнее

Лекция 1. Функциональные ряды

Лекция 1. Функциональные ряды С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Лекция 4 8 ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Рассматривается проблема решения систем обыкновенных дифференциальных уравнений первого порядка связывающих

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Лекция 17: Евклидово пространство

Лекция 17: Евклидово пространство Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания При решении многих задач возникает необходимость иметь числовые

Подробнее

Лекция 1 Элементы качественного анализа динамических систем с непрерывным временем на прямой

Лекция 1 Элементы качественного анализа динамических систем с непрерывным временем на прямой Лекция 1 Элементы качественного анализа динамических систем с непрерывным временем на прямой Будем рассматривать автономное дифференциальное уравнение du = f(u), (1) dt которое может быть использовано

Подробнее

ЛЕКЦИЯ 4Б Метрические пространства 2

ЛЕКЦИЯ 4Б Метрические пространства 2 ЛЕКЦИЯ 4Б Метрические пространства 2. Простейшие (и важнейшие) свойства метрических пространств. Непрерывность расстояния. Легко видеть, что функция «расстояние» ρ(x, y) непрерывна по совокупности аргументов.

Подробнее

ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ТИПА СВЕРТКИ НА ОТРЕЗКЕ

ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ТИПА СВЕРТКИ НА ОТРЕЗКЕ ISSN 74-1871 Уфимский математический журнал. Том 5. (13). С. 3-11. УДК 517.968 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ТИПА СВЕРТКИ НА ОТРЕЗКЕ С.Н. АСХАБОВ, А.Л. ДЖАБРАИЛОВ Аннотация. Методом потенциальных

Подробнее

ТЕМА 4. Принцип сжимающих отображений. Метод последовательных приближений для уравнения Фредгольма 2-рода с "малым" λ.

ТЕМА 4. Принцип сжимающих отображений. Метод последовательных приближений для уравнения Фредгольма 2-рода с малым λ. ТЕМА 4 Принцип сжимающих отображений Метод последовательных приближений для уравнения Фредгольма -рода с "малым" λ Основные определения и теоремы Пусть D оператор вообще говоря нелинейный действующий D:

Подробнее

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2) Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ

Подробнее

Лекция 3. Производная по направлению

Лекция 3. Производная по направлению Лекция 3. Производная по направлению Производная по направлению имеет большое значение в теории математического программирования. Напомним, что производная по направлению согласно определению равна: f

Подробнее

ЛЕКЦИЯ 3А (4) Теорема Радона Никодима. 1. Заряды

ЛЕКЦИЯ 3А (4) Теорема Радона Никодима. 1. Заряды ЛЕКЦИЯ 3А (4) Теорема Радона Никодима Это занятие будет посвящено доказательству теоремы Радона Никодима. Она будет нужна нам для того, чтобы доказать изоморфизм пространств L p (Ω) и (L q (Ω)) *, где

Подробнее

УСТОЙЧИВОСТЬ ЗАДАЧ ВЫЧИСЛЕНИЯ ПРЕДЕЛОВ МАКСИМАЛЬНЫХ СРЕДНИХ

УСТОЙЧИВОСТЬ ЗАДАЧ ВЫЧИСЛЕНИЯ ПРЕДЕЛОВ МАКСИМАЛЬНЫХ СРЕДНИХ 84 Вестник СамГУ Естественнонаучная серия. 23. Специальный выпуск. УДК 517.928 УСТОЙЧИВОСТЬ ЗАДАЧ ВЫЧИСЛЕНИЯ ПРЕДЕЛОВ МАКСИМАЛЬНЫХ СРЕДНИХ c 23 О.П. Филатов 1 Приводятся условия, которые позволяют приближенно

Подробнее

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ ЗАДАЧА ОПТИМИЗАЦИИ На прошлой лекции были рассмотрены методы решения нелинейных уравнений Были рассмотрены двухточечные методы, которые используют локализацию корня,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Глава 3 ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Лекции 3-4 Интегральное уравнение Фредгольма -го рода как пример некорректно поставленной задачи Эта тема по предмету рассмотрения

Подробнее

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина.

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина. 6 Раздел ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ Тема Существование и единственность решения краевой задачи Матричные функции Грина Рассмотрим на отрезке по линейную краевую задачу для системы из обыкновенных дифференциальных

Подробнее

Определение 1. Степенным рядом называется функциональный ряд вида

Определение 1. Степенным рядом называется функциональный ряд вида . Радиус сходимости Определение. Степенным рядом называется функциональный ряд вида c 0 + c (t a) + c 2 (t a) 2 + + c (t a) + = c (t a), () где c 0, c, c 2,..., c,... C называются коэффициентами степенного

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва. 2013 гг.

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. А.В. Колесников Вариационное исчисление Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Необходимые и достаточные условия второго порядка в простейшей вариационной задаче Необходимые

Подробнее

Уравнение типа турбулентной фильтрации, записанное для плоской симметрии, имеет вид u t = q. u, (1) x + f (u), q = u

Уравнение типа турбулентной фильтрации, записанное для плоской симметрии, имеет вид u t = q. u, (1) x + f (u), q = u УДК 51.7+532.517 А. С. Р о м а н о в, А. В. С е м и к о л е н о в, А. П. Ш а х о р и н О РОЛИ ФУНКЦИИ ИСТОЧНИКА ПРИ ФОРМУЛИРОВКЕ ОБОБЩЕННОГО ПРИНЦИПА МАКСИМУМА ДЛЯ УРАВНЕНИЯ ТИПА ТУРБУЛЕНТНОЙ ФИЛЬТРАЦИИ

Подробнее

Теорема существования и единственности решения дифференциального уравнения

Теорема существования и единственности решения дифференциального уравнения Теорема существования и единственности решения дифференциального уравнения А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 10 февраля 2015 г. В этом параграфе мы докажем теорему, которой пользовались в

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1 В.В. Жук, А.М. Камачкин 5 Функциональные последовательности и ряды. Равномерная сходимость, возможность перестановки предельных переходов, интегрирование и дифференцирование рядов и последовательностей.

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА В этой лекции мы введём альтернативы Фредгольма и докажем с их помощью существование классических решений задач Дирихле и Неймана в ограниченных и неограниченных

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

ЛЕКЦИЯ 4А Метрические пространства. 1. Простейшие (и важнейшие) свойства метрических пространств

ЛЕКЦИЯ 4А Метрические пространства. 1. Простейшие (и важнейшие) свойства метрических пространств ЛЕКЦИЯ 4А Метрические пространства 1. Простейшие (и важнейшие) свойства метрических пространств 1) Непрерывность расстояния. Легко видеть, что функция «расстояние» ρ(x, y) непрерывна по каждому из аргументов.

Подробнее

Основы теории специальных функций

Основы теории специальных функций Основы теории специальных функций Необходимость изучения специальных функций математической физики связана с двумя основными обстоятельствами. Во-первых, при разработке математической модели физического

Подробнее

С.А. Лавренченко. Лекция 10. Исследование функции при помощи производных

С.А. Лавренченко. Лекция 10. Исследование функции при помощи производных 1 СА Лавренченко Лекция 10 Исследование функции при помощи производных 1 Исследование функции при помощи первой производной Под интервалом мы будем подразумевать или конечный интервал, или один из следующих

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ. 1. Простейшие свойства метрических пространств

Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ. 1. Простейшие свойства метрических пространств Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ 1. Простейшие свойства метрических пространств Свойство 1. Непрерывность расстояния. Легко видеть, что функция «расстояние» ρ(x, y) непрерывна

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

Лекция 7-8. Замкнутые множества и непрерывные функции. 1 Предельные точки.

Лекция 7-8. Замкнутые множества и непрерывные функции. 1 Предельные точки. Лекция 7-8. Замкнутые множества и непрерывные функции. 1 Предельные точки. Определение 1 Предельная точка для множества - это такая точка a, к которой сходится некоторая последовательность точек множества,

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Math-Net.Ru Общероссийский математический портал А. Л. Агеев, Т. В. Антонова, Методы аппроксимации линий разрыва зашумленной функции двух переменных со счетным числом особенностей, Сиб. журн. индустр.

Подробнее

Задача Коши для обыкновенного дифференциального уравнения. Скалько Юрий Иванович Цыбулин Иван

Задача Коши для обыкновенного дифференциального уравнения. Скалько Юрий Иванович Цыбулин Иван Задача Коши для обыкновенного дифференциального уравнения Скалько Юрий Иванович Цыбулин Иван Задача Коши Задача Коши для ОДУ Дано обыкновенное дифференциальное уравнение 1го порядка и начальное условие

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

Интегралы и дифференциальные уравнения. Лекции 5-6

Интегралы и дифференциальные уравнения. Лекции 5-6 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекции 5-6 Определенный

Подробнее

Глава 3. Функция нескольких переменных. 1. Основные понятия

Глава 3. Функция нескольких переменных. 1. Основные понятия Глава 3 Функция нескольких переменных 1 Основные понятия Пусть имеется n+1 переменная 1,,, n,, которые связаны между собой так, что каждому набору числовых значений переменных 1,,, n соответствует единственное

Подробнее

УСРЕДНЕНИЕ ДИСКРЕТНЫХ УРАВНЕНИЙ С БЫСТРЫМИ И МЕДЛЕННЫМИ ПЕРЕМЕННЫМИ В ЗАДАЧАХ УПРАВЛЕНИЯ

УСРЕДНЕНИЕ ДИСКРЕТНЫХ УРАВНЕНИЙ С БЫСТРЫМИ И МЕДЛЕННЫМИ ПЕРЕМЕННЫМИ В ЗАДАЧАХ УПРАВЛЕНИЯ 53 УДК 579 УСРЕДНЕНИЕ ДИСКРЕТНЫХ УРАВНЕНИЙ С БЫСТРЫМИ И МЕДЛЕННЫМИ ПЕРЕМЕННЫМИ В ЗАДАЧАХ УПРАВЛЕНИЯ ИА Бойцова Одесская национальная академия пищевых технологий Украина 658 Одесса Дворянская ул /3 E-ma:

Подробнее