Галаев С.В., Шевцова Ю.В. Контрольные работы по аналитической геометрии

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Галаев С.В., Шевцова Ю.В. Контрольные работы по аналитической геометрии"

Транскрипт

1 Саратовский государственный университет им.н.г.чернышевского Галаев С.В., Шевцова Ю.В. Контрольные работы по аналитической геометрии Саратов 2001

2 Контрольная работа 1 по теме Основные формулы аналитической геометрии 1. На плоскости относительно декартовой системы координат даны координаты трех точек: N + 4 N + 10 N + 4 при N - четном: A ; 4 ; 7 ; N + 1 N + 7 N + 13 при N нечетном: A 1; 4; 1;. 1) координаты вектора CA ; 2) координаты точек M 1, M 2, M 3, делящих отрезки AB,BC, AC в отношениях λ 1 = 2, λ 2 = 1 2, λ 3 = 3, соответственно; 3) координаты центра тяжести треугольника ABC; 4) длину отрезка AB; 5) площадь треугольника ABC; 6) угол B. 2. В пространстве относительно декартовой системы координат даны координаты четырех точек: N + 4 N + 4 N + 8 N N + 12 N + 4 N 6 N 4 при N - четном : A 0; ; 3; ; 6; ; ; D 3; ; ; N + 3 N 5 N 3 N + 1 N + 15 N + 5 N + 9 N 3 при N нечетном: A ;3; ;5; ;7; ; D ; 2;. 1) координаты точек M 1, M 2, делящих отрезки AB и AD в отношениях λ 1 = 3, λ 2 = 1 3, соответственно; 2) координаты центра тяжести треугольника ABC; 3) направляющие косинусы вектора AB; 4) площадь треугольника ABC; 5) объем тетраэдра ABCD; 6) длину высоты тетраэдра, опущенной на грань ABC. 2

3 Контрольная работа 2 по теме Прямая на плоскости 1. Относительно декартовой системы координат даны координаты вершин треугольника: N + 8 N 8 N 2 при N - четном: A ; 7 ; 3 ; N + 13 N + 1 N 7 при N нечетном: A 3; 5; 2;. Составить уравнения: 1) трех его сторон; 2) медианы, проведенной из вершины С; 3) биссектрисы угла B; 4) высоты, опущенной из вершины А на сторону ВС. 2. Относительно декартовой системы координат даны координаты точки: N N + 2 при N - четном : A ; ; N N при N нечетном: A ;. 1) угловой коэффициент прямой l 1, проходящей через точку А параллельно вектору a (1;3 ) ; 2) уравнение прямой l 2, проходящей через точку А под углом π 4 к прямой l 1 ; 3) уравнение прямой l 3, проходящей через точку А и отсекающей на осях координат равные отрезки; 4) косинус угла между прямыми l 1 и l 3 ; 5) уравнения прямых l 4 и l 4, проходящих через начало координат параллельно прямой l 2 ; 6) расстояние между прямыми l 2 и l 4 ; 7) координаты точки В пересечения прямых l 3 и l 4 ; 8) расстояние от точки В до прямой l 1. 3

4 Контрольная работа 3 по теме Плоскость 1. Относительно декартовой системы координат даны координаты четырех точек: N + 6 N N N 12 N N N N N 6 N N N при N - четном: A ; ; ; ; ; ; ; D ; ; ; N + 3 N + 1 N 3 N + 1 N 3 N 5 N 3 N + 1 при N нечетном: A ; 1; ;5; ; 1; ; D ; 1;. Составить уравнения плоскостей: 1) π 1, проходящей через точки А,В,D; 2) π 2, проходящей через точки A,С,D; 3) π 3, проходящей через точки B,C,D; 4) π 4, проходящей через точки А,В,С; 5) π 5, проходящей через точки А и В параллельно оси Oz ; 6) π 6, проходящей через ось Ox и точку М центр тяжести треугольника АВС; 7) π 7, проходящей через точку М и отсекающей на осях координат равные отрезки; 8) π 8, зная, что точка М является основанием перпендикуляра, опущенного из начала координат на эту плоскость; 9) π 9, проходящей через точку Е, делящую отрезок АМ пополам, параллельно плоскости π 8. 1) особенности в расположении плоскостей π 1, π 2, π 3 относительно осей координат; 2) отрезки, отсекаемые плоскостью π 4 на осях координат; 3) косинус угла между плоскостями π 4 и π 5 ; 4) расстояние от точки М до плоскости π 5 ; 5) расстояние между плоскостями π8 и π 9. 4

5 Контрольная работа 4 по теме Прямая в пространстве. Прямая и плоскость 1. Относительно декартовой системы координат даны координаты точки А и координаты векторов a и b : N N 20 N 16 N 10 при N - четном: A 2; ; a 1; ;2 b ;1; 3 ; 2 2 N 15 N 7 N 9 N 11 при N нечетном: A ;1; a 2; b 3;2;. 2 2 Составить: 1) каноническое уравнение прямой l 1, проходящей через точку А параллельно вектору a ; 2) параметрические уравнения прямой l 2, проходящей через точку A параллельно вектору b ; 3) каноническое уравнение прямой l 3, проходящей через начало координат О и точку А; представить прямую l 3 как линию пересечения двух плоскостей; 4) каноническое уравнение прямой l 4, проходящей через точку Е, делящую отрезок АО в отношении λ = 1 3, параллельно оси Oz; 5) каноническое уравнение прямой l 5 - линии пересечения плоскостей π 1 и π 2, проходящих через точку А перпендикулярно векторам a и b, соответственно; 6) уравнение плоскости π 3, проходящей через прямые l 1 и l 3 ; 7) уравнение плоскости π 4, проходящей через точку Е и прямую l 2 ; 8) уравнение плоскости π 5, проходящей через точку Е перпендикулярно прямой l 5. Проверить: 1) пересекаются ли прямые l 1 и l 4 ; 2) лежит ли прямая l 1 в плоскости π 5. 1) косинус угла между прямыми l 1 и l 2. 5

6 Контрольная работа 5 по теме Фигуры II порядка 1. В данной системе координат эллипс имеет каноническое уравнение. Составить это уравнение, зная, что расстояние между фокусами равно 2 c, большая полуось равна a : при N - четном: N N + 2 c =, a = ; N + 1 N + 5 при N нечетном: c =, a =. 1) эксцентриситет эллипса; 2) уравнения директрис; 3) расстояние от правого фокуса до ближайшей директрисы. 2. В данной системе координат гипербола имеет каноническое уравнение. Составить это уравнение, зная, что расстояние между фокусами равно 2 c, большая полуось равна a : N + 4 N при N - четном: c =, a = ; N + 3 N + 1 при N нечетном: c =, a =. 1) эксцентриситет гиперболы; 2) уравнения директрис; 3) уравнения асимптот; 4) длину отрезка асимптоты гиперболы, заключенного между ее центром и директрисой; 5) расстояния от фокусов гиперболы до ее асимптот; 6) уравнение сопряженной гиперболы; ее эксцентриситет, уравнения директрис. 3. В данной системе координат парабола имеет каноническое уравнение. Составить это уравнение, зная, что расстояние от фокуса до директрисы равно N. 1) координаты фокуса; 2) уравнение директрисы; 3) координаты точек пересечения параболы с окружностью x + y 2 = 3N. 4. Составить уравнения и определить типы фигур, образованных вращением: 1) эллипса из задачи 1 вокруг а) оси Ox, б) оси Oy; 2) гиперболы из задачи 2 вокруг а) оси Ox, б) оси Oy; 3) сопряженной гиперболы из задачи 2 вокруг а) оси Ox, б) оси Oy; 4) асимптот гиперболы из задачи 2 вокруг а) оси Ox, б) оси Oy; 5) параболы из задачи 3 вокруг оси Ox. 6

7 Контрольная работа по аналитической геометрии для студентов 1 курса заочного отделения механико-математического факультета 1. На плоскости относительно некоторого базиса даны координаты трех векторов: r N + 4 r N 4 r N 10 при N - четном: a b ; 2 c ;3 ; r N + 7 r N 5 r N 11 при N нечетном: a ; 2 b ;3 c ;1. r r r r r r 7) Найти координаты векторов a 2b + c ; 2a + b 3c. 8) Проверить, что векторы a r и b r образуют базис на плоскости. Найти координаты вектора c r в этом базисе. 9) Определить, при каком значении параметра α векторы a r r и m( 2, α) будут коллинеарными. r rr r rr 10) Найти координаты вектора b(ac) c(ab). r r 2 r r 2 r r 11) Вычислить a bc, b + ( a + 3c) b. 12) Найти косинус угла между векторами a r и b r. 2. В пространстве относительно некоторого базиса даны координаты трех векторов r N 4 r N + 4 r N + 6 при N четном: a 2; ;3 b 1; ; 2 c 3, ; 2 ; r N + 7 r N 5 r N + 1 при N нечетном: a 2; ; 3 b 3; ; 4 c 1; ;5. r r r 1) Найти координаты вектора 2a + 5b c. r 2) Найти координаты вектора b(ac rr ). r r r r 3) Вычислить a + b bc. 4) Найти косинус угла между векторами a r и b r. rr rr rr r r rr rrr 5) Найти [ab], [ab],[[ab]c],[a[bc]], abc. 3. На плоскости относительно декартовой системы координат даны координаты трех точек: N + 4 N + 10 N + 4 при N четном: A ; 4 ; 7 ; N + 1 N + 7 N + 13 при N нечетном: A 1; 4; 1;. 1) координаты вектора CA ; 2) координаты точек M 1, M 2, M 3, делящих отрезки AB,BC, AC в отношениях λ 1 = 2, λ 2 = 1 2, λ 3 = 3, соответственно; 3) координаты центра тяжести треугольника ABC; 4) длину отрезка AB; 5) площадь треугольника ABC; 6) угол B. 4. Относительно декартовой системы координат даны координаты вершин треугольника: N + 8 N 8 N 2 при N - четном: A ; 7 ; 3 ; N + 13 N + 1 N 7 при N нечетном: A 3; 5; 2;. Составить уравнения: 7

8 1) трех его сторон; 2) медианы, проведенной из вершины С; 3) высоты, опущенной из вершины А на сторону ВС. 5. Относительно декартовой системы координат даны координаты точки: N N + 2 при N - четном : A ; ; N N при N нечетном: A ;. 9) угловой коэффициент прямой l 1, проходящей через точку А параллельно вектору a (1;3 ) ; 10) уравнение прямой l 2, проходящей через точку А под углом π 4 к прямой l 1 ; 11) уравнение прямой l 3, проходящей через точку А и отсекающей на осях координат равные отрезки; 12) косинус угла между прямыми l 1 и l 3 ; 13) уравнения прямых l 4 и l 4, проходящих через начало координат параллельно прямой l 2 ; 14) расстояние между прямыми l 2 и l 4 ; 15) координаты точки В пересечения прямых l 3 и l 4 ; 16) расстояние от точки В до прямой l В данной системе координат эллипс имеет каноническое уравнение. Составить это уравнение, зная, что расстояние между фокусами равно 2 c, большая полуось равна a : N N + 2 при N - четном: c =, a = ; N + 1 N + 5 при N нечетном: c =, a =. 10) эксцентриситет эллипса; 11) уравнения директрис; 12) расстояние от правого фокуса до ближайшей директрисы. 7. В данной системе координат гипербола имеет каноническое уравнение. Составить это уравнение, зная, что расстояние между фокусами равно 2 c, большая полуось равна a : N + 4 N при N - четном: c =, a = ; N + 3 N + 1 при N нечетном: c =, a =. 7) эксцентриситет гиперболы; 8) уравнения директрис; 9) уравнения асимптот; 10) длину отрезка асимптоты гиперболы, заключенного между ее центром и директрисой; 11) расстояния от фокусов гиперболы до ее асимптот; 12) уравнение сопряженной гиперболы; ее эксцентриситет, уравнения директрис. 8. В данной системе координат парабола имеет каноническое уравнение. Составить это уравнение, зная, что расстояние от фокуса до директрисы равно N. 4) координаты фокуса; 5) уравнение директрисы; 6) координаты точек пересечения параболы с окружностью x + y 2 = 3N. 8

ВАРИАНТ 1. на плоскость. 6. Найти уравнение проекции прямой

ВАРИАНТ 1. на плоскость. 6. Найти уравнение проекции прямой ВАРИАНТ 1 1 Найти угловой коэффициент k прямой проходящей через точки M 1 (18) и M ( 14); записать уравнение прямой в параметрическом виде Составить уравнения сторон и медиан треугольника с вершинами A()

Подробнее

ВАРИАНТ Записать общее уравнение прямой, заданной параметрически. ; найти угловой коэффициент этой прямой.

ВАРИАНТ Записать общее уравнение прямой, заданной параметрически. ; найти угловой коэффициент этой прямой. ВАРИАНТ Записать общее уравнение прямой, заданной параметрически x = + t ; найти угловой коэффициент этой прямой y = 4 t Даны две вершины A (, ) и B (5, 7) треугольника ABC и точка пересечения его высот

Подробнее

ВАРИАНТ 11. Вычислить его площадь; найти уравнение высоты и медианы, проведенных

ВАРИАНТ 11. Вычислить его площадь; найти уравнение высоты и медианы, проведенных ВАРИАНТ 11 1 Точка M() является основанием перпендикуляра опущенного из точки N(1-1) на прямую l Написать уравнение прямой l; найти расстояние от точки N до прямой l Составить уравнения прямых проходящих

Подробнее

Задачи по аналитической геометрии

Задачи по аналитической геометрии I. Векторная алгебра Задачи по аналитической геометрии I.1. Скалярное, векторное и смешанное произведение 1. Длины векторов ā и b равны 1, скалярное произведение (ā + b, 2ā + 3 b) = 3 2. Найти скалярное

Подробнее

ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ.

ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ. Прямая линия 1. Вычислите периметр треугольника, вершинами которого служат точки A(6; 7), B(3; 3), C( 1; 5). 2. Найдите точку, равноудаленную от точек A(7;

Подробнее

Аналитическая геометрия. Задачи для самостоятельного решения.

Аналитическая геометрия. Задачи для самостоятельного решения. Аналитическая геометрия Задачи для самостоятельного решения 1 Векторы 11 Даны вершины треугольника: A( 1; 2; 4), B ( 4; 2;0) и C(3; 2; 1) Найти угол между медианой AM и стороной AB 12 Выяснить при каком

Подробнее

Экзаменационный билет 1.

Экзаменационный билет 1. Экзаменационный билет 1. 1. Векторы в пространстве. Основные определения и операции над векторами: сумма векторов, произведение вектора на число. Свойства. Теорема о коллинеарных векторах. 2. Расстояние

Подробнее

Аналитическая геометрия Прямая на плоскости. Вариант 5

Аналитическая геометрия Прямая на плоскости. Вариант 5 Аналитическая геометрия Прямая на плоскости Вариант 1 1.) Дана прямая 5 x + 4y 3 = 0. Найти 1) направляющий вектор прямой, ) угловой коэффициент прямой, 3) отрезки отсекаемые прямой на осях координат..)

Подробнее

Задачи для отработки пропущенных занятий

Задачи для отработки пропущенных занятий Задачи для отработки пропущенных занятий Оглавление Тема: Матрицы, действия над ними. Вычисление определителей.... 2 Тема: Обратная матрица. Решение систем уравнений с помощью обратной матрицы. Формулы

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К САМОСТОЯТЕЛЬНОЙ РАБОТЕ СТУДЕНТОВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К САМОСТОЯТЕЛЬНОЙ РАБОТЕ СТУДЕНТОВ Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования «Сибирский федеральный университет» МЕТОДИЧЕСКИЕ УКАЗАНИЯ К САМОСТОЯТЕЛЬНОЙ

Подробнее

3. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

3. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ЗАНЯТИЕ ПЛОСКОСТЬ В ТРЕХМЕРНОМ ПРОСТРАНСТВЕ Написать векторное уравнение плоскости и объяснить смысл величин, входящих в это уравнение Написать общее уравнение плоскости

Подробнее

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия»

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия» ТИПОВОЙ РАСЧЕТ «Векторная алгебра Аналитическая геометрия» Задание 1: а) показать, что векторы p, q, r образуют базис Найти координаты вектора x в этом базисе; б) проверить коллинеарность векторов и c

Подробнее

Практическая работа 4 Составление уравнений прямых и кривых второго порядка

Практическая работа 4 Составление уравнений прямых и кривых второго порядка Практическая работа Составление уравнений прямых и кривых второго порядка Цель работы: закрепить умения составлять уравнения прямых и кривых второго порядка Содержание работы. Основные понятия. B C 0 вектор

Подробнее

Практикум по геометрии

Практикум по геометрии Тема: Практикум по геометрии ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Действия над векторами Координаты векторов (наименование темы) Продолжительность часа Вопросы, выносимые на обсуждение Векторы Действия над векторами Линейная

Подробнее

Часть 1. Линейная алгебра. Аналитическая геометрия

Часть 1. Линейная алгебра. Аналитическая геометрия Часть Линейная алгебра Аналитическая геометрия Задача Вычислить определитель 6 5 5 6 79 4 8 6 0 0 6 7 6 8 0 5 9 4 0 4 0 5 6 0 6 9 7 9 7 9 8 8 5 8 6 8 6 4 8 5 9 5 9 7 9 7 7 7 4 8 6 8 6 6 8 9 5 4 6 6 9 7

Подробнее

Вопросы и задачи для контрольной работы. 1. Линейная алгебра

Вопросы и задачи для контрольной работы. 1. Линейная алгебра Вопросы и задачи для контрольной работы Линейная алгебра Матрицы и определители Вычислить определители: а), б), в), г) Решить уравнение 9 9 Найти определитель матрицы B A C : A, B Найти произведение матриц

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия Аналитическая геометрия на плоскости. Аналитическая геометрия решение геометрических задач с помощью алгебры, для чего используется метод координат. Под системой координат на плоскости

Подробнее

Задачи по аналитической геометрии

Задачи по аналитической геометрии МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Кафедра алгебры и геометрии

Подробнее

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им. М.В.Ломоносова Кафедра математики Вопросы к зачету по математике семестр для студентов курса ИСиА, -6 гр. направление

Подробнее

Министерство образования Российской Федерации Казанская Государственная Архитектурно-строительная Академия. Кафедра высшей математики

Министерство образования Российской Федерации Казанская Государственная Архитектурно-строительная Академия. Кафедра высшей математики Министерство образования Российской Федерации Казанская Государственная Архитектурно-строительная Академия Кафедра высшей математики ЗАДАНИЯ ДЛЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ Линейная

Подробнее

МОДУЛЬ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ» ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ «ПРЯМАЯ НА ПЛОСКОСТИ» «КРИВЫЕ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ»

МОДУЛЬ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ» ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ «ПРЯМАЯ НА ПЛОСКОСТИ» «КРИВЫЕ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ» МОДУЛЬ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ» ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ «ПРЯМАЯ НА ПЛОСКОСТИ» «КРИВЫЕ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ» Составитель кпн Пекельник НМ НМ Пекельник - 1 - Указания по выполнению

Подробнее

Зачетное задание по аналитической геометрии. Семестр 2. Вариант 1

Зачетное задание по аналитической геометрии. Семестр 2. Вариант 1 Зачетное задание по аналитической геометрии. Семестр 2. Вариант 1 1. Найдите уравнения касательных к окружности (x + 3) 2 + (y + 1) 2 = 4, параллельных прямой 5x 12y + 1 = 0. 2. Напишите уравнение касательной

Подробнее

Глава 8. Прямые и плоскости. 8.1 Прямая на плоскости Аффинные задачи

Глава 8. Прямые и плоскости. 8.1 Прямая на плоскости Аффинные задачи Глава 8 Прямые и плоскости 8.1 Прямая на плоскости 8.1.1 Аффинные задачи В этом разделе система координат аффинная. 1. Указать хотя бы один направляющий вектор прямой, заданной уравнением: 1) y = kx+b;

Подробнее

Практические задания к теме «Аналитическая геометрия»

Практические задания к теме «Аналитическая геометрия» Практические задания к теме «Аналитическая геометрия» Вариант 0 Задача Привести к каноническому виду уравнение кривой порядка, найти все ее параметры, построить кривую 4x +y -6x-6y+=0 Решение Приведем

Подробнее

ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ»

ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» ТИПОВОЙ РАСЧЕТ «ЛИНЕЙНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» ВАРИАНТ Даны вершины треугольника: А(-); В(5-) и С(-) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма построенного

Подробнее

Фонд оценочных средств по аналитической геометрии и линейной алгебре Вопросы к экзамену

Фонд оценочных средств по аналитической геометрии и линейной алгебре Вопросы к экзамену Вопросы к экзамену Вопросы для проверки уровня обучаемости «ЗНАТЬ» Раздел 1 Элементы линейной алгебры 1 Операции над матрицами и их свойства Определители -го и 3-го порядков 3 Определение минора и алгебраического

Подробнее

Тема: «Линейная алгебра и аналитическая геометрия» Номер варианта определяется по последней цифре зачётной книжки. 1 вариант

Тема: «Линейная алгебра и аналитическая геометрия» Номер варианта определяется по последней цифре зачётной книжки. 1 вариант Задания для выполнения расчётно-графической работы по математике на I полугодие - учебного года для студентов курса заочной формы обучения ИСиА Тема: «Линейная алгебра и аналитическая геометрия» Номер

Подробнее

Вопросы по АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ К устному экзамену 22 января 2016 г.

Вопросы по АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ К устному экзамену 22 января 2016 г. Вопросы по АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ К устному экзамену 22 января 2016 г. kiv@icm.krasn.ru 1. Вектор. Равенство векторов. Коллинеарные и компланарные векторы. 2. Линейные операции над векторами и их свойства.

Подробнее

Аналитическая геометрия

Аналитическая геометрия Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный университет систем управления и радиоэлектроники»

Подробнее

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости Лекция 9,30 Глава Аналитическая геометрия на плоскости Системы координат на плоскости Прямоугольная и полярная системы координат Системой координат на плоскости называется способ, позволяющий определять

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ имени академика

Подробнее

СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ

СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ . Дифференциалы высоких порядков. Экзаменационный билет. Матрицы, основные понятия и определения.. Написать уравнение окружности, если точки А(;) и В(-;6) являются концами одного из диаметров.. Даны вершины

Подробнее

Контрольная работа 3

Контрольная работа 3 Контрольная работа 3 ВАРИАНТ 1 Составить уравнение прямой, перпендикулярной и проходящей через точку пересечения прямых и.. Записать уравнение прямой проходящей через точки и и найти расстояние от точки

Подробнее

А. В. Овчинников. Контрольные задания по аналитической геометрии для студентов 1 курса

А. В. Овчинников. Контрольные задания по аналитической геометрии для студентов 1 курса Московский государственный университет им М В Ломоносова Физический факультет Кафедра математики А В Овчинников Контрольные задания по аналитической геометрии для студентов курса Москва Содержание Правила

Подробнее

, и в этом случае линия является графиком функции f( x ). Пример 5.1. На оси Ox найти точку, одинаково удаленную от двух точек

, и в этом случае линия является графиком функции f( x ). Пример 5.1. На оси Ox найти точку, одинаково удаленную от двух точек ГЛАВА 5. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 5.. Уравнение линии на плоскости Уравнение вида F( x, y) 0 называется уравнением линии, если этому уравнению удовлетворяют координаты любой точки, лежащей на данной плоской

Подробнее

Методические указания к контрольным работам

Методические указания к контрольным работам Методические указания к контрольным работам Контрольная работа «Переаттестация» Тема. Элементы аналитической геометрии на плоскости. Прямая на плоскости Расстояние между двумя точками M ( ) и ( ) плоскости

Подробнее

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Тема ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Лекция.. Прямые на плоскости П л а н. Метод координат на плоскости.. Прямая в декартовых координатах.. Условие параллельности и перпендикулярности

Подробнее

4. Векторная алгебра

4. Векторная алгебра 15 4 Векторная алгебра Вариант 1 11 Даны две точки М( 5; 7; 6) и N (7; 9; 9) Найти проекцию вектора a ( 1; 3; 1) на направление вектора MN 12 Вычислить работу силы F ( 3; 2; 5) приложенной к точке А(2;

Подробнее

Прямая на плоскости. 1.1

Прямая на плоскости. 1.1 1.1 Прямая на плоскости. Даны три точки A, B, C, не лежащие на одной прямой. 1. Составить уравнение прямой А В. 2. Составить уравнение прямой, проходящей через точку С параллельно прямой АВ. 3. Составить

Подробнее

Плоскость. Вариант 6

Плоскость. Вариант 6 Плоскость Вариант 1 1.) Найти уравнение плоскости, проходящей через точку М(1;2;-1) и параллельной плоскости XOY. 2.) На оси ОZ найти точку, удаленную от плоскости 3 x + 7 = 0 на расстояние d = 1. 14 Вариант

Подробнее

Контрольная работа 2. Вариант 1

Контрольная работа 2. Вариант 1 Контрольная работа Вариант Даны вершины А(5;), В(; -), С (-; 0) треугольника. Найти:. площадь квадрата со стороной BC; Задача Привести заданное уравнение 9x 6y 8x y 5 0. к каноническому виду и установить

Подробнее

Контрольная 3 Геометрия-1. Матфак ВШЭ, осень Если в условии не оговорено обратное, то система координат предполагается прямоугольной декартовой.

Контрольная 3 Геометрия-1. Матфак ВШЭ, осень Если в условии не оговорено обратное, то система координат предполагается прямоугольной декартовой. Вариант 1 Задача 1. Дать определение собственного и несобственного пучка плоскостей. Сформулировать и доказать критерий принадлежности плоскости пучку, которому принадлежат две данные плоскости. Задача

Подробнее

Асимптотами гиперболы называются прямые, к которым неограниченно приближается гипербола при неограниченном возрастании абсцисс ее точек.

Асимптотами гиперболы называются прямые, к которым неограниченно приближается гипербола при неограниченном возрастании абсцисс ее точек. Практическое занятие 1 Тема: Гипербола План 1 Определение и каноническое уравнение гиперболы Геометрические свойства гиперболы Взаимное расположение гиперболы и прямой, проходящей через ее центр Асимптоты

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

Решение типового варианта заданий по теме. "Аналитическая геометрия и векторная алгебра"

Решение типового варианта заданий по теме. Аналитическая геометрия и векторная алгебра Решение типового варианта заданий по теме "Аналитическая геометрия и векторная алгебра" Автор: ассистент кафедры высшей математики БГУИР Василюк Людмила Ивановна Содержание Задание Задание 0 Задание Задание

Подробнее

МАТЕМАТИКА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

МАТЕМАТИКА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ООО «Резольвента», wwwesolventau, esolventa@listu, (495) 59-8- Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу АНАЛИТИЧЕСКАЯ

Подробнее

и уравнения двух биссектрис х 1= 0 и х+ 3 у 1= 0.

и уравнения двух биссектрис х 1= 0 и х+ 3 у 1= 0. Вариант. Составить уравнения сторон треугольника, зная одну из его вершин ( 4; 5) и уравнения двух биссектрис х = и х+ у =.. Из точки ( ) 8; 6 к прямой х+ у+ 4= направлен луч света под углом, тангенс которого

Подробнее

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИНФОРМАЦИОННЫХ СИСТЕМ Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ УЧЕБНО-МЕТОДИЧЕСКОЕ

Подробнее

Прямая на плоскости. 1.1

Прямая на плоскости. 1.1 1.1 Прямая на плоскости. Даны три точки A, B, C, не лежащие на одной прямой. 1. Составить уравнение прямой А В. 2. Составить уравнение прямой, проходящей через точку С параллельно прямой АВ. 3. Составить

Подробнее

ВЫСШИЙ КОЛЛЕДЖ СВЯЗИ СБОРНИК ТИПОВЫХ РАСЧЕТОВ

ВЫСШИЙ КОЛЛЕДЖ СВЯЗИ СБОРНИК ТИПОВЫХ РАСЧЕТОВ ВЫСШИЙ КОЛЛЕДЖ СВЯЗИ СБОРНИК ТИПОВЫХ РАСЧЕТОВ по дисциплине «ВЫСШАЯ МАТЕМАТИКА» часть II для студентов специальности Т 000 Почтовая связь Минск 00 Составитель Рябенкова ЛА Издание утверждено на заседании

Подробнее

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА»

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ВАРИАНТ Даны вершины треугольника А ( ) В ( ) С ( ) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма

Подробнее

Лекция 11 M L G K M C

Лекция 11 M L G K M C Лекция 11 1. КОНИЧЕСКИЕ СЕЧЕНИЯ 1.1. Определение. Рассмотрим сечение прямого кругового конуса плоскостью, перпендикулярной к образующей этого конуса. При различных значениях угла α при вершине в осевом

Подробнее

8. Кривые второго порядка Окружность

8. Кривые второго порядка Окружность 8 Кривые второго порядка 81 Окружность Множество точек плоскости, равноудаленных от одной точки, называемой центром, на расстояние, называемое радиусом, называется окружностью Пусть центр окружности находится

Подробнее

Составить уравнение плоскости, проходящей через точку М(2;-1;1) параллельно

Составить уравнение плоскости, проходящей через точку М(2;-1;1) параллельно -1-1. Даны стороны треугольника 3 x + y 5 0;4x + 3y 5 0; x + 2y 5 Найти уравнения двух (любых) его высот. 2. Найти точку пересечения прямой x y z 3 2 1 и плоскости 2 x y + z 3 0. 3. Найти проекцию точки

Подробнее

Векторная алгебра и аналитическая геометрия

Векторная алгебра и аналитическая геометрия Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая математика» А И Недвецкая Г А Тимофеева Е Г Чеснокова Векторная алгебра и аналитическая

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НОВОТРОИЦКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ИНСТИТУТ СТАЛИ И СПЛАВОВ» Кафедра

Подробнее

Координатная плоскость

Координатная плоскость Координатная плоскость 1. Найдите площадь параллелограмма, изображенного на рисунке. 2. Найдите площадь четырехугольника, вершины которого имеют координаты (1;7), (8;2), (8;4), (1;9). 3. Найдите площадь

Подробнее

Контрольная 1 Геометрия-1. Матфак ВШЭ, осень 2014

Контрольная 1 Геометрия-1. Матфак ВШЭ, осень 2014 Вариант 1 Задача 1. Дать геометрическое определение эллипса. Задача 2. Доказать с помощью шаров Данделена, что эллипс возникает как коническое сечение. Задача 3. Доказать, что множество точек P, из которых

Подробнее

ВСГТУ Кафедра «Прикладная математика»

ВСГТУ Кафедра «Прикладная математика» Министерство общего и профессионального образования РФ ВСГТУ Кафедра «Прикладная математика» Дидактические материалы к практическим занятиям По высшей математике по темам «Векторная алгебра и аналитическая

Подробнее

Учебный план дисциплины.

Учебный план дисциплины. 3 Учебный план дисциплины. Студенты дневного отделения изучают математику на I и II курсах. Общий объем учебных часов на дисциплину 600 часов. В первом семестре изучаются следующие разделы: линейная алгебра,

Подробнее

СПРАВОЧНОЕ ПОСОБИЕ ПО РЕШЕНИЮ ЗАДАЧ КУРСА АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ И ЛИНЕЙНОЙ АЛГЕБРЫ

СПРАВОЧНОЕ ПОСОБИЕ ПО РЕШЕНИЮ ЗАДАЧ КУРСА АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ И ЛИНЕЙНОЙ АЛГЕБРЫ Министерство образования Республики Беларусь Учреждение образования «Международный государственный экологический университет им АД Сахарова» Факультет экологического мониторинга Кафедра физики и высшей

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 3. Аналитическая геометрия на плоскости 1. Составить уравнения прямых, проходящих через точку A(4; 1) a) параллельно прямой

Подробнее

Задания для аудиторной и самостоятельной работы

Задания для аудиторной и самостоятельной работы Задания для аудиторной и самостоятельной работы Решите системы линейных уравнений методом Крамера (если это возможно) и методом Гаусса ( ):,,,, 4,, 4 5 7 5 5 4 4 6 6 4 5,, 6 4 4 4,, 8, 9,, 4 4 5 Контрольный

Подробнее

Контрольные работы по дисциплине «Математика» для студентов направления ( ) «Технология и дизайн упаковочного производства»

Контрольные работы по дисциплине «Математика» для студентов направления ( ) «Технология и дизайн упаковочного производства» Контрольные работы по дисциплине «Математика» для студентов направления 676 (9) «Технология и дизайн упаковочного производства» Тематических перечень Линейная алгебра Векторная алгебра Аналитическая геометрия

Подробнее

Раздел V. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Раздел V. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Раздел V. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ В раздел включены задачи, которые рассматриваются в теме «Аналитическая геометрия на плоскости и в пространстве» составление различных уравнений

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА. МАТЕМАТИКА Методические указания к практическим занятиям

Подробнее

КОНТРОЛЬНАЯ РАБОТА 1 «Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функции одной переменной» Вариант B

КОНТРОЛЬНАЯ РАБОТА 1 «Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функции одной переменной» Вариант B Задание КОНТРОЛЬНАЯ РАБОТА «Линейная и векторная алгебра Аналитическая геометрия Дифференциальное исчисление функции одной переменной» Вариант Доказать, что матрицы B и B взаимно обратные Даны точки А(;

Подробнее

Окружность радиуса R с центром в точке. Пример. Нарисуйте кривую. Решение. Выделив полные квадраты, получим.

Окружность радиуса R с центром в точке. Пример. Нарисуйте кривую. Решение. Выделив полные квадраты, получим. Кривые второго порядка Окружность Эллипс Гипербола Парабола Пусть на плоскости задана прямоугольная декартова система координат. Кривой второго порядка называется множество точек, координаты которых удовлетворяют

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О.В.Исакова

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О.В.Исакова Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ МИИГАиК) ОВИсакова ИНДИВИДУАЛЬНЫЕ РАСЧЁТНЫЕ ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ

Подробнее

Аналитическая геометрия, вопросы и задачи группам к экзамену в январе 2016

Аналитическая геометрия, вопросы и задачи группам к экзамену в январе 2016 Аналитическая геометрия, вопросы и задачи группам 01-03 к экзамену в январе 2016 1. Операции сложения векторов и умножения вектора на число, их свойства. 2. Линейно зависимые и линейно независимые системы

Подробнее

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА. ЭЛЕМЕНТЫ

Подробнее

Механико-математический

Механико-математический МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БfOДЖЕТНОЕ, ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Саратовский национальный исследовательский государственный

Подробнее

2. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

2. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ . АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ.1. Координатные системы и векторная алгебра.1.1. Теоретические сведения Понятия координаты точки являются базовыми понятиями аналитической геометрии. Наиболее употребительными

Подробнее

И. Н. Пирогова Аналитическая геометрия в примерах и задачах

И. Н. Пирогова Аналитическая геометрия в примерах и задачах Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая математика» И Н Пирогова Аналитическая геометрия в примерах и задачах Екатеринбург

Подробнее

-1-1. Найти точку пересечения медиан треугольника, зная координаты его вершин А(1;2), В(2;3), С(-1;3).

-1-1. Найти точку пересечения медиан треугольника, зная координаты его вершин А(1;2), В(2;3), С(-1;3). 1. Найти точку пересечения медиан треугольника, зная координаты его вершин А(1;2), В(2;3), С(-1;3). -1-2. В равнобедренном прямоугольном треугольнике даны координаты вершины острого угла (2;1) и уравнение

Подробнее

В5 (2014) 3). На клетчатой бумаге с клетками размером 1 см 1 см изображен треугольник (см. рисунок). Найдите его площадь в квадратных сантиметрах. 4.

В5 (2014) 3). На клетчатой бумаге с клетками размером 1 см 1 см изображен треугольник (см. рисунок). Найдите его площадь в квадратных сантиметрах. 4. В5 (2014) 8 17 25 1) Найдите тангенс угла 9 18 26 2) Найдите тангенс угла AOB 10 19 27 11 20 28 3) На клетчатой бумаге с клетками размером 1 см 1 см изображен треугольник (см рисунок) Найдите его площадь

Подробнее

. Найдите произведение. ; B) 2. Найти матрицы n - ой степени : B n ; B) 3.Решите уравнение: 0. x C) x D) x ; B) A) 5 B)9 C)4 D)2

. Найдите произведение. ; B) 2. Найти матрицы n - ой степени : B n ; B) 3.Решите уравнение: 0. x C) x D) x ; B) A) 5 B)9 C)4 D)2 и Найдите произведение A) 8 8 ; B) 8 C) 8 8 D) 8 8 Найти матрицы n - ой степени : α α α α B cos sin sin cos ; A) n n n n B n cos sin sin cos ; B) n n n n B n cos sin sin cos C) n n n n B n cos sin sin

Подробнее

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12 Контрольная работа. Даны матрицы A, B и D. Найти AB 9D, если: 4 7 ( ) 6 9 6 A = 3 9 7, B =, D = 3 8 3. 3 7 7 3 7 Перемножим матрицы A 3 и B 3. Результирующая будет C размера 3 3, состоящая из элементов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Прямые на плоскости. y = t, 4 x + 6 y 7 = 0, = 0

Прямые на плоскости. y = t, 4 x + 6 y 7 = 0, = 0 Прямые на плоскости Моденов ПС, Пархоменко АС Сборник задач по аналитической геометрии Москва - Ижевск: ЗАО НИЦ "Регулярная и хаотическая динамика 00 384 с 365 Составить параметрические уравнения прямой,

Подробнее

-1-4. Дан треугольник с вершинами в точках А(1;-1;2), В(2;1;-1), С(-1;1;3). Найти его площадь и высоту, опущенную из вершины В.

-1-4. Дан треугольник с вершинами в точках А(1;-1;2), В(2;1;-1), С(-1;1;3). Найти его площадь и высоту, опущенную из вершины В. -- Доказать, что векторы e = { ;2;, e 2 = { 2;; }, e 3 = { ;2;3 } образуют базис Найти разложение в этом базисе вектора a = { ;3;2 } 2 Найти длину вектора a = 3e 2e2, где e =, e2 = 2, векторы угол в 30

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Государственное образовательное учреждение высшего профессионального образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики

Подробнее

Задача Кузнецов Аналитическая геометрия 1-3. Условие задачи. Написать разложение вектора по векторам : Решение. Искомое разложение вектора

Задача Кузнецов Аналитическая геометрия 1-3. Условие задачи. Написать разложение вектора по векторам : Решение. Искомое разложение вектора Задача Кузнецов Аналитическая геометрия 1-3 Написать разложение вектора по векторам : Искомое разложение вектора имеет вид: Или в виде системы: Получаем: Ко второй строке прибавим третью: Вычтем из первой

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ На http://technofile.ru чертежи, 3d модели, учебники, методички, лекции. Материалы студентам технических вузов! 1. Векторы. Линейные, операции над векторами. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ

Подробнее

Вопросы и задачи к экзамену по аналитической геометрии, зима. I. Теоретические вопросы.

Вопросы и задачи к экзамену по аналитической геометрии, зима. I. Теоретические вопросы. Вопросы и задачи к экзамену по аналитической геометрии, зима 1 I. Теоретические вопросы. Условные бозначения. (*) в конце фразы означает, что студенты будущей группы 2362 ее положения доказывать не должны,

Подробнее

Линейная алгебра и аналитическая геометрия. Тема: Плоскость. Лектор Пахомова Е.Г г.

Линейная алгебра и аналитическая геометрия. Тема: Плоскость. Лектор Пахомова Е.Г г. Линейная алгебра и аналитическая геометрия Тема: Плоскость Лектор Пахомова Е.Г. г. 3. Плоскость. Общее уравнение плоскости и его исследование ЗАДАЧА. Записать уравнение плоскости, проходящей через точку

Подробнее

ВАРИАНТ Даны точки А(1,1,1) и В(4,5,-3). Найти проекцию AB на ось, составляющую с координатными осями равные острые углы.

ВАРИАНТ Даны точки А(1,1,1) и В(4,5,-3). Найти проекцию AB на ось, составляющую с координатными осями равные острые углы. ВАРИАНТ 1 1. ABCDEF вершины правильного шестиугольника. Равны ли векторы a) 4 BC и 2 AD b) 2 DC и 2 AF 2. Найти скалярное произведение векторов a = 2 p + 3q 3r и b = 3 p + 4q где p, q, r - единичные векторы,

Подробнее

F(x,y,z) = 0, (2) где F(x,y,z) многочлен степени n.

F(x,y,z) = 0, (2) где F(x,y,z) многочлен степени n. Аналитическая геометрия Аналитическая геометрия раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности второго порядка) исследуются средствами алгебры. Линией

Подробнее

i OF 1, эллипс имеет уравнение: МОДУЛЬ 1. ЭЛЛИПС. ГИПЕРБОЛА. ПАРАБОЛА Практическое занятие 12 Тема: Эллипс

i OF 1, эллипс имеет уравнение: МОДУЛЬ 1. ЭЛЛИПС. ГИПЕРБОЛА. ПАРАБОЛА Практическое занятие 12 Тема: Эллипс МОДУЛЬ ЭЛЛИПС ГИПЕРБОЛА ПАРАБОЛА Практическое занятие Тема: Эллипс План Определение и каноническое уравнение эллипса Геометрические свойства эллипса Эксцентриситет Зависимость формы эллипса от эксцентриситета

Подробнее

Все прототипы заданий В года

Все прототипы заданий В года 1. Прототип задания B5 ( 27450) Найдите тангенс угла AOB. Все прототипы заданий В5 2014 года 2. Прототип задания B5 ( 27456) Найдите тангенс угла AOB. 7. Прототип задания B5 ( 27547) Найдите площадь треугольника,

Подробнее

Математика (2014 г, 2 сем Русский, автор Егисбаев Нуржан Оспанханович)

Математика (2014 г, 2 сем Русский, автор Егисбаев Нуржан Оспанханович) Математика (2014 г, 2 сем Русский, автор Егисбаев Нуржан Оспанханович) Автор: Егисбаев Нуржан Оспанханович 1. Вычислить определитель -17 11 17-19 1 2. Вычислить определитель 33 27-33 9-1 3. Вычислить определитель

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ. Составитель: Н.А. Пинкина РОССИЙСКОЙ ФЕДЕРАЦИИ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ. Составитель: Н.А. Пинкина РОССИЙСКОЙ ФЕДЕРАЦИИ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Высшая математика. Векторная алгебра и аналитическая геометрия.

Подробнее

Все прототипы задания года 1. Прототип задания 4 ( 27238)

Все прототипы задания года 1. Прототип задания 4 ( 27238) Все прототипы задания 4 2015 года 1. Прототип задания 4 ( 27238) В треугольнике ABC угол C равен 90, АС 4, 8 7 sin A. Найдите AB. 25 2. Прототип задания 4 ( 27240) В треугольнике ABC угол C равен 90, АС

Подробнее

Образцы базовых задач по ЛА

Образцы базовых задач по ЛА Образцы базовых задач по ЛА Метод Гаусса Определенные системы линейных уравнений Решите систему линейных уравнений методом Гаусса x 6 y 6 8, 6 x 6 y 6 Решите систему линейных уравнений методом Гаусса 6

Подробнее

Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич

Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич План занятия. Содержание раздела «Аналитическая геометрия» Уравнение прямой на плоскости: с угловым коэффициентом общее

Подробнее

Элементы линейной алгебры и аналитической геометрии

Элементы линейной алгебры и аналитической геометрии Министерство образования Российской Федерации Ростовский Государственный Университет Механико-маттематический факультет Кафедра геометрии Казак В.В. Практикум по аналитической геометрии для студентов первого

Подробнее

ВВЕДЕНИЕ В АНАЛИТИЧЕСКУЮ ГЕОМЕТРИЮ НА ПЛОСКОСТИ

ВВЕДЕНИЕ В АНАЛИТИЧЕСКУЮ ГЕОМЕТРИЮ НА ПЛОСКОСТИ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» ВВЕДЕНИЕ В АНАЛИТИЧЕСКУЮ ГЕОМЕТРИЮ НА ПЛОСКОСТИ НС Анофрикова, ОВ Сорокина Учебное пособие для студентов нематематических специальностей

Подробнее

Задание 3. Планиметрия: длин и площадей Треугольник

Задание 3. Планиметрия: длин и площадей Треугольник Задание 3 Планиметрия: длин и площадей Треугольник 1. Площадь прямоугольного треугольника равна 24. Один из его катетов на 2 больше другого. Найдите меньший катет. 2. В треугольнике ABC AC = BC, угол C

Подробнее

Кафедра алгебры, геометрии и методики преподавания математики. Геометрия

Кафедра алгебры, геометрии и методики преподавания математики. Геометрия МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

Контрольная работа по математике 1 и программа экзамена для студентов I курса ФАО (направления , )

Контрольная работа по математике 1 и программа экзамена для студентов I курса ФАО (направления , ) Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный политехнический университет» Университетский центр социально-гуманитарных

Подробнее