К ВОПРОСУ ПРЕПОДАВАНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ НА ИНЖЕНЕРНЫХ СПЕЦИАЛЬНОСТЯХ

Размер: px
Начинать показ со страницы:

Download "К ВОПРОСУ ПРЕПОДАВАНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ НА ИНЖЕНЕРНЫХ СПЕЦИАЛЬНОСТЯХ"

Транскрипт

1

2 К ВОПРОСУ ПРЕПОДАВАНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ НА ИНЖЕНЕРНЫХ СПЕЦИАЛЬНОСТЯХ Рыщанова С.М Костанайский государственный университет им. А.Байтурсынова Түйін Бұл мақалада кездейсоқ шаманың кейбiр қосымшалары қарастылырған Аннотация В данной статье рассматриваются некоторые ложения случайных величин Summary Some apps of random values are considered in this article В последние годы интенсивно развиваются новые подходы и математические методы, основанные на теории вероятностей и математической статистике. Это разработка математического аппарата таких кладных дисциплин, как надежность и ремонт машин, обслуживание техники, сбор, учет обработка и статистический анализ данных, характеризующих процесс функционирования реальных систем техники с целью разработки мероятий по повышению их эффективности и качества работы. Многие случайные величины, такие как ошибки измерениях, величины износа деталей некоторых механизмов, отклонения точки попадания от некоторого центра стрельбе, отклонения размеров от номинальных у животных, растений и т.п., подчиняются нормальному распределению. Нормальный закон распределения вероятностей имеет очень важное значение и широкое распространение. Широкое распространение нормального распределения объясняется тем, что оно проявляется там, где случайная величина представлена суммой большого числа независимых случайных величин (что чаще всего встречается на практике), влияние каждой из которых на всю сумму не представляется существенным. Нормальная (гауссовская) случайная величина является предельной для многих случайных величин. В теории надежности нормальное распределение меняется оценке надежности элементов, подверженных действию старения и изнашивания, а также разрегулировки, т.е. оценке постепенных отказов. Нормальным называется распределение плотностей вероятностей непрерывных случайных величин, которое имеет вид: f ( t a) ( x) e Нормальный закон распределения СВ с параметрами а= и = называется стандартным или нормированным, а соответствующая нормальная кривая стандартной или нормированной

3 Математическое ожидание, дисперсия и среднее квадратическое отклонение: M(X) = a D(X) = (X) = Вероятность того, что непрерывная случайная величина отклонится от своего среднего значения не более чем на заданное положительное число, равна: Р(Х-а ) = Ф Для вычисления вероятности попадания случайной величины в интервал (;) используется функция Лапласа: P( Х ) = Ф где Ф(х) = а а Ф х t е dt, -функция Лапласа (функция Лапласа нечетная, ее значения ведены в таблице) Пример. Затаривание мешков с мукой производится без систематических ошибок. Случайные ошибки подчинены нормальному закону со среднеквадратическим отклонением = г. Найти вероятность того, что затаривание будет проведено с ошибкой, не превосходящей по абсолютной величине г. В задаче рассматривается случайная величина-ошибка взвешивания, то есть разность между случайным значением веса мешка муки и его нормативным значением а - математическим ожиданием. Р( Х a ) Р( a Х Ф Ф(,5),383 a a a ) Ф a a Ф При рассмотрении показательного распределения нужно обратить внимание, что это распределении играет важную роль в теории надежности систем, т.к. является основной моделью так называемых внезапных (не связанных с процессом старения и износа) отказов. Непрерывная случайная величина распределена в интервале ; по показательному закону, если плотность распределения f(х) имеет вид: x, f ( x) F( x) e x. e где =const M(X) = (X)= \ D(X) = \ Вероятность попадания СВ Х в интервал [; ] : x x х, x. P( X )= e - e - Пример. Время безотказной работы электродвигателя подчинено экспоненциальному (показательному) закону распределения с параметром =,5-5 Требуется определить среднюю наработку до первого отказа Т и вероятность безотказной работы Р(t) за время t = ч и t = Т Функцией надежности Р(t) = e- t называют функцию определяющую вероятность безотказной работы элемента за время длительностью t.

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 Вероятность безотказной работы элемента не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности интервала t ( заданной интенсивности отказов ). Если Т случайная величина времени работы элемента, то Р(t) = P(T>t)=e- t, тогда Р() = е -,5 5 3 = е -,5 =,9753 Так как Т = m t = получим: Р(Т)= е -Т = е -/ = е - =,3679,37 Средняя наработка до первого отказа Т определяет время, в течение которого вероятность безотказной работы элемента составляет всего лишь,37.,5 Т = = 5 = 4 часов Пример. Длительность времени безотказной работы элемента имеет показательное распределение, интегральная функция которого имеет вид: F(t) = - e,t (t>). Найти вероятность того, что за время длительностью t= 6 часов элемент откажет. Так как интегральная функция F(t) = P(T<t) = e - t определяет вероятность отказа элемента за время длительностью t, то подставив t = 6 в интегральную функцию, получим вероятность отказа.,6 F(6)= e,74, 59 При определении логарифмически нормального распределения обращаем внимание на то, что оно полностью определяется двумя параметрами а и, где - среднее квадратическое отклонение, а медиана Неотрицательная случайная величина Х называется распределенной логарифмически нормально, если логарифм этой величины нормально. (ln xln a) lnx распределен Плотность распределения имеет вид: f (x) = e Логнормальное распределение используется для описания распределения доходов, банковских вкладов, долговечности изделий в режиме износа и старения. При малых логарифмически нормальное распределение близко к нормальному. Гамма - распределением случайной величины Х называется распределение плотности вероятности: f(x)= х Г Г(m)= e ( m) m x х в х, остальных, cллучая e dx - гамма функция m x m Гамма распределение описывает время, необходимое для появления ровно m независимых испытаний, если эти события происходят с постоянной интенсивностью. Намер, если поставка какой-нибудь детали производится партиями объемом m деталей каждая, а заявки на отдельные детали поступают независимо друг от друга с постоянной интенсивностью, то промежуток времени, за который будет

5 израсходована вся партия, является случайной величиной, имеющей гаммараспределение. При m= из гамма -распределения получается показательное распределение. При m= гамма-распределение может быть описана нормальным распределением. Гамма-распределение позволяет описывать широкий класс случайных величин. Распределение Вейбулла Гнеденко тоже используется в теории надежности. Распределение Вейбулла-Гнеденко имеет следующую плотность распределения: b b x a b x f (x) = e, где b и а- параметры распределения a a При b= распределение Вейбулла - Гнеденко совпадает с показательным x b a распределением. Функция распределения: F(x) = e Применение заданий с инженерно-техническим содержанием способствует повышению уровня усвоения материала, повышению интереса к изучению данного предмета. Литература Лернер И.Я. Дидактические основы методов обучения. Москва, 98. Кочетков С.Е, Смерчинская С.О. Теория вероятностей в задачах и упражнениях Москва, ИНФРА-М Кухаров Н.З. На пути к профессиональному совершенствованию. Москва, 99.

ЛЕКЦИЯ 2. Основные статистические характеристики показателей надёжности ЭТО

ЛЕКЦИЯ 2. Основные статистические характеристики показателей надёжности ЭТО ЛЕКЦИЯ. Основные статистические характеристики показателей надёжности ЭТО Математический аппарат теории надёжности основывается главным образом на теоретико-вероятностных методах, поскольку сам процесс

Подробнее

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВРЕМЕНИ МЕЖДУ ОТКАЗАМИ

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВРЕМЕНИ МЕЖДУ ОТКАЗАМИ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВРЕМЕНИ МЕЖДУ ОТКАЗАМИ Иваново 011 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Ивановская

Подробнее

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины.

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Лекция 3. Основные характеристики и законы распределения случайных величин Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Время: часа. Вопросы: 1. Характеристики

Подробнее

Тема 5. Непрерывные случайные величины.

Тема 5. Непрерывные случайные величины. Тема 5. Непрерывные случайные величины. Цель и задачи. Цель контента темы 5 дать определение непрерывной случайной величины, ее функции распределения и функции распределения; рассмотреть особенности задания

Подробнее

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения 53 Глава 4. Основные законы распределения непрерывной случайной величины. 4.. Равномерный закон распределения Определение. Непрерывная случайная величина Х имеет равномерное распределение на промежутке

Подробнее

Лекция 7. Непрерывные случайные величины. Плотность вероятности.

Лекция 7. Непрерывные случайные величины. Плотность вероятности. Лекция 7. Непрерывные случайные величины. Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

1. Биномиальный закон распределения

1. Биномиальный закон распределения Лекция 4 Тема: Законы распределения СВ 1. Биномиальный закон распределения Опр. Дискретная СВ Х имеет биномиальный закон распределения, если выполнены следующие условия: 1) эксперимент заключается в последовательном

Подробнее

НАДЕЖНОСТЬ И ПРОЕКТИРОВАНИЕ СИСТЕМ

НАДЕЖНОСТЬ И ПРОЕКТИРОВАНИЕ СИСТЕМ К. Капур, Л. Ламберсон НАДЕЖНОСТЬ И ПРОЕКТИРОВАНИЕ СИСТЕМ Перевод с английского Е. Г. КОВАЛЕНКО под редакцией д-ра техн. наук, проф. И. А. УШАКОВА Издательство «Мир» Москва 1980 Оглавление Предисловие

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА РАСЧЕТ БЕЗОТКАЗНОСТИ ИЗДЕЛИЙ АВИАЦИОННОЙ ТЕХНИКИ

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА РАСЧЕТ БЕЗОТКАЗНОСТИ ИЗДЕЛИЙ АВИАЦИОННОЙ ТЕХНИКИ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА РАСЧЕТ БЕЗОТКАЗНОСТИ ИЗДЕЛИЙ АВИАЦИОННОЙ ТЕХНИКИ САМАРА 003 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ

Подробнее

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1.

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1. Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем.. Теория вероятности (задачи 7.0 7.80)... Теоремы умножения

Подробнее

Модели постепенных отказов. Начальное значение выходного параметра равно нулю (A=X(0)=0)

Модели постепенных отказов. Начальное значение выходного параметра равно нулю (A=X(0)=0) Модели постепенных отказов Начальное значение выходного параметра равно нулю (A=X(0)=0) Рассматриваемая модель (рис47) также будет соответствовать случаю, когда начальное рассеивание значений выходного

Подробнее

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Понятие непрерывной случайной величины. Функция распределения, плотность распределения, их взаимосвязь и свойства. Математическое ожидание непрерывной случайной величины

Подробнее

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика»

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Теория вероятностей» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева Е.Г. Основные определения и

Подробнее

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить функции плотности и числовые характеристики случайных величин имеющих равномерное показательное нормальное и гамма-распределение

Подробнее

Показательное распределение.

Показательное распределение. Показательное распределение. 1) Распределение с.в. X подчинено показательному закону с параметром 5. Записать вычислить M X DX. f x Показательное распределение с параметром имеет плотность вероятности:

Подробнее

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 «Законы распределения случайных величин»

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 «Законы распределения случайных величин» ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 «Законы распределения случайных величин» 1 Задание 1. Для данного закона распределения дискретной случайной величины Х найти: 1) неизвестную вероятность р i ; 2) математическое

Подробнее

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ 1 Случайная величина X называется непрерывной, если она принимает более, чем счётное число значений. Случайная величина X называется

Подробнее

Случайные величины и их числовые характеристики.

Случайные величины и их числовые характеристики. Случайные величины и их числовые характеристики Пример Устройство состоит из трех независимо работающих элементов Вероятность отказа каждого элемента в одном опыте равна, Составить закон распределения

Подробнее

, - вероятность того, что из n бросков t раз выпадет «пятерка»,

, - вероятность того, что из n бросков t раз выпадет «пятерка», .6 Бросают три игральных кубика. Найти ряд и функцию распределения числа выпавших «пятерок» Х, а также M(X), D(X) и вероятность того, что Х>. Решение: Пусть Х число выпавших «пятерок». Перечислим все возможные

Подробнее

Вероятностное моделирование надежности машин и систем на основе логарифмически равномерного распределения

Вероятностное моделирование надежности машин и систем на основе логарифмически равномерного распределения Труды четвертой международной научной школы «Современные фундаментальные проблемы и прикладные задачи теории точности и качества машин, приборов и систем», 3-7 июня 000 г., СПб, 00 9 стр. 09-8) Вероятностное

Подробнее

Математическое ожидание

Математическое ожидание Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X px ( ) xp( x) dx.

Подробнее

Числовые характеристики непрерывных случайных величин

Числовые характеристики непрерывных случайных величин Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X + = px ( ) xp( x)

Подробнее

* **е-mail:

*  **е-mail: Электронный журнал «Труды МАИ». Выпуск 7 www.mai.ru/science/trudy/ УДК 59.4.00:5,643,5 Физическая модель и закон распределения отказов элементов и систем электроники Авакян А.А.*, Курганов А.В.** Научно-исследовательский

Подробнее

Контрольная работа выполнена на сайте МатБюро. Решение задач по математике, статистике, теории вероятностей

Контрольная работа выполнена на сайте  МатБюро. Решение задач по математике, статистике, теории вероятностей Задача 1. Некто заполнил карточку спортивной лотереи «6 из 49». Случайная величина X число угаданных им номеров при розыгрыше. 1) составить таблицу распределения случайной величины X; ) построить многоугольник

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ)

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ) Лекция 5 Тема Непрерывные случайные величины (НСВ) Содержание темы Способы задания: интегральный закон распределения, плотность распределения. Связь между ними. Свойства плотности распределения. Применение

Подробнее

1 при x 0. x - плотность распределения (плотность распределения вероятностей, плотность, дифференциальная. x , то. x 4

1 при x 0. x - плотность распределения (плотность распределения вероятностей, плотность, дифференциальная. x , то. x 4 ) Случайная величина X задана плотностью распределения вероятности при f при при Найти интегральную функцию F и математическое ожидание M X. f - плотность распределения (плотность распределения вероятностей,

Подробнее

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Тема. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Содержание Предельные теоремы теории вероятности 2 Неравенство Чебышева

Подробнее

Пример Пусть Х число очков выпавшее на игральной кости при одном броске. Тогда, эта с.в. распределена по закону

Пример Пусть Х число очков выпавшее на игральной кости при одном броске. Тогда, эта с.в. распределена по закону Случайные величины Случайные величины (с.в.) численное значение, появляющееся в результате опыта, и принимающее произвольное значение из заранее определенного множества. Существует два типа случайных величин:

Подробнее

ПРОГНОЗИРОВАНИЕ ОТКАЗОВ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ ВЕРОЯТНОСТНІМИ МЕТОДАМИ

ПРОГНОЗИРОВАНИЕ ОТКАЗОВ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ ВЕРОЯТНОСТНІМИ МЕТОДАМИ ПРОГНОЗИРОВАНИЕ ОТКАЗОВ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ ВЕРОЯТНОСТНІМИ МЕТОДАМИ Сенчик Ю.С., группа ИУС 06в(м) Руководитель к.т.н. Секирин А.И. Обеспечение высокой надежности технологического оборудования

Подробнее

Лекция Понятие о потоке отказов и восстановлений

Лекция Понятие о потоке отказов и восстановлений Лекция 3 3.1. Понятие о потоке отказов и восстановлений Восстанавливаемым называется объект, для которого восстановление работоспособного состояния после отказа предусмотрено в нормативнотехнической документации.

Подробнее

Тема: Статистические оценки параметров распределения

Тема: Статистические оценки параметров распределения Раздел: Теория вероятностей и математическая статистика Тема: Статистические оценки параметров распределения Лектор Пахомова Е.Г. 05 г. 5. Точечные статистические оценки параметров распределения Статистическое

Подробнее

Показатели безотказности невосстанавливаемых объектов

Показатели безотказности невосстанавливаемых объектов Показатели безотказности невосстанавливаемых объектов Вероятность безотказной работы* P(t) - вероятность того, что в пределах заданной наработки t отказ объекта не возникает. (2.1) где q 1 - наработка

Подробнее

Непрерывная случайная величина

Непрерывная случайная величина Непрерывная случайная величина Непрерывная случайная величина принимает бесконечное количество значений из определенного интервала числовой прямой. 0 6 месяцев Срок службы лампочки 2 Пример. Рост человека

Подробнее

Глава 3. Непрерывные случайные величины

Глава 3. Непрерывные случайные величины Глава 3. Непрерывные случайные величины. Функция распределения. Если множество значений случайной величины X не конечно и не счетно, то такая случайная величина не может характеризоваться вероятностью

Подробнее

Кафедра «Высшая математика» Случайные величины СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Кафедра «Высшая математика» Случайные величины СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 19.3.2. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Вариант 1 1. Дана непрерывная случайная величина Х: 0, х 0 F(х) = сх 3,0 < х 0,5 1, х > 0,5 Найти: а) коэффициент «с»; б) функцию плотности вероятности f(x); в) параметры распределения;

Подробнее

Утверждаю: Зав. каф. АТП. факультет: теплоэнергетический курс: четвертый Основные элементы АСНИ.

Утверждаю: Зав. каф. АТП. факультет: теплоэнергетический курс: четвертый Основные элементы АСНИ. ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 1 Нормальный закон распределения и его характеристики. Правило трех сигм. Показатели надежности. ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2 Основные элементы АСНИ. Оптимальная двухуровневая структура

Подробнее

A.В. Браилов П.Е. Рябов Теория вероятностей и математическая статистика Методические рекомендации по самостоятельной работе Часть 3

A.В. Браилов П.Е. Рябов Теория вероятностей и математическая статистика Методические рекомендации по самостоятельной работе Часть 3 Федеральное государственное образовательное учреждение высшего профессионального образования «ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» ФИНАКАДЕМИЯ Кафедра «Теория вероятностей и математическая

Подробнее

ОСНОВЫ РАСЧЁТА НАДЁЖНОСТИ

ОСНОВЫ РАСЧЁТА НАДЁЖНОСТИ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет Кафедра промышленной безопасности

Подробнее

Лекция Показатели долговечности

Лекция Показатели долговечности Лекция 9 9.1. Показатели долговечности Долговечность свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

Подробнее

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение ГЛАВА СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Биномиальное распределение Пусть эксперимент проводится по схеме Бернулли Определение Дискретная случайная величина имеет биномиальное распределение с параметрами

Подробнее

АНАЛИЗ МАЛОЙ ВЫБОРКИ

АНАЛИЗ МАЛОЙ ВЫБОРКИ Б. И. СУХОРУЧЕНКОВ АНАЛИЗ МАЛОЙ ВЫБОРКИ Прикладные статистические методы Москва «Вузовская книга» 2010 УДК 519.2 ББК 22.17 С91 С91 Сухорученков Б. И. Анализ малой выборки. Прикладные статистические методы

Подробнее

ОСНОВЫ ТЕОРИИ НАДЕЖНОСТИ МАШИН

ОСНОВЫ ТЕОРИИ НАДЕЖНОСТИ МАШИН Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» Утверждаю в печать Ректор университета

Подробнее

Контрольная работа по курсу Математика «Теория вероятностей и математическая статистика»

Контрольная работа по курсу Математика «Теория вероятностей и математическая статистика» Контрольная работа по курсу Математика «Теория вероятностей и математическая статистика» Вариант N 1 (X \ Z) (Y \ Z) Решить задачи: 2.В партии 1000 деталей, из них 20 дефектных. Какова вероятность того,

Подробнее

СОДЕРЖАНИЕ ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ «НАДЕЖНОСТЬ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ» ЛЕКЦИЯ 1. Проблема надежности и ее значение для современной техники.

СОДЕРЖАНИЕ ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ «НАДЕЖНОСТЬ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ» ЛЕКЦИЯ 1. Проблема надежности и ее значение для современной техники. 1 СОДЕРЖАНИЕ ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ «НАДЕЖНОСТЬ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ» ЛЕКЦИЯ 1. Проблема надежности и ее значение для современной техники. Основные задачи надежности ЭСиС. Основные термины и определения

Подробнее

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1 Другие ИДЗ Рябушко можно найти на странице http://mathpro.ru/dz_ryabushko_besplatno.html ИДЗ-8. Найти закон распределения указанной случайной величины X и ее функцию распределения F (X ). Вычислить математическое

Подробнее

ЧИСЛЕННАЯ ОЦЕНКА ПОКАЗАТЕЛЕЙ НАДЁЖНОСТИ ИНФОРМАЦИОННЫХ СИСТЕМ

ЧИСЛЕННАЯ ОЦЕНКА ПОКАЗАТЕЛЕЙ НАДЁЖНОСТИ ИНФОРМАЦИОННЫХ СИСТЕМ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Пермский национальный исследовательский политехнический

Подробнее

12. Интервальные оценки параметров распределения

12. Интервальные оценки параметров распределения МВДубатовская Теория вероятностей и математическая статистика Лекция 7 Интервальные оценки параметров распределения Для выборок малого объема точечные оценки могут значительно отличаться от оцениваемых

Подробнее

АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. КАФЕДРА «Автоматика и управление»

АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. КАФЕДРА «Автоматика и управление» АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА «Автоматика и управление» АНАЛИТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВЕННЫХ ХАРАКТЕРИСТИК НАДЁЖНОСТИ Методические указания к практическим занятиям по

Подробнее

Теория вероятностей и математическая статистика. Случайные величины

Теория вероятностей и математическая статистика. Случайные величины Теория вероятностей и математическая статистика Случайные величины 1 Содержание Случайные величины Основные законы распределения 2 Случайные величины Понятие случайной величины и закона ее распределения

Подробнее

Потоки событий. Пуассоновский поток событий. Потоки с ограниченным последействием. Обслуживание заявок. Стационарный (Простейший) Нестационарный

Потоки событий. Пуассоновский поток событий. Потоки с ограниченным последействием. Обслуживание заявок. Стационарный (Простейший) Нестационарный Потоки событий Пуассоновский поток событий Стационарный Простейший Нестационарный Потоки с ограниченным последействием Потоки Пальма Потоки Эрланга Обслуживание заявок ИМЭП - УлГТУ каф. ИС Евсеева О.Н.

Подробнее

Глава 3. Случайные величины (продолжение) Основные распределения непрерывных случайных величин. Нормальное распределение...

Глава 3. Случайные величины (продолжение) Основные распределения непрерывных случайных величин. Нормальное распределение... Глава. Случайные величины продолжение..... Основные распределения непрерывных случайных величин. Нормальное распределение.... Интеграл Пуассона.... Определение нормального распределения.... Свойства плотности

Подробнее

Федеральное агентство по образованию Волгоградский государственный технический университет

Федеральное агентство по образованию Волгоградский государственный технический университет Федеральное агентство по образованию Волгоградский государственный технический университет К В Чернышов МЕТОДЫ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ Учебное пособие РПК Политехник Волгоград

Подробнее

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ И СВЯЗИ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ И СВЯЗИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

Подробнее

Е.И. Щукин МАТЕМАТИКА. Теория вероятностей. Системы линейных алгебраических уравнений и линейное программирование. Учебное пособие

Е.И. Щукин МАТЕМАТИКА. Теория вероятностей. Системы линейных алгебраических уравнений и линейное программирование. Учебное пособие Министерство образования Российской Федерации Ярославский государственный университет имени П.Г. Демидова Е.И. Щукин МАТЕМАТИКА Теория вероятностей. Системы линейных алгебраических уравнений и линейное

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Понятие случайной величины Современная теория вероятностей предпочитает где только возможно оперировать не случайными событиями а случайными величинами

Подробнее

Лекция 5. Нормальное распределение

Лекция 5. Нормальное распределение Лекция 5 Нормальное распределение 1 Развитие темы: 2 задачи: 1. Как найти вероятность того, что случайная величина примет значение, принадлежащее заданному интервалу, например,? Решение подобных задач

Подробнее

Перечень теоретических вопросов для контрольной работы по дисциплине «Случайные процессы»

Перечень теоретических вопросов для контрольной работы по дисциплине «Случайные процессы» Освоение дисциплины «Случайные процессы» необходимо начинать последовательно раздел за разделом. Освоение раздела начинать с теоретической справки, затем перейти к разбору приведенного решения типового

Подробнее

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ 1 ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Одним из важнейших понятий теории вероятностей является понятие случайной величины. Случайной величиной называется переменная, которая

Подробнее

Теоретические задания

Теоретические задания Вопросы к зачёту ОУИТ для групп П-1, П- и П- Специальность: 0115 Программирование в компьютерных системах По дисциплине: ЕН.0 Теория вероятностей и математическая статистика 7 семестр 015/16 учебный год

Подробнее

М.В.Дубатовская Теория вероятностей и математическая статистика. Основные законы распределения дискретных случайных величин

М.В.Дубатовская Теория вероятностей и математическая статистика. Основные законы распределения дискретных случайных величин МВДубатовская Теория вероятностей и математическая статистика Лекция 9 Основные законы распределения случайных величин Основные законы распределения дискретных случайных величин Биномиальное распределение

Подробнее

4. Теория вероятностей

4. Теория вероятностей 4. Теория вероятностей В контрольную работу по этой теме входят четыре задания. Приведем основные понятия теории вероятностей, необходимые для их выполнения. Для решения задач 50 50 необходимо знание темы

Подробнее

Тема Основные понятия математической статистики

Тема Основные понятия математической статистики Лекция 6 Тема Основные понятия математической статистики Содержание темы Задача математической статистики Научные предпосылки математической статистики Основные понятия математической статистики Основные

Подробнее

ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ

ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ Точечные оценки. Понятие статистики и достаточной статистики. Отыскание оценок методом моментов, неравенство Рао-Крамера. Эффективность

Подробнее

РАСЧЕТ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ИЗДЕЛИЙ РАКЕТНО- АРТИЛЛЕРИЙСКОГО ВООРУЖЕНИЯ

РАСЧЕТ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ИЗДЕЛИЙ РАКЕТНО- АРТИЛЛЕРИЙСКОГО ВООРУЖЕНИЯ Баринов С.А., Цехмистров А.В. 2,2 Слушатель Военной Академии материально-технического обеспечения имени генерала армии А.В. Хрулева, г. Санкт-Петербург РАСЧЕТ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ИЗДЕЛИЙ РАКЕТНО- АРТИЛЛЕРИЙСКОГО

Подробнее

КОНТРОЛЬНАЯ РАБОТА 1 (Линейная алгебра и аналитическая геометрия)

КОНТРОЛЬНАЯ РАБОТА 1 (Линейная алгебра и аналитическая геометрия) КОНТРОЛЬНАЯ РАБОТА 1 (Линейная алгебра и аналитическая геометрия) В заданиях этой контрольной параметры n и m требуется заменить на последнюю и, соответственно, предпоследнюю ненулевую цифру Вашего индивидуального

Подробнее

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно: 1

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно: 1 Лекция 11. Дискретные случайные величины Случайной величиной Х называется величина, которая в результате опыта может принять то или иное значение х i. Выпадение некоторого значения случайной величины Х

Подробнее

ВАРИАНТ 1 ЗАДАЧА 1. Построить гистограмму по группированному статистическому ряду:

ВАРИАНТ 1 ЗАДАЧА 1. Построить гистограмму по группированному статистическому ряду: ВАРИАНТ 1 Построить гистограмму по группированному статистическому ряду: Интервалы 0-2 2-4 4-6 Частоты (ν i ) 20 30 50 Построить оценку для неизвестного параметра генеральной совокупности, имеющей геометрическое

Подробнее

Контрольные и курсовые на сайте Содержание

Контрольные и курсовые на сайте  Содержание Содержание Задача 1... 3 Задача... Задача 3... 5 Задача... 6 Задача 5... 7 Задача 6... 8 Задача 7... 9 Задача 8... 10 Задача 9... 11 Задача 10... 1 Список использованной литературы... 13 Задача 1 В партии

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЗАНЯТИЕ 4 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Понятие случайной величины одно из важнейших понятий теории вероятностей. Под случайной величиной понимается величина,

Подробнее

Теория телетрафика. А.В. Абилов. Лекция 2. Потоки вызовов Случайные процессы в СМО. () k

Теория телетрафика. А.В. Абилов. Лекция 2. Потоки вызовов Случайные процессы в СМО. () k .. Случайные процессы в СМО А.В. Абилов Теория телетрафика Лекция. Потоки вызовов Задача СМО в телефонии: обслуживание поступающего потока заявок Заявки поступают в случайные или заранее определенные моменты

Подробнее

Цель : Рассмотреть основные количественные показатель надежности

Цель : Рассмотреть основные количественные показатель надежности Лекция 4. Основные количественные показатели надежности технических систем Цель : Рассмотреть основные количественные показатель надежности Время: 4 часа. Вопросы: 1. Показатели оценки свойств технических

Подробнее

Практическая работа 3 Тема 4 Дискретные случайные величины

Практическая работа 3 Тема 4 Дискретные случайные величины Практическая работа Тема 4 Дискретные случайные величины Дискретной называют случайную величину X, принимающую конечное или счетное (можно перенумеровать) число значений: 1,,. Значение принимается с некоторой

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Л.Г. Ветров, А.Л. Сунчалина, В.И. Тимонин

Московский государственный технический университет имени Н.Э. Баумана. Л.Г. Ветров, А.Л. Сунчалина, В.И. Тимонин Московский государственный технический университет имени Н.Э. Баумана Л.Г. Ветров, А.Л. Сунчалина, В.И. Тимонин Методические указания к выполнению типового расчета по теории вероятностей Москва ИздательствоМГТУ

Подробнее

Учебное пособие. Основы теории вероятностей. Раздел 2. Случайные величины. Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК

Учебное пособие. Основы теории вероятностей. Раздел 2. Случайные величины. Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК Учебное пособие Основы теории вероятностей Раздел 2. Случайные величины для студентов специальности 2305 «Программирование в компьютерных

Подробнее

характеристики положения характеристики рассеивания

характеристики положения характеристики рассеивания Числовые характеристики характеристики положения характеристики рассеивания Виды распределений Нормальное Равномерное Биномиальное характеристики положения Математическое ожидание Медиана характеристики

Подробнее

Лекция 9. Тема Введение в теорию оценок.

Лекция 9. Тема Введение в теорию оценок. Лекция 9 Тема Введение в теорию оценок. Содержание темы Предмет, цель и метод задачи оценивания Точечные выборочные оценки, свойства оценок Теоремы об оценках Интервальные оценки и интеграл Лапласа Основные

Подробнее

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Случайные величины Функции распределения вероятностей случайных величин Простейшая модель физического эксперимента последовательность независимых опытов (испытаний

Подробнее

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины Практическая работа 7 Функция плотность распределения и числовые характеристики непрерывной случайной величины Цель работы: Нахождение функции и плотности распределения числовых характеристик непрерывной

Подробнее

Числовые характеристики дискретных случайных величин

Числовые характеристики дискретных случайных величин 1 Числовые характеристики дискретных случайных величин Математическое ожидание Expected Value (i.e. Mean) - характеризует среднее весовое значение случайной величины с учётом вероятности появлений значений

Подробнее

а) отношение числа случаев, благоприятствующих событию А к общему числу

а) отношение числа случаев, благоприятствующих событию А к общему числу ТЕОРИЯ ВЕРОЯТНОСТЕЙ. РАСПРЕДЕЛЕНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН Задание. Выберите правильный ответ:. Относительной частотой случайного события А называется величина, равная... а) отношению числа случаев, благоприятствующих

Подробнее

3 0,1 0,2 0,7 a) Найдите функцию распределения случайной величины X

3 0,1 0,2 0,7 a) Найдите функцию распределения случайной величины X Задачи по курсу ТВиМС для самостоятельного решения Часть II 1) Числовые характеристики и законы дискретного распределения вероятностей 1 Имеются десять билетов в театр, 4 из которых на места первого ряда

Подробнее

ОСНОВЫ РАБОТОСПОСОБНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ

ОСНОВЫ РАБОТОСПОСОБНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ Федеральное агентство по образованию Сыктывкарский лесной институт филиал государственного образовательного учреждения высшего профессионального образования «Санкт-Петербургская государственная лесотехническая

Подробнее

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i . ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Основные понятия теории вероятностей Многие объекты в математике определяются указанием операций которые можно выполнять над объектами и перечислением свойств которым удовлетворяют

Подробнее

Генеральная совокупность и выборка. Центральная предельная теорема

Генеральная совокупность и выборка. Центральная предельная теорема Генеральная совокупность и выборка Точечные оценки и их свойства Центральная предельная теорема Выборочное среднее, выборочная дисперсия Генеральная совокупность Генеральная совокупность множество всех

Подробнее

НАДЁЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК

НАДЁЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет»

Подробнее

Основы надежности электронных средств

Основы надежности электронных средств ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ АРЗАМАССКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

Биномиальное распределение B(n,p) Дискретная случайная величина Х, которая может принимать только целые неотрицательные значения с вероятностью:

Биномиальное распределение B(n,p) Дискретная случайная величина Х, которая может принимать только целые неотрицательные значения с вероятностью: ОСНОВНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Случайные величины измеряются и анализируются в терминах их статистических и вероятностных свойств, главным выразителем которых является функция

Подробнее

Основные понятия и определения

Основные понятия и определения 1 Основные понятия и определения Вспомним основные понятия и определения, которые употреблялись в курсе теории вероятностей. Вероятностный эксперимент (испытание) эксперимент, результат которого не предсказуем

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ Случайные векторы. Закон распределения. Условные распределения случайных величин. Числовые характеристики случайных векторов. Условные математические

Подробнее

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ПО УЧЕБНОЙ ДИСЦИПЛИНЕ Федеральное агентство связи Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Поволжский государственный университет телекоммуникаций и информатики»

Подробнее

Учебно-методические материалы

Учебно-методические материалы http://www-chemo.univer.kharkov.ua/ Учебно-методические материалы Рабочий план и программа курса Хімічна інформатика та хемометрія Примеры экзаменационных билетов Презентации Last updated November, 2008

Подробнее

1. Срединная формула прямоугольников

1. Срединная формула прямоугольников Срединная формула прямоугольников Введем обозначение I d Пусть -непрерывны на [ ] Разделим отрезок [ ] равных частичных отрезков [ ] где на Введем обозначения ( ) ( ) ( ) интеграл I в виде Представим где

Подробнее

Математическая статистика. Тема: «Статистическое оценивание параметров распределения»

Математическая статистика. Тема: «Статистическое оценивание параметров распределения» Математическая статистика Тема: «Статистическое оценивание параметров распределения» Введение Математическая статистика наука, занимающаяся методами обработки экспериментальных данных, полученных в результате

Подробнее

Е. В. Морозова. Теория вероятностей

Е. В. Морозова. Теория вероятностей Е. В. Морозова Теория вероятностей 0 МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ О.Ю.Пелевин МЕТОДИЧЕСКАЯ РАЗРАБОТКА по курсу «Теория вероятностей и математическая статистика» для студентов физического

Подробнее

Консультационный тренинговый центр «Резольвента»

Консультационный тренинговый центр «Резольвента» ООО «Резольвента», wwwresolventaru, resolventa@listru, (95) 509-8-0 Консультационный тренинговый центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое

Подробнее

ПРОГРАММА ДИСЦИПЛИНЫ. Для подготовки дипломированных специалистов по направлению Менеджмент в организации Квалификация «Менеджер»

ПРОГРАММА ДИСЦИПЛИНЫ. Для подготовки дипломированных специалистов по направлению Менеджмент в организации Квалификация «Менеджер» Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирская Государственная Геодезическая Академия»

Подробнее