Лекция 7. Непрерывные случайные величины. Плотность вероятности.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Лекция 7. Непрерывные случайные величины. Плотность вероятности."

Транскрипт

1 Лекция 7. Непрерывные случайные величины. Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые отрезки или интервалы. Случайная величина X называется непрерывной, если существует такая неотрицательная функция р(x), что Из определения следует, что если p(z) - непрерывна, то F'(x)=p(x) является производной от функции распределения. Выясним смысл функции р(x), для чего рассмотрим предел отношения вероятности попадания значения случайной величины в некоторый интервал (х, x+ x) к длине этого интервала x, когда x 0 : По аналогии с определением плотности массы в точке целесообразно рассматривать значение p(x) в точке x как плотность вероятности в этой точке. Из дифференциального исчисления известно, что Вероятностный смысл этого равенства таков: вероятность того, что случайная величина примет значение, принадлежащее интервалу (х, x+ x), приближенно равна произведению плотности вероятности на длину интервала. Геометрически это означает, что соответствующая вероятность приближенно равна площади прямоугольника с основанием x и высотой р(х). Рис.2

2 Точное значение данной вероятности мы получим как, что геометрически выражает площадь криволинейной трапеции, ограниченной линиями у=0, х=x, х=x+ x, y=p(x). Итак, Отметим, что. Числовые характеристики непрерывной случайной величины. Пусть непрерывная случайная величина X задана дифференциальной функцией распределения p(x). Пусть всевозможные значения X принадлежат отрезку [a,b]. Разобьем этот отрезок на n отрезков длиной x 1, x 2,, x n и в каждом из них выберем произвольную точку x i. Составим сумму произведений возможных значений x i на вероятности попадания их в интервал x i, то есть p(x i ) x i : Переходя к пределу при max x i 0, получим Таким образом, математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку [a,b] называется определенный интеграл: Если возможные значения Х принадлежат всей числовой оси, то

3 (1.16) Дисперсией непрерывной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, поэтому (1.17) Среднее квадратическое отклонение непрерывной случайной величины равно корню квадратному из дисперсии, то есть: Начальный и центральный K-ые моменты определяются соответственно: Все свойства математического ожидания и дисперсии, рассмотренные для дискретного распределения, имеют место и для непрерывного распределения. Если распределение симметрично относительно начальной ординаты, то есть если p(x) четная, то M(X)=0, так как Если ось симметрии кривой y=p(x) проходит через точку x=m, то M(X)=m. Эти свойства полностью согласуются с механическим толкованием математического ожидания как абсциссы центра тяжести. Поэтому математическое ожидание непрерывной случайной величины можно находить с помощью известных из механики приемов нахождения центра тяжести фигуры, ограниченной кривой у=р(x) и осью абсцисс, а дисперсию находят как момент инерции той же фигуры относительно оси, перпендикулярной к 0X и проходящей через точку, отвечающую математическому ожиданию. В качестве примера распределения ограниченной случайной величины рассмотрим равномерное распределение случайной величины X на отрезке [a,b]. Здесь плотность вероятности постоянна внутри промежутка [a,b], то есть р(x)=c при, а при x<a и x>b, р(х)=0.

4 Так как все возможные значения случайной величины принадлежат[a,b], то выполняются равенства то есть Итак, для равномерного распределения Часто встречаются случайные величины, не имеющие определенных границ для своих значений. Примером неограниченного справа распределения может служить распределение Вейбулла, для которого где a и b - параметры распределения. Этому распределению нередко следует время непоявления внезапных отказов некоторых элементов радиоэлектронной аппаратуры. При b=2 получается распределение Релея, при b=1 экспоненциальное (показательное) распределение. Экспоненциальное распределение, для которого обычно применяется для определения вероятностей безотказной работы (непоявления внезапных отказов} технических систем. Параметр этого распределения в теории надежности рассматривается как интенсивность отказов и имеет лишь положительные значения, так как

5 По определению имеем Интегральная функция распределения. Найдем интегральную функцию F(x), если известна дифференциальная функция. Для равномерного распределения Следовательно, для Для Для Таким образом, Аналогично можно найти, что для показательного распределения При описании непрерывного распределения часто используют так называемые квантили.

6 Квантилем, отвечающим заданному уровню вероятности р, называют такое значение x=x p, при котором интегральная функция распределения принимает значение, равное р, то есть F(x p )=Р. Некоторые квантили получили особое название. Медианой распределения называется квантиль, отвечающий значению р=1/2. Соответственно нижним и верхним квартилями называют квантили, отвечающие значениям р= 1/4 и Р= 3/4. Модой непрерывного распределения называют значение x, при котором р(x) достигает максимума. Если р(х) имеет два максимума, то распределение называют двумодальным и т.д.

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности.

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. 1 ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема3. «Функция распределения вероятностей случайной величины» Кафедра теоретической и прикладной

Подробнее

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины.

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Лекция 3. Основные характеристики и законы распределения случайных величин Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Время: часа. Вопросы: 1. Характеристики

Подробнее

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ 1 ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Одним из важнейших понятий теории вероятностей является понятие случайной величины. Случайной величиной называется переменная, которая

Подробнее

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Понятие непрерывной случайной величины. Функция распределения, плотность распределения, их взаимосвязь и свойства. Математическое ожидание непрерывной случайной величины

Подробнее

)? (Вероятность попадания непрерывной СВ

)? (Вероятность попадания непрерывной СВ Случайные величины. Определение СВ ( Случайной называется величина, которая в результате испытания может принимать то или иное значение, заранее не известное).. Какие бывают СВ? ( Дискретные и непрерывные.

Подробнее

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика»

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Теория вероятностей» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева Е.Г. Основные определения и

Подробнее

Теория вероятностей и математическая статистика. Случайные величины

Теория вероятностей и математическая статистика. Случайные величины Теория вероятностей и математическая статистика Случайные величины 1 Содержание Случайные величины Основные законы распределения 2 Случайные величины Понятие случайной величины и закона ее распределения

Подробнее

Медицинская информатика

Медицинская информатика Лукьянова Е. А. Медицинская информатика Теория вероятностей Специальность «Фармация» Заочное отделение 2010 Консультация 2 Темы контрольной работы 2 Случайные величины Числовые характеристики случайных

Подробнее

Практическое занятие 8. Числовые характеристики случайных величин

Практическое занятие 8. Числовые характеристики случайных величин Практическое занятие 8. Числовые характеристики случайных величин Закон распределения вероятностей случайной величины содержит полную информацию о случайной величине. Однако полная информация не всегда

Подробнее

Тема 5. Непрерывные случайные величины.

Тема 5. Непрерывные случайные величины. Тема 5. Непрерывные случайные величины. Цель и задачи. Цель контента темы 5 дать определение непрерывной случайной величины, ее функции распределения и функции распределения; рассмотреть особенности задания

Подробнее

Числовые характеристики непрерывных случайных величин

Числовые характеристики непрерывных случайных величин Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X + = px ( ) xp( x)

Подробнее

Математическое ожидание

Математическое ожидание Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X px ( ) xp( x) dx.

Подробнее

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω)

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω) Понятие и её закона Одномерные дискретные случайные Определение случайной Случайной величиной (СВ) называется функция (ω), определённая на пространстве элементарных событий Ω, со значениями в одномерном

Подробнее

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания:

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания: МВДубатовская Теория вероятностей и математическая статистика Лекция 8 Числовые характеристики случайных величин При изучении случайных величин важную роль играют их числовые характеристики Математическим

Подробнее

Случайные величины и законы их распределения.

Случайные величины и законы их распределения. Случайные величины и законы их распределения. Одним из основных понятий теории вероятностей является понятие случайной величины. Сначала рассмотрим примеры. Число вызовов, поступивших от абонентов в течение

Подробнее

Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики положения и моменты непрерывных и дискретных случайных величин Числовые характеристики положения Закон

Подробнее

Непрерывная случайная величина

Непрерывная случайная величина Непрерывная случайная величина Непрерывная случайная величина принимает бесконечное количество значений из определенного интервала числовой прямой. 0 6 месяцев Срок службы лампочки 2 Пример. Рост человека

Подробнее

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения 53 Глава 4. Основные законы распределения непрерывной случайной величины. 4.. Равномерный закон распределения Определение. Непрерывная случайная величина Х имеет равномерное распределение на промежутке

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ)

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ) Лекция 5 Тема Непрерывные случайные величины (НСВ) Содержание темы Способы задания: интегральный закон распределения, плотность распределения. Связь между ними. Свойства плотности распределения. Применение

Подробнее

Тема: Статистические оценки параметров распределения

Тема: Статистические оценки параметров распределения Раздел: Теория вероятностей и математическая статистика Тема: Статистические оценки параметров распределения Лектор Пахомова Е.Г. 05 г. 5. Точечные статистические оценки параметров распределения Статистическое

Подробнее

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить функции плотности и числовые характеристики случайных величин имеющих равномерное показательное нормальное и гамма-распределение

Подробнее

«ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН»

«ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН» Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема4. «ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН» Кафедра теоретической и прикладной математики. разработана

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЗАНЯТИЕ 4 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Понятие случайной величины одно из важнейших понятий теории вероятностей. Под случайной величиной понимается величина,

Подробнее

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Для решения многих практических задач совсем не обязательно знать все возможные значения случайной величины и соответствующие им вероятности, а достаточно указать

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СЛУЧАЙНЫЕ И ГРУБЫЕ ПОГРЕШНОСТИ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СЛУЧАЙНЫЕ И ГРУБЫЕ ПОГРЕШНОСТИ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СЛУЧАЙНЫЕ И ГРУБЫЕ ПОГРЕШНОСТИ Погрешность В реальных условиях даже очень точные измерения будут содержать погрешность D, которая является отклонением результата измерения x от истинного

Подробнее

ЛЕКЦИЯ 2. Основные статистические характеристики показателей надёжности ЭТО

ЛЕКЦИЯ 2. Основные статистические характеристики показателей надёжности ЭТО ЛЕКЦИЯ. Основные статистические характеристики показателей надёжности ЭТО Математический аппарат теории надёжности основывается главным образом на теоретико-вероятностных методах, поскольку сам процесс

Подробнее

Пример Пусть Х число очков выпавшее на игральной кости при одном броске. Тогда, эта с.в. распределена по закону

Пример Пусть Х число очков выпавшее на игральной кости при одном броске. Тогда, эта с.в. распределена по закону Случайные величины Случайные величины (с.в.) численное значение, появляющееся в результате опыта, и принимающее произвольное значение из заранее определенного множества. Существует два типа случайных величин:

Подробнее

1. Биномиальный закон распределения

1. Биномиальный закон распределения Лекция 4 Тема: Законы распределения СВ 1. Биномиальный закон распределения Опр. Дискретная СВ Х имеет биномиальный закон распределения, если выполнены следующие условия: 1) эксперимент заключается в последовательном

Подробнее

Учебное пособие. Основы теории вероятностей. Раздел 2. Случайные величины. Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК

Учебное пособие. Основы теории вероятностей. Раздел 2. Случайные величины. Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК Учебное пособие Основы теории вероятностей Раздел 2. Случайные величины для студентов специальности 2305 «Программирование в компьютерных

Подробнее

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ 1 Случайная величина X называется непрерывной, если она принимает более, чем счётное число значений. Случайная величина X называется

Подробнее

Основные понятия и определения

Основные понятия и определения 1 Основные понятия и определения Вспомним основные понятия и определения, которые употреблялись в курсе теории вероятностей. Вероятностный эксперимент (испытание) эксперимент, результат которого не предсказуем

Подробнее

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно: 1

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно: 1 Лекция 11. Дискретные случайные величины Случайной величиной Х называется величина, которая в результате опыта может принять то или иное значение х i. Выпадение некоторого значения случайной величины Х

Подробнее

Непрерывные случайные величины.

Непрерывные случайные величины. Непрерывные случайные величины. Случайная величина, значения которой заполняют некоторый промежуток, называется непрерывной. В частных случаях это может быть не один промежуток, а объединение нескольких

Подробнее

Случайные величины. Дискретная и непрерывная случайные величины

Случайные величины. Дискретная и непрерывная случайные величины Случайные величины Дискретная и непрерывная случайные величины Наряду с понятием случайного события в теории вероятности используется другое более удобное понятие случайной величины Случайной величиной

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

ния которой изменяются в диапазоне от 0 до 1 (рисунок 33а).

ния которой изменяются в диапазоне от 0 до 1 (рисунок 33а). Лекция 8 8.1. Законы распределения показателей надежности Отказы в системах железнодорожной автоматики и телемеханики возникают под воздействием разнообразных факторов. Поскольку каждый фактор в свою очередь

Подробнее

Одномерные случайные величины

Одномерные случайные величины МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им Н.И. Лобачевского» Факультет

Подробнее

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины Практическая работа 7 Функция плотность распределения и числовые характеристики непрерывной случайной величины Цель работы: Нахождение функции и плотности распределения числовых характеристик непрерывной

Подробнее

НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК ЗАКОНЫ РАСПРЕДЕЛЕНИЙ В ТЕОРИИ НАДЕЖНОСТИ

НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК ЗАКОНЫ РАСПРЕДЕЛЕНИЙ В ТЕОРИИ НАДЕЖНОСТИ НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК ЗАКОНЫ РАСПРЕДЕЛЕНИЙ В ТЕОРИИ НАДЕЖНОСТИ Закон распределения Пуассона Распределение Пуассона играет особую роль в теории надежности оно описывает закономерность

Подробнее

Лекция 10. Распределение? 2.

Лекция 10. Распределение? 2. Распределение?. Пусть имеется n независимых случайных величин N 1, N,..., N n, распределенных по нормальному закону с математическим ожиданием, равным нулю, и дисперсией, равной единице. Тогда случайная

Подробнее

2.5.3 Закон Пуассона (закон редких явлений)

2.5.3 Закон Пуассона (закон редких явлений) Лекция 8 План лекции 53 Закон Пуассона 54 Показательный закон распределения 55 Нормальный (гауссов) закон распределения вероятностей 53 Закон Пуассона (закон редких явлений) Дискретная случайная величина

Подробнее

4. Уравнения Колмогорова. Предельные вероятности состояния.

4. Уравнения Колмогорова. Предельные вероятности состояния. Лекция Элементы теории систем массового обслуживания 11. Элементы теории систем массового обслуживания Вопросы темы: 1. Основные понятия. Классификация СМО. 2. Понятие марковского случайного процесса.

Подробнее

Примеры распределений дискретных случайных величин

Примеры распределений дискретных случайных величин Примеры распределений дискретных случайных величин 1 Биномиальное распределение = μ ( ) Рассмотрим случайную величину равную числу появлений события A в серии n независимых испытаний. Распределение вероятностей

Подробнее

Лекция 18. Интервальные оценки параметров распределения. Интервальные оценки. Точность. Надежность

Лекция 18. Интервальные оценки параметров распределения. Интервальные оценки. Точность. Надежность Лекция 18 Интервальные оценки параметров распределения Интервальные оценки Точность Надежность Точечные оценки могут значительно отличаться от оцениваемых параметров Достаточно часто это происходит в случае

Подробнее

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение ГЛАВА СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Биномиальное распределение Пусть эксперимент проводится по схеме Бернулли Определение Дискретная случайная величина имеет биномиальное распределение с параметрами

Подробнее

Числовые характеристики дискретных случайных величин

Числовые характеристики дискретных случайных величин 1 Числовые характеристики дискретных случайных величин Математическое ожидание Expected Value (i.e. Mean) - характеризует среднее весовое значение случайной величины с учётом вероятности появлений значений

Подробнее

1 при x 0. x - плотность распределения (плотность распределения вероятностей, плотность, дифференциальная. x , то. x 4

1 при x 0. x - плотность распределения (плотность распределения вероятностей, плотность, дифференциальная. x , то. x 4 ) Случайная величина X задана плотностью распределения вероятности при f при при Найти интегральную функцию F и математическое ожидание M X. f - плотность распределения (плотность распределения вероятностей,

Подробнее

равная произведению массы этой точки и квадрата расстояния до оси ОХ (оси ОУ,

равная произведению массы этой точки и квадрата расстояния до оси ОХ (оси ОУ, 9 Вычисление статических моментов инерции и координат центра масс Определение Статическим моментом материальной точки А(х;у) в которой сосредоточена масса m относительно оси ОХ (ОУ) называется величина

Подробнее

Интегралы и дифференциальные уравнения. Лекции 5-6

Интегралы и дифференциальные уравнения. Лекции 5-6 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекции 5-6 Определенный

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Числовые характеристики случайной величины

Числовые характеристики случайной величины Числовые характеристики случайной величины Числовые характеристики случайной величины Применяются вместо закона распределения случайной величины В сжатой форме выражают наиболее существенные особенности

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Т А Матвеева В Б Светличная С А Зотова ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВРЕМЕНИ МЕЖДУ ОТКАЗАМИ

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВРЕМЕНИ МЕЖДУ ОТКАЗАМИ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВРЕМЕНИ МЕЖДУ ОТКАЗАМИ Иваново 011 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Ивановская

Подробнее

2.4. Непрерывные случайные величины

2.4. Непрерывные случайные величины Лекции по ТВ и МС Олейник ТА 6-7 4 Непрерывные случайные величины Непрерывная случайная величина Плотность распределения Математическое ожидание, дисперсия, среднеквадратичное отклонение, мода, медиана

Подробнее

6.4. Системы случайных величин

6.4. Системы случайных величин Лекция 4.9. Системы случайных величин. Функция распределения системы двух случайных величин (СДСВ). Свойства функции 6.4. Системы случайных величин В практике часто встречаются задачи которые описываются

Подробнее

Retinskaya.jimdo.com

Retinskaya.jimdo.com ЛЕКЦИЯ 1 Классификация экспериментальных исследований Определение и свойства функции распределения. Вероятность попадания случайной величины на заданный интервал Квантиль распределения Выборочная функция

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Понятие случайной величины Современная теория вероятностей предпочитает где только возможно оперировать не случайными событиями а случайными величинами

Подробнее

ЛЕКЦИЯ N 46. Приложения кратных интегралов.

ЛЕКЦИЯ N 46. Приложения кратных интегралов. ЛЕКЦИЯ N 6 Приложения кратных интегралов Задача о вычислении массы тонкой пластинки Статистические моменты; центр тяжести плоской фигуры 3Момент инерции 3 Площадь поверхности 3 5Применение тройного интеграла

Подробнее

ОБНАРУЖЕНИЕ И ФИЛЬТРАЦИЯ СИГНАЛОВ В НЕРАЗРУШАЮЩЕМ КОНТРОЛЕ. Практические занятия ЧАСТЬ 1. Примеры вопросов с пояснениями

ОБНАРУЖЕНИЕ И ФИЛЬТРАЦИЯ СИГНАЛОВ В НЕРАЗРУШАЮЩЕМ КОНТРОЛЕ. Практические занятия ЧАСТЬ 1. Примеры вопросов с пояснениями ОБНАРУЖЕНИЕ И ФИЛЬТРАЦИЯ СИГНАЛОВ В НЕРАЗРУШАЮЩЕМ КОНТРОЛЕ Практические занятия ЧАСТЬ 1 Этот раздел состоит из простых тестовых вопросов, требующих ответов «ДА» или «НЕТ», в зависимости от того, верное

Подробнее

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г.

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г. Перечень Основных контрольных вопросов для зачета (экзамена) по дисциплине Физика, математика, модуль М атематика, для студентов 1 курса медикопрофилактического факультета 1. Понятие функции. Способы задания

Подробнее

Лекция 1. Выборочное пространство

Лекция 1. Выборочное пространство Лекция 1. Выборочное пространство Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 1. Выборочное пространство Санкт-Петербург, 2013 1 / 35 Cодержание Содержание 1 Выборка.

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

М.В.Дубатовская Теория вероятностей и математическая статистика. Основные законы распределения дискретных случайных величин

М.В.Дубатовская Теория вероятностей и математическая статистика. Основные законы распределения дискретных случайных величин МВДубатовская Теория вероятностей и математическая статистика Лекция 9 Основные законы распределения случайных величин Основные законы распределения дискретных случайных величин Биномиальное распределение

Подробнее

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Случайные величины Функции распределения вероятностей случайных величин Простейшая модель физического эксперимента последовательность независимых опытов (испытаний

Подробнее

Глава 3. Непрерывные случайные величины

Глава 3. Непрерывные случайные величины Глава 3. Непрерывные случайные величины. Функция распределения. Если множество значений случайной величины X не конечно и не счетно, то такая случайная величина не может характеризоваться вероятностью

Подробнее

Лекция 11. Метод наибольшего правдоподобия. Другие характеристики вариационного ряда.

Лекция 11. Метод наибольшего правдоподобия. Другие характеристики вариационного ряда. 1 Лекция 11 Метод наибольшего правдоподобия Другие характеристики вариационного ряда 1 Метод наибольшего правдоподобия Кроме метода моментов, который изложен в предыдущем параграфе, существуют и другие

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Понятие случайной величины

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Понятие случайной величины СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Понятие случайной величины Мы переходим к изучению еще одного важного понятия теории вероятностей, к понятию случайная величина. Чтобы лучше понять это, приведем несколько примеров.

Подробнее

НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ

НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ Отказы, возникающие в процессе испытаний или эксплуатации, могут быть различными факторами: рассеянием

Подробнее

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11 ЧАСТЬ 6 ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция ЗАКОН РАСПРЕДЕЛЕНИЯ И ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ФУНКЦИЙ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие функции случайной величины и провести классификацию возникающих

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

Стандартные распределения и их квантили

Стандартные распределения и их квантили Стандартные распределения В статистике, эконометрике и других сферах человеческих знаний очень часто используются стандартные распределения. В частности, они используются для проверки гипотез и построения

Подробнее

1. Срединная формула прямоугольников

1. Срединная формула прямоугольников Срединная формула прямоугольников Введем обозначение I d Пусть -непрерывны на [ ] Разделим отрезок [ ] равных частичных отрезков [ ] где на Введем обозначения ( ) ( ) ( ) интеграл I в виде Представим где

Подробнее

Задача C5. Окружность и ломаная. 01 C5 Найдите все значения а, при каждом из которых. имеет ровно три различных

Задача C5. Окружность и ломаная. 01 C5 Найдите все значения а, при каждом из которых. имеет ровно три различных Задача C5 Окружность и ломаная 01 C5 Найдите все значения а, при каждом из которых имеет ровно три различных 02 C5 Найдите все значения а, при каждом из которых имеет ровно три различных 03 C5 Найдите

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

Тема7. «Численное интегрирование.»

Тема7. «Численное интегрирование.» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема7. «Численное интегрирование.» Кафедра теоретичской и прикладной математики. разработана доц.

Подробнее

Биномиальное распределение B(n,p) Дискретная случайная величина Х, которая может принимать только целые неотрицательные значения с вероятностью:

Биномиальное распределение B(n,p) Дискретная случайная величина Х, которая может принимать только целые неотрицательные значения с вероятностью: ОСНОВНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Случайные величины измеряются и анализируются в терминах их статистических и вероятностных свойств, главным выразителем которых является функция

Подробнее

К ВОПРОСУ ПРЕПОДАВАНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ НА ИНЖЕНЕРНЫХ СПЕЦИАЛЬНОСТЯХ

К ВОПРОСУ ПРЕПОДАВАНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ НА ИНЖЕНЕРНЫХ СПЕЦИАЛЬНОСТЯХ К ВОПРОСУ ПРЕПОДАВАНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ НА ИНЖЕНЕРНЫХ СПЕЦИАЛЬНОСТЯХ Рыщанова С.М Костанайский государственный университет им. А.Байтурсынова Түйін Бұл мақалада кездейсоқ шаманың кейбiр қосымшалары

Подробнее

Теория вероятностей и математическая статистика. НК-2, третий семестр Математическая статистика. Характеристики выборки

Теория вероятностей и математическая статистика. НК-2, третий семестр Математическая статистика. Характеристики выборки Теория вероятностей и математическая статистика. НК-, третий семестр Математическая статистика. Характеристики выборки Для заданных выборок: построить вариационный и статистический ряды; найти наименьший

Подробнее

М. М. Попов Теория вероятности Конспект лекций

М. М. Попов Теория вероятности Конспект лекций 2009 М. М. Попов Теория вероятности Конспект лекций Выполнил студент группы 712 ФАВТ А. В. Димент СПбГУКиТ Случайное событие всякий факт, который в результате опыта может произойти или не произойти, и

Подробнее

Элементы математической статистики

Элементы математической статистики Элементы математической статистики Математическая статистика является частью общей прикладной математической дисциплины «Теория вероятностей и математическая статистика», однако задачи, решаемые ею, носят

Подробнее

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной Лекция 6 План лекции.3.3 Дифференциальная функция распределения непрерывных случайных величин.4 Числовые характеристики случайных.4. Математическое ожидание и его свойства..4. Дисперсия случайных величин

Подробнее

Лектор Ст. преподаватель Купо А.Н.

Лектор Ст. преподаватель Купо А.Н. Лекция 8 Численное дифференцирование и интегрирование Лектор Ст. преподаватель Купо А.Н. 1. Математическое и численное дифференцирование и интегрирование.. Формулы для конечно-разностных производных. 3.

Подробнее

А.В. Иванов, А.П. Иванова. А.В. Иванов, А.П. Иванова МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН, СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ И СЛУЧАЙНЫХ ПРОЦЕССОВ

А.В. Иванов, А.П. Иванова. А.В. Иванов, А.П. Иванова МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН, СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ И СЛУЧАЙНЫХ ПРОЦЕССОВ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра Прикладная математика-1 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра Прикладная математика-1 А.В. Иванов,

Подробнее

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной РАЗДЕЛ 5 Интегральное исчисление функций одной переменной Материалы подготовлены преподавателями математики кафедры общеобразовательных дисциплин для системы электронного дистанционного обучения Содержание

Подробнее

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i . ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Основные понятия теории вероятностей Многие объекты в математике определяются указанием операций которые можно выполнять над объектами и перечислением свойств которым удовлетворяют

Подробнее

Модели постепенных отказов. Начальное значение выходного параметра равно нулю (A=X(0)=0)

Модели постепенных отказов. Начальное значение выходного параметра равно нулю (A=X(0)=0) Модели постепенных отказов Начальное значение выходного параметра равно нулю (A=X(0)=0) Рассматриваемая модель (рис47) также будет соответствовать случаю, когда начальное рассеивание значений выходного

Подробнее

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ.

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ. Пусть имеем некоторую функцию y=f(x), определенную на некотором промежутке. Для каждого значения аргумента xиз этого промежутка функция y=f(x)

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТИ СОДЕРЖАНИЕ

ТЕОРИЯ ВЕРОЯТНОСТИ СОДЕРЖАНИЕ ТЕОРИЯ ВЕРОЯТНОСТИ СОДЕРЖАНИЕ. Основные определения и теоремы.... Сведения из комбинаторики..... События, их назначения и обозначения.3. Отношения между событиями 3.. Вероятность события...3.. Аксиомы

Подробнее

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин Лекция ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ ЦЕЛЬ ЛЕКЦИИ: построить метод линеаризации функций случайных величин; ввести понятие комплексной случайной величины и получить ее числовые характеристики; определить характеристическую

Подробнее

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. Составитель:В.П.Белкин. Лекция 1. Определенный интеграл

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. Составитель:В.П.Белкин. Лекция 1. Определенный интеграл ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ Составитель:ВПБелкин Лекция Определенный интеграл Вычисление и свойства определенного интеграла Определенным интегралом функции f ( ) по отрезку [, ] называется число, обозначаемое

Подробнее

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Работа переменной силы. Масса и заряд материальной кривой. Статические моменты и центр тяжести материальной кривой и плоской

Подробнее

Часть 2 ЭЛеМенТы МАТеМАТиЧесКОй статистики

Часть 2 ЭЛеМенТы МАТеМАТиЧесКОй статистики Часть 2 Элементы математической статистики Глава I. Выборочный метод 1. Задачи математической статистики. Статистический материал Пусть требуется определить функцию распределения F(x) некоторой непрерывной

Подробнее

4. Теория вероятностей

4. Теория вероятностей 4. Теория вероятностей В контрольную работу по этой теме входят четыре задания. Приведем основные понятия теории вероятностей, необходимые для их выполнения. Для решения задач 50 50 необходимо знание темы

Подробнее

2. «Простая» статистика

2. «Простая» статистика 2. «Простая» статистика 1 2. «Простая» статистика В большинстве статистических расчетов приходится работать с выборками случайной величины: либо с данными эксперимента, либо с результатами моделирования

Подробнее

Лекция 4 Тема. Содержание темы. Основные категории. Введение в случайные величины

Лекция 4 Тема. Содержание темы. Основные категории. Введение в случайные величины Лекция 4 Тема Введение в случайные величины Содержание темы Случайная величина. Понятия дискретной и непрерывной случайной величины. Ряд распределения дискретной случайной величины. Функция распределения,

Подробнее

Приближенное вычисление определенных интегралов. 1. Формула трапеций.

Приближенное вычисление определенных интегралов. 1. Формула трапеций. ЛЕКЦИЯ N 7. Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов..... Формула трапеций.....формула парабол.... Несобственные интегралы....

Подробнее

ЛЕКЦИЯ 6. Непрерывные случайные величины

ЛЕКЦИЯ 6. Непрерывные случайные величины ЛЕКЦИЯ 6 Непрерывные случайные величины 6.. Определение непрерывной случайной величины Понятие закона распределения имеет смысл только в том случае, когда случайная величина принимает конечное или счётное

Подробнее

Лекция 4. Гармонический анализ. Ряды Фурье

Лекция 4. Гармонический анализ. Ряды Фурье Лекция 4. Гармонический анализ. Ряды Фурье Периодические функции. Гармонический анализ В науке и технике часто приходится иметь дело с периодическими явлениями, т. е. такими, которые повторяются через

Подробнее