В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г."

Транскрипт

1 В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

2 В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного дифференциального уравнения второго порядка вида + () = () на всей числовой оси -, где () - кусочно - непрерывная функция, равная заданной константе при, и при, и непрерывная известная функция на интервале [, ]. На границах интервала [, ] решение (), и его первая производная (), должны удовлетворять условиям непрерывности: ( + ) = ( - ); ( + ) = ( - ); ( + ) = ( - ); ( + ) = ( - ). Постановка задачи соответствует возбуждению плоского слоя неоднородной немагнитной среды монохроматическим электромагнитным полем, с единственной компонентой вектора электрического поля (), ортогональной плоскости сечения слоя, распространяющимся вдоль оси, когда все входящие переменные величины зависят от одной координаты. При этом имеет смысл волнового числа для поля в однородной части пространства, а () показателя преломления неоднородной среды. Слева от слоя, при, где () константа, общее решение уравнения (), очевидно, выписывается в явном виде () = А + А. Точно также, справа от слоя, при, решение имеет вид () = B + B. При монохроматическом возбуждении, когда зависимость от времени всех входящих функций является гармонической, - () i t, одно из частых решений справа от слоя следует отбросить, требуя выполнения принципа предельного поглощения (при комплексификации волнового числа: = + i,, следует оставить лишь решения, экспоненциально убывающие на бесконечности), или условия отсутствия волн, приходящих из бесконечности, за исключением единственной падающей волны. Таким образом, справа от слоя решение должно иметь вид () = B, (3) где B - неопределенная пока константа, называемая коэффициентом прохождения электромагнитного поля.

3 Слева от слоя следует оставить оба частных решения, но положить константу А равной единице, что соответствует единственной приходящей из минус бесконечности плоской волне, амплитуда которой нормирована на единицу. Тогда второе решение А представляет собой отраженную слоем волну, распространяющуюся, согласно выбранной зависимости от времени, в направлении от слоя, в минус бесконечнсть. Итак, решение слева от слоя имеет вид () = + А, (4) где А неопределенная априори константа, называемая коэффициентом отражения электромагнитного поля. Присутствие падающей на слой плоской волны обеспечивает нетривиальность решения краевой задачи (), () на всей числовой прямой -. Задача состоит в приближенном вычислении комплексных констант А и B, и в приближенном построении решения в области неоднородного слоя [, ]. Предполагая, что функция () принимает лишь действительные значения, что соответствует отсутствию поглощения энергии в среде, основным критерием правильности полученного приближенного решения является энергетическое тождество А + B =. (5) Для нахождения коэффициентов прохождения и отражения необходимо построить полное решение краевой задачи () (4). Предлагается три метода построения соответствующего приближенного решения. Первый из них численный, предполагающий реализацию алгоритма в виде программы для ПЭВМ на любом подходящем и доступном алгоритмическом языке. I.Численный приближенный метод.. Построение коэффициентов отражения и прохождения методом фундаментальной матрицы. Перепишем постановку краевой задачи () (4) в виде аналогичной задачи, но для системы двух ОДУ первого порядка, введя дополнительную искомую функцию v() =. Тогда, уравнение () перепишется как система ОДУ следующего вида ( ) v( ) = ( ). (6) ( ) v( )

4 Известно, что решение системы ОДУ (6) с переменной матрицей A() = ( ) быть выписано в общем виде, если построена так называемая фундаментальная матрица () = ( ) ( ) ( ) ( ) этой системы, - решение следующей матричной задачи Коши (7) может () = A() (); () = E, (8) где E единичная матрица. Действительно, подставляя в систему (6) вектор-столбец ( ) ( ) ( ) ( ) ( ), получим равенство ( () - A()()) ( ) v( ) v( ) =, справедливое в силу (8), где (), v() произвольные начальные данные Коши (константы) в точке =. Используя краевые условия () для функций (), v() = вид (4) решения при, получим при =, и явный () = + А, v() = i - ia. (9) Следовательно, решение при любом [, ]. можно представить через фундаментальную матрицу в виде ( ) = v( ) ( ) ( ) ( ) A. () ( ) i( A ) Тогда, на левом конце интервала [, ] будем иметь () = ( ) ( + A) + ( ) i( A); v() = ( ) ( + A) + ( ) i( A). () С другой стороны, используя краевые условия () на правом конце интервала [, ], получим, что эти величины равны

5 () = B v() = ib то есть, i ; i, () ( ) ( + A) + ( ) i( A) = B i ; ( ) ( + A) + ( ) i( A) = ib i, что приводит к линейной алгебраической системе двух уравнений относительно коэффициентов A и B : ( ( ) - ( ) i)a - i B = - i ( ) - ( ) ; ( ( ) - ( ) i)a - i B = - i ( ) - ( ) i. (3) Зная значения элементов фундаментальной матрицы () на правом конце интервала [, ], получаем из системы (3) значения коэффициентов A и B. В общем случае произвольной непрерывной функции () фундаментальная матрица () не может быть построена в явном виде, и для ее построения приходится применять численный приближенный метод.. Приближенный метод построения фундаментальной матрицы. Метод основан на приближении функции () кусочно постоянной функцией, то есть на замене слоя неоднородной среды плоско-слоистой средой с большим числом однородных слоев. Для этого интервал [, ] разбивается на N интервалов точками i = N i ; i =,,... N. В середине каждого такого интервала берется точка = i i + N ; i =,,... N -. Функция () аппроксимируется кусочно постоянной (ступенчатой) функцией () : () = ( i ) при [ i ; i + ]. На каждом таком интервале матрица системы A() становится постоянной матрицей

6 A i = ( ) i. (4) Тогда, на каждом интервале [ i ; i + ] выписано в явном виде как матричная экспонента i () = A i ( i ) решение матричной задачи Коши (8) может быть. (5) При этом, в любой точке [ j ; j + ] приближенная фундаментальная матрица N () имеет вид экспоненты N () = A j ( j ) A j ( j j )... A ( ), (6) так как значения фундаментальной матрицы N ( i+ ) на правом конце интервала [ i ; i + ], служит начальным условием для задачи Коши на следующем интервале [ i + ; i + ], а приближенное решение N () матричной задачи Коши (8) на правом конце интервала [, ] запишется в виде произведения N () = AN ( N N )... A( ) A ( ). (7) В результате, для нахождения приближенных значений коэффициентов А и B, необходимо решить алгебраическую систему (3), где вместо ( ) подставлены приближенные N i j значения ( ) из (7). Приближенная фундаментальная матрица (6) остается все время матрицей, а сама матричная экспонента (5) вычисляется на каждом шаге с помощью отрезка ряда Маклорена i j A i ( i ) E + A i ( i ) + i! A ( i ) + 3 i 3! A ( i ) i 4! A ( i ) 4... (8) Сохранение в ряде Маклорена членов до четвертого порядка эквивалентно методу Рунге Кутта четвертого порядка приближенного интегрирования системы (6).

7 II.Метод последовательных приближений. Известно, что решение уравнения + = f() (9) на всей числовой прямой - удовлетворяющее условию отсутствия волн, приходящих из бесконечности, имеет вид () = G(, )f ( ), где G(, ) - функция Грина: решение той же задачи с правой частью f() = ( ). Для уравнения (9) с постоянным коэффициентом функция Грина выписывается в явном виде G(, ) = i. () i Следовательно, решение уравнения (9) выписывается в явном виде: i () = f ( ) i Перепишем уравнение () в эквивалентной форме. () + = ( - ())(). () Тогда, согласно (), решение уравнения () с правой частью ( - ())() можно выписать в виде i () = ( - ( ))( ) i. (3) Так как ( - ()) при, и при, то несобственный интеграл в (3) заменяется интегралом в конечных пределах

8 i () = ( - ( ))( ) i. (4) Раскрывая модуль в показателе экспоненты для и для, получим, что i i () = ( - ( ))( ) i для, (5) и i i () = ( - ( ))( ) для. (6) i Следовательно, решение (4) содержит лишь волны, уходящие в - и в (если зависимость i t решения от времени выбрана в виде ). Но исходная постановка задачи содержит также единственную волну, приходящую из -. Если взять сумму полей (4) и -, то получим представление для полного поля во всей области i () = ( - ( ))( ) i +. (7) Равенство (7) является интегральным уравнением Фредгольма второго рода, где искомая функция () входит также под знак интегрирования, а является его неоднородностью (правой частью). В сокращенных обозначениях это уравнение записывается в виде = A + f. (8) i Здесь А интегральный оператор ( - ( ))( ), действующий на функцию i (). Нетрудно убедиться, что функция (), представленная в виде (7), удовлетворяет всем условиям исходной задачи. Действительно, правая часть (7) удовлетворяет уравнению + =

9 вне слоя [, ], и уравнению + () = внутри этого слоя, благодаря свойствам функции Грина (). Краевые условия () также выполняются, что проверяется непосредственно. Кроме того при представления (5), имеет вид решение, в силу i i () = ( - ( ))( ) i откуда следует, что +, i А = ( - ( ))( ) i. (9) Аналогично, при, благодаря представлению (6), решение имеет вид i + i () = ( - ( ))( ) i Следовательно, i В = ( - ( ))( ) +. i. (3) Иначе говоря, коэффициенты отражения и прохождения вычисляются по формулам (9), (3), если построено решение интегрального уравнения (7). Построение самого приближенного решения этого уравнения проводится методом последовательных приближений согласно следующей схеме. Представим искомое решение уравнения второго рода (8) в виде бесконечного ряда = (3) Подставив его в (8), получим =A + A + A + A f. (3) Положим = f ; = A ; = A ; 3 = A ;... ; + = A.

10 Подобным выбором последовательных приближений уравнение (3) очевидно удовлетворяется тождественно. Сходимость ряда (3) обеспечивается присутствием множителя (7), если параметры ; и M = m( - ()) выбраны так, что i перед интегралом уравнения M. III.Метод WKB Рассматриваемая краевая задача для дифференциального уравнения второго порядка с переменным коэффициентом не допускает построения явного решения. Оно было бы возможным, если бы на интервале [, ] удалось построить два линейно независимых решения () и () этого уравнения. Однако, существует приближенный асимптотический метод построения таких решений, называемый методом WKB, - по первым буквам фамилий его авторов. Этот метод предполагает построение решений в виде асимптотического ряда () i (), (33) где () (фазовая функция) и () (амплитудные функции) заранее не известны и подлежат нахождению. Ряд (33) не предполагается сходящимся в классическом смысле. Вместо этого предполагается, что отношение каждого последующего члена ряда к предыдущему есть величина O(/). Это соответствует определению асимптотического ряда, у которого каждый последующий член по отношению к предыдущему есть величина большего порядка малости относительно степени малого параметра /. Исходное О.Д.У. переписывается при этом в виде + ~ ( ) =, (34) ~ = ()/, - нормированный показатель преломления. где ( ) Для нахождения функций() и () ряд (33) формально подставляется в уравнение (34). Вторая производная вычисляется в виде

11 () = i () {i () [ ()] + i () + }. Подставляя это выражение и представление (33) в уравнение (34), и сокращая на общий множитель i (), получим i () [ ()] + i () + + ~ ( ) =. (35) Выравнивая в бесконечных суммах степени в знаменателях нужным сдвигом индекса суммирования, преобразуем уравнение (35) в уравнение i () [ ()] + i () + + ~ ( ) =. (36) Приравнивая выражения при одинаковых степенях параметра, получим: для = - : () [ ~ ( ) [ ()] ] = ; для = - : i () () [ ()] () +i () () + ~ ( ) () = ; для : i () + () [ ()] + () + i () + () + () + ~ ( ) + ()=. Так как () не должно обращаться в ноль, уравнение для = - приводит к О. Д. У. первого порядка для нахождения фазы() (одномерное уравнение эйконала) [ ()] = ~ ( ). (37) Остальные уравнения при этом упрощаются до О.Д.У. первого порядка относительно () : i () () + i () () = ; (38) и О.Д.У. первого порядка относительно + (), если построено ():

12 i () + () + i () + () + () = ; (39) Обычно в методе WKB ограничиваются первым приближением () i (), так как ряд (33) вообще говоря не сходится и добавление последующих членов может ухудшить аппроксимацию. Уравнение (37) допускает два решения () = ~ ( t) t = а уравнение (38) приводится к виду ( t) t ; () = ( t) t ; ( ). Так как ( ) ~ ( ) ~ =, независимо от знака у, (), то это уравнение переписывается в виде = 4. (4) Очевидным решением уравнения (4) является () =. Таким образом, благодаря двузначности решения для фазы (), получим два 4 ( ) линейно независимых решения () = i ( t) t 4 ( ) ; = i ( t) t 4. (4) Окончательно, общее асимптотическое приближенное решение уравнения () в области [, ] неоднородного слоя имеет вид () () = C ( ) + C i ( t) t = C 4 i ( t) t + C 4. (4) Здесь C и C - произвольные константы. После этого, окончательное приближенное решение исходной задачи, как и прежде, сводится к вычислению констант А, B, C, C из краевых условий на границах слоя :

13 () ( ) + А = C () + C (); () i( А) = C i () () () + C ( ) B = C () + C (); (); (43) i B i () = C () () + C (). IV. Задание по курсовой работе.. Решить краевую задачу методом построения фундаментальной матрицы, выбирая последовательные значения параметра N так, чтобы достигалась внутренняя сходимость, позволяющая построить на интервале [, ] графики функций R() ; Im() с графической точностью, а также найти численные значения коэффициентов А и B, удовлетворяющие энергетическому критерию (5).. Найти приближенное решение в явном виде методом последовательных приближений, взяв в разложении (3) столько итераций, чтобы графики функций R() ; Im() совпадали с таковыми, полученными в п.. (Функции () выбраны так, чтобы итерации вычислялись в явном виде последовательным интегрированием ). Вычислить значения коэффициентов А и B и сравнить со значениями, полученными в п.. 3. Из системы уравнений (43) найти явные приближенные выражения для констант А, B, C, C. Получить их численные значения. Построить графики R(); Im(). Проверить энергетический критерий. Сравнить результаты с результатами пп.,.

Курсовая работа по дисциплине: «дифференциальные уравнения»

Курсовая работа по дисциплине: «дифференциальные уравнения» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович

Подробнее

Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Выполнил: студент 3-го курса, гр. АК3-51 Ягубов Роман Борисович Проверил:

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности.

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности. Methods.doc Методы приближенных вычислений Стр.1 из 6 Общее условие задачи: Двумя заданными численными методами вычислить приближенное значение корня 1 функционального уравнения вида f()=0 для N значений

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

МАТЕМАТИЧЕСКАЯ ФИЗИКА

МАТЕМАТИЧЕСКАЯ ФИЗИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Математика и теоретическая механика» Методические рекомендации

Подробнее

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

Подробнее

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости ГЛАВА УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ В этой главе исследуется устойчивость самого простого класса дифференциальных систем линейных систем В частности, устанавливается, что для линейных систем с постоянными

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

РАБОЧАЯ ПРОГРАММА дисциплины

РАБОЧАЯ ПРОГРАММА дисциплины ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

9. Принцип сжимающих отображений. Теоремы о неподвижной точке.

9. Принцип сжимающих отображений. Теоремы о неподвижной точке. Лекция 6 9 Принцип сжимающих отображений Теоремы о неподвижной точке Пусть D оператор, вообще говоря, нелинейный, действующий из банахова пространства B в себя Определение Оператор D, действующий из банахова

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1 ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 007 Управление, вычислительная техника и информатика 1 УДК 519.865 В.В. Поддубный, О.В. Романович МОДИФИКАЦИЯ МЕТОДА ЭЙЛЕРА С УРАВНИВАНИЕМ ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ Бережной Д.В. Тазюков Б.Ф. ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие

Подробнее

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ»

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в виде дифференциальных уравнений ДУ или системы дифференциальных

Подробнее

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы Численное решение смешанной краевой задачи явным методом сеток Методическая разработка по курсу Численные методы. Постановка задачи Г.К. Измайлов Решить методом сеток смешанную краевую задачу для дифференциального

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

Контрольная работа 1 ...

Контрольная работа 1 ... Контрольная работа Тема Матрицы, операции над матрицами Решение систем линейных уравнений Матрицей называется прямоугольная таблица чисел, имеющая m срок n столбцов Для обозначения матриц применяются круглые

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных) уравнений f = ) заключается в нахождении значений,

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений (ОДУ) первого

Подробнее

Экзамен. Закон преломления (закон Снеллиуса) и закон отражения.

Экзамен. Закон преломления (закон Снеллиуса) и закон отражения. Экзамен Закон преломления (закон Снеллиуса и закон отражения Закон Снеллиуса можно доказать с помощью построений Гюйгенса Мы сделаем это при рассмотрении кристаллооптики, а сейчас докажем его иначе При

Подробнее

Уравнения первого порядка

Уравнения первого порядка Глава 1. Введение Лекция 1 1. Понятие дифференциального уравнения. Основные определения. 2. Общее решение дифференциального уравнения, общий интеграл. 3. Постановка основных задач для обыкновенных дифференциальных

Подробнее

4. Численные методы решения обыкновенных дифференциальных уравнений

4. Численные методы решения обыкновенных дифференциальных уравнений . Численные методы решения обыкновенных дифференциальных уравнений.. Решение задачи Коши... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши для одного дифференциального

Подробнее

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье.

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье. Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда..4. Равенство Парсеваля Пусть система вещественных функций g( ), g( ),..., g ( ),... ортогональна и

Подробнее

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА)

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Постановка задачи. Рассматривается задача о вычислении однократного интеграла J(F ) = F (x) dx. ()

Подробнее

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде:

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде: Уравнения В алгебре рассматривают два вида равенств тождества и уравнения Тождество это равенство которое выполняется при всех допустимых) значениях входящих в него букв Для тождества используют знаки

Подробнее

Элементы гармонического анализа

Элементы гармонического анализа Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая и прикладная математика» Н. П. Чуев Элементы гармонического анализа Методические

Подробнее

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ I

МАТЕМАТИЧЕСКИЙ АНАЛИЗ I МАТЕМАТИЧЕСКИЙ АНАЛИЗ I Курс математического анализа является первой частью курса математики, который рассчитан на три семестра и является обязательным для студентов экономического бакалавриата. Задача

Подробнее

Тематика контрольных (самостоятельных) работ

Тематика контрольных (самостоятельных) работ Фонды Фонды оценочных средств по дисциплине Б.2.1 «Математический анализ» для проведения текущего контроля успеваемости и промежуточной аттестации студентов по направлению 080100.62 «Экономика» Тематика

Подробнее

ГЛАВА 5. Плоские волны

ГЛАВА 5. Плоские волны ГЛАВА 5 Плоские волны Излучатель электромагнитной волны создает вокруг себя фронт этих волн На больших расстояниях от излучателя волну можно считать сферической Но на очень больших расстояниях от излучателя

Подробнее

Московский государственный технический университет им. Н. Э. Баумана.

Московский государственный технический университет им. Н. Э. Баумана. Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ» по теме: «РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ 2-ГО РОДА

Подробнее

Экзаменационный билет 2 Кафедра высшей математики

Экзаменационный билет 2 Кафедра высшей математики Экзаменационный билет Факультет: ПО и ВП, гр.04, 07 и 7.Однородные дифференциальные уравнения первого порядка.. Признак Лейбница. 3 Вычислить интеграл: dx 0 x 6x + Экзаменационный билет Факультет: : ЭМФ.

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

I. ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. есть первообразная для f x

I. ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. есть первообразная для f x или или I ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ Определение Функция F называется первообразной для f F f если () df f d () 5 f 5 так как 5 5 Пример F есть первообразная для 5 d Пример F si есть первообразная

Подробнее

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей)

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей) МАТЕМАТИКА ЕГЭ Задания С5 7 Неравенства (метод областей) Указания и решения Справочный материал Источники Корянов А Г г Брянск Замечания и пожелания направляйте по адресу: korynov@milru ЗАДАЧИ С ПАРАМЕТРАМИ

Подробнее

ВВЕДЕНИЕ. Для линейных цепей законы коммутации чаще записывают так:

ВВЕДЕНИЕ. Для линейных цепей законы коммутации чаще записывают так: Оглавление ВВЕДЕНИЕ Раздел КЛАССИЧЕСКИЙ МЕТОД РАСЧЕТА ПЕРЕХОДНЫХ ПРОЦЕССОВ Раздел РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ ПРИ ПРОИЗВОЛЬНЫХ ВХОДНЫХ ВОЗДЕЙСТВИЯХ С ИСПОЛЬЗОВАНИЕМ ИНТЕГРАЛОВ НАЛОЖЕНИЯ9 КОНТРОЛЬНЫЕ ВОПРОСЫ7

Подробнее

А.Н.Тихонов, А.Б.Васильева, А.Г.Свешников ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Один из выпусков «Курса высшей математики и математической физики» под редакцией

А.Н.Тихонов, А.Б.Васильева, А.Г.Свешников ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Один из выпусков «Курса высшей математики и математической физики» под редакцией А.Н.Тихонов, А.Б.Васильева, А.Г.Свешников ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Один из выпусков «Курса высшей математики и математической физики» под редакцией А.Н.Тихонова, В.А.Ильина, А.Г.Свешникова. Учебник создан

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

Дифференциально-разностный метод исследования процессов диффузии материалов.

Дифференциально-разностный метод исследования процессов диффузии материалов. УДК 6780153083 Дифференциально-разностный метод исследования процессов диффузии материалов Мартышенко ВА (Военная академия радиационной, химической и бактериологической защиты и инженерных войск) Процессы

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Казанский государственный университет Р.Ф. Марданов ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие Издательство Казанского государственного университета 2007 УДК 517.9

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Лекция 6 ЧИСЛЕННЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ ДИНАМИЧЕСКИХ ЦЕПЕЙ. План

Лекция 6 ЧИСЛЕННЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ ДИНАМИЧЕСКИХ ЦЕПЕЙ. План 57 Лекция 6 ЧИСЛЕННЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ ДИНАМИЧЕСКИХ ЦЕПЕЙ План. Численные методы интегрирования уравнений состояния 2. Устойчивость методов численного интегрирования 3. Многошаговые методы

Подробнее

Тема 9. Обыкновенные дифференциальные уравнения

Тема 9. Обыкновенные дифференциальные уравнения Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный морской технический университет» (СПбГМТУ) Кафедра

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» Методические указания к лабораторной работе «Вычисления корней трансцендентных уравнений»

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы.

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. 1 Разностная аппроксимация уравнения теплопроводности Рассмотрим различные варианты разностной

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

1 СЕМЕСТР. Раздел I. МАТЕМАТИКА КАК НАУЧНАЯ ДИСЦИПЛИНА. Тема 1. Предмет и задачи математики. Основные этапы становления математики

1 СЕМЕСТР. Раздел I. МАТЕМАТИКА КАК НАУЧНАЯ ДИСЦИПЛИНА. Тема 1. Предмет и задачи математики. Основные этапы становления математики ЗАДАНИЯ С МЕТОДИЧЕСКИМИ РЕКОМЕНДАЦИЯМИ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ заочной формы обучения на межсессионный период по дисциплине «МАТЕМАТИКА» ПО НАПРАВЛЕНИЮ ПОДГОТОВКИ (СПЕЦИАЛЬНОСТИ) 38.05.02

Подробнее

равная произведению массы этой точки и квадрата расстояния до оси ОХ (оси ОУ,

равная произведению массы этой точки и квадрата расстояния до оси ОХ (оси ОУ, 9 Вычисление статических моментов инерции и координат центра масс Определение Статическим моментом материальной точки А(х;у) в которой сосредоточена масса m относительно оси ОХ (ОУ) называется величина

Подробнее

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ О В Афонасенков Т А Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ И ИНТЕГРАЛ ФУРЬЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1)

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Тема 1. Линейная алгебра Задача 1 Необходимо решить систему уравнений, представленную в задании в виде Постоянные параметры

Подробнее

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Лекция 4 8 ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Рассматривается проблема решения систем обыкновенных дифференциальных уравнений первого порядка связывающих

Подробнее

Список задач с решениями по функциональному анализу.

Список задач с решениями по функциональному анализу. Список задач с решениями по функциональному анализу Пусть линейное нормированное пространство Доказать, что для любых элементов выполняется неравенство из аксиом нормы:, тогда: Можно ли в пространстве

Подробнее

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Интегральные уравнения

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Интегральные уравнения Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет

Подробнее

СЕМИНАР 1 переменные параметры

СЕМИНАР 1 переменные параметры СЕМИНАР Основные понятия. Составление (вывод) дифференциального уравнения. Понятие решения дифференциального уравнения. Решение методом разделяющихся переменных. Решение линейного дифференциального уравнения

Подробнее

Решение типовых вариантов. контрольной работы по теме Интегралы функции одной переменной. Методические указания

Решение типовых вариантов. контрольной работы по теме Интегралы функции одной переменной. Методические указания Решение типовых вариантов контрольной работы по теме Интегралы функции одной переменной Методические указания УДК 517.91 Методические указания содержат подробные решения типовых вариантов контрольной работы

Подробнее

Численные методы линейной и нелинейной алгебры

Численные методы линейной и нелинейной алгебры ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского» А.И. Зинина В.И. Копнина Численные методы линейной и нелинейной алгебры Учебное пособие Саратов

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ ИНФЛЮЕНТНОГО АНАЛИЗА

ЧИСЛЕННЫЕ МЕТОДЫ ИНФЛЮЕНТНОГО АНАЛИЗА Свердлов С З ктн, Усов Л В кэн, доцент Вологодский Политехнический Институт ЧИСЛЕННЫЕ МЕТОДЫ ИНФЛЮЕНТНОГО АНАЛИЗА Рукопись депонирована в ВИНИТИ 6885 г 585-85 ДЕП Содержание Формулировка задачи детерминированного

Подробнее

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А.

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А. РЯДЫ ФУРЬЕ Автор-составитель: доцент каф ВМ Цапаева СА Великий Новгород ПОНЯТИЕ И СВОЙСТВА ГАРМОНИК Определение Гармониками называются комплекснозначные функции вида iω ( ) e, где действительная переменная,

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

Применение разностных методов для решения обыкновенных дифференциальных уравнений

Применение разностных методов для решения обыкновенных дифференциальных уравнений А. Ф. Заусаев, В. Е. Зотеев Применение разностных методов для решения обыкновенных дифференциальных уравнений Лабораторный практикум Самара Самарский государственный технический университет МИНИСТЕРСТВО

Подробнее

Тема 5. Оценка интегралов от быстро меняющихся и быстро осциллирующих функций

Тема 5. Оценка интегралов от быстро меняющихся и быстро осциллирующих функций Тема 5. Оценка интегралов от быстро меняющихся и быстро осциллирующих функций На этом занятии рассматривается вычисление интегралов от быстро меняющихся и быстро осциллирующих функций. Обсуждаются случаи

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Подробнее

Пример выполнения задач, аналогичных задачам 1-10 (КР-3). Найти неопределенные интегралы. Результаты проверить дифференцированием. 1) ; 2) ; 3).

Пример выполнения задач, аналогичных задачам 1-10 (КР-3). Найти неопределенные интегралы. Результаты проверить дифференцированием. 1) ; 2) ; 3). Контрольная работа 3 Тема 5. Неопределенные интегралы Задачи 1-10 посвящены вычислениям нетабличных интегралов различными методами с последующей проверкой дифференцированием. Используются следующие приемы

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Московский государственный технический университет им Н Э Баумана Соболев СК Дифференциальные уравнения Методические указания к решению задач Москва МГТУ им Баумана 008 СК Соболев Дифференциальные уравнения

Подробнее

3. Ряды Числовые ряды

3. Ряды Числовые ряды . Ряды Числовые ряды Определение. Числовым рядом называется выражение вида u u u... u..., где числа u, u, u,... называются членами ряда u называется общим членом ряда. Определение. -ой частичной суммой

Подробнее

8. Критерии алгоритмов решения ОДУ

8. Критерии алгоритмов решения ОДУ 8. Критерии алгоритмов решения ОДУ 1 8. Критерии алгоритмов решения ОДУ Теперь, когда мы уже чуть больше знаем об алгоритмах решения задач Коши для ОДУ, продолжим разговор об их классификации. Остановимся

Подробнее

1. Устойчивые решения ОДУ. Устойчивые многочлены

1. Устойчивые решения ОДУ. Устойчивые многочлены Глава III. Теория устойчивости 1. Устойчивые решения ОДУ. Устойчивые многочлены III.1.1. Устойчивые решения линейных ОДУ Существенную роль в исследовании различных процессов, поведение которых описывается

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

x= A0 e βt cos (ω t +α) Изобразим график зависимости амплитуды колебаний от времени для разных значений β A(t + 1)

x= A0 e βt cos (ω t +α) Изобразим график зависимости амплитуды колебаний от времени для разных значений β A(t + 1) x A0 e βt cos (ω t α) Изобразим график зависимости амплитуды колебаний от времени для разных значений β Видно, чем больше β тем быстрее затухает амплитуда β τ коэффициент затухания Изобразим графики соответствующих

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

Факультативно. Ковариантная форма физических законов.

Факультативно. Ковариантная форма физических законов. Факультативно. Ковариантная форма физических законов. Ковариантность и контравариантность. Слово "ковариантный" означает "преобразуется так же, как что-то", а слово "контравариантный" означает "преобразуется

Подробнее

Программа экзамена по математике. Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ

Программа экзамена по математике. Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ Программа экзамена по математике для студентов специальности «Финансы и кредит» (заочная форма обучения) 1 Раздел 2. Основы математического анализа ФУНКЦИИ И ПРЕДЕЛЫ Понятие функции Определение функции,

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ Обозначим через значение некоторого выражения при подстановке в него целого числа Тогда зависимость члена последовательности от членов последовательности F F со значениями

Подробнее

Численное решение нелинейных уравнений

Численное решение нелинейных уравнений Постановка задачи Метод половинного деления Метод хорд (метод пропорциональных частей 4 Метод Ньютона (метод касательных 5 Метод итераций (метод последовательных приближений Постановка задачи Пусть дано

Подробнее

Семинары 3-4. Электромагнитные волны. Давление света.

Семинары 3-4. Электромагнитные волны. Давление света. Семинары 3-4 Электромагнитные волны Давление света Основной материал семинара изложен в конспекте лекций по оптике Здесь только дополнительные моменты 1 В вакууме распространяется электромагнитная волна

Подробнее

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Расчетные задания Варианты

Подробнее

1. Применение метода конечных элементов в расчете конструкций

1. Применение метода конечных элементов в расчете конструкций 1 Применение метода конечных элементов в расчете конструкций Посмотрим вначале как метод конечных элементов соотносится с другими методами инженерного анализа которые могут быть разделены на две категории

Подробнее

Глава III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ 3.1. Двойные интегралы

Глава III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ 3.1. Двойные интегралы Глава III ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ Двойные интегралы ЛИТЕРАТУРА: [], гл; [], глii; [9], гл XII, 6 Для решения задач по этой теме необходимо,

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ КОМПЬЮТЕРНОЙ ОПТИКИ

ЧИСЛЕННЫЕ МЕТОДЫ КОМПЬЮТЕРНОЙ ОПТИКИ ЧИСЛЕННЫЕ МЕТОДЫ КОМПЬЮТЕРНОЙ ОПТИКИ РЕШЕНИЕ УРАВНЕНИЙ МАКСВЕЛЛА В ПРОСТРАНСТВЕННО-ЧАСТОТНОМ ПРЕДСТАВЛЕНИИ С.Г. Волотовский П.Г. Серафимович С.И. Харитонов Институт систем обработки изображений РАН Самарский

Подробнее

1. Что такое обыкновенные дифференциальные уравнения и системы. Понятие решения. Автономные и неавтономные уравнения. Уравнения и системы порядка

1. Что такое обыкновенные дифференциальные уравнения и системы. Понятие решения. Автономные и неавтономные уравнения. Уравнения и системы порядка 1. Что такое обыкновенные дифференциальные уравнения и системы. Понятие решения. Автономные и неавтономные уравнения. Уравнения и системы порядка выше первого и их сведение к системам первого порядка.

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ Часть вторая ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ЧИСЛЕННЫЕ МЕТОДЫ Часть вторая ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Московский государственный университет леса ВИ Мышенков ЕВ Мышенков ЧИСЛЕННЫЕ МЕТОДЫ

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее