В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

Размер: px
Начинать показ со страницы:

Download "В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г."

Транскрипт

1 В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

2 В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного дифференциального уравнения второго порядка вида + () = () на всей числовой оси -, где () - кусочно - непрерывная функция, равная заданной константе при, и при, и непрерывная известная функция на интервале [, ]. На границах интервала [, ] решение (), и его первая производная (), должны удовлетворять условиям непрерывности: ( + ) = ( - ); ( + ) = ( - ); ( + ) = ( - ); ( + ) = ( - ). Постановка задачи соответствует возбуждению плоского слоя неоднородной немагнитной среды монохроматическим электромагнитным полем, с единственной компонентой вектора электрического поля (), ортогональной плоскости сечения слоя, распространяющимся вдоль оси, когда все входящие переменные величины зависят от одной координаты. При этом имеет смысл волнового числа для поля в однородной части пространства, а () показателя преломления неоднородной среды. Слева от слоя, при, где () константа, общее решение уравнения (), очевидно, выписывается в явном виде () = А + А. Точно также, справа от слоя, при, решение имеет вид () = B + B. При монохроматическом возбуждении, когда зависимость от времени всех входящих функций является гармонической, - () i t, одно из частых решений справа от слоя следует отбросить, требуя выполнения принципа предельного поглощения (при комплексификации волнового числа: = + i,, следует оставить лишь решения, экспоненциально убывающие на бесконечности), или условия отсутствия волн, приходящих из бесконечности, за исключением единственной падающей волны. Таким образом, справа от слоя решение должно иметь вид () = B, (3) где B - неопределенная пока константа, называемая коэффициентом прохождения электромагнитного поля.

3 Слева от слоя следует оставить оба частных решения, но положить константу А равной единице, что соответствует единственной приходящей из минус бесконечности плоской волне, амплитуда которой нормирована на единицу. Тогда второе решение А представляет собой отраженную слоем волну, распространяющуюся, согласно выбранной зависимости от времени, в направлении от слоя, в минус бесконечнсть. Итак, решение слева от слоя имеет вид () = + А, (4) где А неопределенная априори константа, называемая коэффициентом отражения электромагнитного поля. Присутствие падающей на слой плоской волны обеспечивает нетривиальность решения краевой задачи (), () на всей числовой прямой -. Задача состоит в приближенном вычислении комплексных констант А и B, и в приближенном построении решения в области неоднородного слоя [, ]. Предполагая, что функция () принимает лишь действительные значения, что соответствует отсутствию поглощения энергии в среде, основным критерием правильности полученного приближенного решения является энергетическое тождество А + B =. (5) Для нахождения коэффициентов прохождения и отражения необходимо построить полное решение краевой задачи () (4). Предлагается три метода построения соответствующего приближенного решения. Первый из них численный, предполагающий реализацию алгоритма в виде программы для ПЭВМ на любом подходящем и доступном алгоритмическом языке. I.Численный приближенный метод.. Построение коэффициентов отражения и прохождения методом фундаментальной матрицы. Перепишем постановку краевой задачи () (4) в виде аналогичной задачи, но для системы двух ОДУ первого порядка, введя дополнительную искомую функцию v() =. Тогда, уравнение () перепишется как система ОДУ следующего вида ( ) v( ) = ( ). (6) ( ) v( )

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 Известно, что решение системы ОДУ (6) с переменной матрицей A() = ( ) быть выписано в общем виде, если построена так называемая фундаментальная матрица () = ( ) ( ) ( ) ( ) этой системы, - решение следующей матричной задачи Коши (7) может () = A() (); () = E, (8) где E единичная матрица. Действительно, подставляя в систему (6) вектор-столбец ( ) ( ) ( ) ( ) ( ), получим равенство ( () - A()()) ( ) v( ) v( ) =, справедливое в силу (8), где (), v() произвольные начальные данные Коши (константы) в точке =. Используя краевые условия () для функций (), v() = вид (4) решения при, получим при =, и явный () = + А, v() = i - ia. (9) Следовательно, решение при любом [, ]. можно представить через фундаментальную матрицу в виде ( ) = v( ) ( ) ( ) ( ) A. () ( ) i( A ) Тогда, на левом конце интервала [, ] будем иметь () = ( ) ( + A) + ( ) i( A); v() = ( ) ( + A) + ( ) i( A). () С другой стороны, используя краевые условия () на правом конце интервала [, ], получим, что эти величины равны

5 () = B v() = ib то есть, i ; i, () ( ) ( + A) + ( ) i( A) = B i ; ( ) ( + A) + ( ) i( A) = ib i, что приводит к линейной алгебраической системе двух уравнений относительно коэффициентов A и B : ( ( ) - ( ) i)a - i B = - i ( ) - ( ) ; ( ( ) - ( ) i)a - i B = - i ( ) - ( ) i. (3) Зная значения элементов фундаментальной матрицы () на правом конце интервала [, ], получаем из системы (3) значения коэффициентов A и B. В общем случае произвольной непрерывной функции () фундаментальная матрица () не может быть построена в явном виде, и для ее построения приходится применять численный приближенный метод.. Приближенный метод построения фундаментальной матрицы. Метод основан на приближении функции () кусочно постоянной функцией, то есть на замене слоя неоднородной среды плоско-слоистой средой с большим числом однородных слоев. Для этого интервал [, ] разбивается на N интервалов точками i = N i ; i =,,... N. В середине каждого такого интервала берется точка = i i + N ; i =,,... N -. Функция () аппроксимируется кусочно постоянной (ступенчатой) функцией () : () = ( i ) при [ i ; i + ]. На каждом таком интервале матрица системы A() становится постоянной матрицей

6 A i = ( ) i. (4) Тогда, на каждом интервале [ i ; i + ] выписано в явном виде как матричная экспонента i () = A i ( i ) решение матричной задачи Коши (8) может быть. (5) При этом, в любой точке [ j ; j + ] приближенная фундаментальная матрица N () имеет вид экспоненты N () = A j ( j ) A j ( j j )... A ( ), (6) так как значения фундаментальной матрицы N ( i+ ) на правом конце интервала [ i ; i + ], служит начальным условием для задачи Коши на следующем интервале [ i + ; i + ], а приближенное решение N () матричной задачи Коши (8) на правом конце интервала [, ] запишется в виде произведения N () = AN ( N N )... A( ) A ( ). (7) В результате, для нахождения приближенных значений коэффициентов А и B, необходимо решить алгебраическую систему (3), где вместо ( ) подставлены приближенные N i j значения ( ) из (7). Приближенная фундаментальная матрица (6) остается все время матрицей, а сама матричная экспонента (5) вычисляется на каждом шаге с помощью отрезка ряда Маклорена i j A i ( i ) E + A i ( i ) + i! A ( i ) + 3 i 3! A ( i ) i 4! A ( i ) 4... (8) Сохранение в ряде Маклорена членов до четвертого порядка эквивалентно методу Рунге Кутта четвертого порядка приближенного интегрирования системы (6).

7 II.Метод последовательных приближений. Известно, что решение уравнения + = f() (9) на всей числовой прямой - удовлетворяющее условию отсутствия волн, приходящих из бесконечности, имеет вид () = G(, )f ( ), где G(, ) - функция Грина: решение той же задачи с правой частью f() = ( ). Для уравнения (9) с постоянным коэффициентом функция Грина выписывается в явном виде G(, ) = i. () i Следовательно, решение уравнения (9) выписывается в явном виде: i () = f ( ) i Перепишем уравнение () в эквивалентной форме. () + = ( - ())(). () Тогда, согласно (), решение уравнения () с правой частью ( - ())() можно выписать в виде i () = ( - ( ))( ) i. (3) Так как ( - ()) при, и при, то несобственный интеграл в (3) заменяется интегралом в конечных пределах

8 i () = ( - ( ))( ) i. (4) Раскрывая модуль в показателе экспоненты для и для, получим, что i i () = ( - ( ))( ) i для, (5) и i i () = ( - ( ))( ) для. (6) i Следовательно, решение (4) содержит лишь волны, уходящие в - и в (если зависимость i t решения от времени выбрана в виде ). Но исходная постановка задачи содержит также единственную волну, приходящую из -. Если взять сумму полей (4) и -, то получим представление для полного поля во всей области i () = ( - ( ))( ) i +. (7) Равенство (7) является интегральным уравнением Фредгольма второго рода, где искомая функция () входит также под знак интегрирования, а является его неоднородностью (правой частью). В сокращенных обозначениях это уравнение записывается в виде = A + f. (8) i Здесь А интегральный оператор ( - ( ))( ), действующий на функцию i (). Нетрудно убедиться, что функция (), представленная в виде (7), удовлетворяет всем условиям исходной задачи. Действительно, правая часть (7) удовлетворяет уравнению + =

9 вне слоя [, ], и уравнению + () = внутри этого слоя, благодаря свойствам функции Грина (). Краевые условия () также выполняются, что проверяется непосредственно. Кроме того при представления (5), имеет вид решение, в силу i i () = ( - ( ))( ) i откуда следует, что +, i А = ( - ( ))( ) i. (9) Аналогично, при, благодаря представлению (6), решение имеет вид i + i () = ( - ( ))( ) i Следовательно, i В = ( - ( ))( ) +. i. (3) Иначе говоря, коэффициенты отражения и прохождения вычисляются по формулам (9), (3), если построено решение интегрального уравнения (7). Построение самого приближенного решения этого уравнения проводится методом последовательных приближений согласно следующей схеме. Представим искомое решение уравнения второго рода (8) в виде бесконечного ряда = (3) Подставив его в (8), получим =A + A + A + A f. (3) Положим = f ; = A ; = A ; 3 = A ;... ; + = A.

10 Подобным выбором последовательных приближений уравнение (3) очевидно удовлетворяется тождественно. Сходимость ряда (3) обеспечивается присутствием множителя (7), если параметры ; и M = m( - ()) выбраны так, что i перед интегралом уравнения M. III.Метод WKB Рассматриваемая краевая задача для дифференциального уравнения второго порядка с переменным коэффициентом не допускает построения явного решения. Оно было бы возможным, если бы на интервале [, ] удалось построить два линейно независимых решения () и () этого уравнения. Однако, существует приближенный асимптотический метод построения таких решений, называемый методом WKB, - по первым буквам фамилий его авторов. Этот метод предполагает построение решений в виде асимптотического ряда () i (), (33) где () (фазовая функция) и () (амплитудные функции) заранее не известны и подлежат нахождению. Ряд (33) не предполагается сходящимся в классическом смысле. Вместо этого предполагается, что отношение каждого последующего члена ряда к предыдущему есть величина O(/). Это соответствует определению асимптотического ряда, у которого каждый последующий член по отношению к предыдущему есть величина большего порядка малости относительно степени малого параметра /. Исходное О.Д.У. переписывается при этом в виде + ~ ( ) =, (34) ~ = ()/, - нормированный показатель преломления. где ( ) Для нахождения функций() и () ряд (33) формально подставляется в уравнение (34). Вторая производная вычисляется в виде

11 () = i () {i () [ ()] + i () + }. Подставляя это выражение и представление (33) в уравнение (34), и сокращая на общий множитель i (), получим i () [ ()] + i () + + ~ ( ) =. (35) Выравнивая в бесконечных суммах степени в знаменателях нужным сдвигом индекса суммирования, преобразуем уравнение (35) в уравнение i () [ ()] + i () + + ~ ( ) =. (36) Приравнивая выражения при одинаковых степенях параметра, получим: для = - : () [ ~ ( ) [ ()] ] = ; для = - : i () () [ ()] () +i () () + ~ ( ) () = ; для : i () + () [ ()] + () + i () + () + () + ~ ( ) + ()=. Так как () не должно обращаться в ноль, уравнение для = - приводит к О. Д. У. первого порядка для нахождения фазы() (одномерное уравнение эйконала) [ ()] = ~ ( ). (37) Остальные уравнения при этом упрощаются до О.Д.У. первого порядка относительно () : i () () + i () () = ; (38) и О.Д.У. первого порядка относительно + (), если построено ():

12 i () + () + i () + () + () = ; (39) Обычно в методе WKB ограничиваются первым приближением () i (), так как ряд (33) вообще говоря не сходится и добавление последующих членов может ухудшить аппроксимацию. Уравнение (37) допускает два решения () = ~ ( t) t = а уравнение (38) приводится к виду ( t) t ; () = ( t) t ; ( ). Так как ( ) ~ ( ) ~ =, независимо от знака у, (), то это уравнение переписывается в виде = 4. (4) Очевидным решением уравнения (4) является () =. Таким образом, благодаря двузначности решения для фазы (), получим два 4 ( ) линейно независимых решения () = i ( t) t 4 ( ) ; = i ( t) t 4. (4) Окончательно, общее асимптотическое приближенное решение уравнения () в области [, ] неоднородного слоя имеет вид () () = C ( ) + C i ( t) t = C 4 i ( t) t + C 4. (4) Здесь C и C - произвольные константы. После этого, окончательное приближенное решение исходной задачи, как и прежде, сводится к вычислению констант А, B, C, C из краевых условий на границах слоя :

13 () ( ) + А = C () + C (); () i( А) = C i () () () + C ( ) B = C () + C (); (); (43) i B i () = C () () + C (). IV. Задание по курсовой работе.. Решить краевую задачу методом построения фундаментальной матрицы, выбирая последовательные значения параметра N так, чтобы достигалась внутренняя сходимость, позволяющая построить на интервале [, ] графики функций R() ; Im() с графической точностью, а также найти численные значения коэффициентов А и B, удовлетворяющие энергетическому критерию (5).. Найти приближенное решение в явном виде методом последовательных приближений, взяв в разложении (3) столько итераций, чтобы графики функций R() ; Im() совпадали с таковыми, полученными в п.. (Функции () выбраны так, чтобы итерации вычислялись в явном виде последовательным интегрированием ). Вычислить значения коэффициентов А и B и сравнить со значениями, полученными в п.. 3. Из системы уравнений (43) найти явные приближенные выражения для констант А, B, C, C. Получить их численные значения. Построить графики R(); Im(). Проверить энергетический критерий. Сравнить результаты с результатами пп.,.

Курсовая работа по дисциплине: «дифференциальные уравнения»

Курсовая работа по дисциплине: «дифференциальные уравнения» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович

Подробнее

Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Выполнил: студент 3-го курса, гр. АК3-51 Ягубов Роман Борисович Проверил:

Подробнее

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z 1. Электростатика 1 1. Электростатика Урок 6 Разделение переменных в декартовых координатах 1.1. (Задача 1.49) Плоскость z = заряжена с плотностью σ (x, y) = σ sin (αx) sin (βy), где σ, α, β постоянные.

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА 9.5.4. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Математический анализ Ряды

Математический анализ Ряды Тема 6. Пределы последовательностей и функций, их свойства и приложения Математический анализ Ряды Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x)

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x) ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

Решением дифференциального уравнения называется функция y y(x)

Решением дифференциального уравнения называется функция y y(x) Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или нескольких

Подробнее

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности.

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности. Methods.doc Методы приближенных вычислений Стр.1 из 6 Общее условие задачи: Двумя заданными численными методами вычислить приближенное значение корня 1 функционального уравнения вида f()=0 для N значений

Подробнее

Методы решения начальных задач для обыкновенных дифференциальных уравнений

Методы решения начальных задач для обыкновенных дифференциальных уравнений Методы решения начальных задач для обыкновенных дифференциальных уравнений Постановка задачи Рассмотрим обыкновенное дифференциальное уравнение сокращенно ОДУ первого порядка f,, [,b ] 6 с начальным условием

Подробнее

Глава 8. Элементы квантовой механики

Глава 8. Элементы квантовой механики Глава 8 Элементы квантовой механики Задачи атомной физики решаются методами квантовой теории которая принципиально отличается от классической механики Решение задачи о движении тела макроскопических размеров

Подробнее

Уравнения в частных производных первого порядка

Уравнения в частных производных первого порядка Уравнения в частных производных первого порядка Некоторые задачи классической механики, механики сплошных сред, акустики, оптики, гидродинамики, переноса излучения сводятся к уравнениям в частных производных

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

МАТЕМАТИЧЕСКАЯ ФИЗИКА

МАТЕМАТИЧЕСКАЯ ФИЗИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Математика и теоретическая механика» Методические рекомендации

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ С П ПРЕОБРАЖЕНСКИЙ, СР ТИХОМИРОВ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ 987 ОГЛАВЛЕНИЕ Предисловие Формулировка задания 3 Варианты задания 3 Пример выполнения задания и комментарии

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

Подробнее

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход.

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход. Метод Ритца Выделяют два основных типа методов решения вариационных задач. К первому типу относятся методы, сводящие исходную задачу к решению дифференциальных уравнений. Эти методы очень хорошо развиты

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Задача 396. Решить уравнение y = t +4. Решение: Заметим, что условие задачи исключает случай t = 4. dy dt = dt t +4 e y =ln t +4 + C 1,C 1 IR

Задача 396. Решить уравнение y = t +4. Решение: Заметим, что условие задачи исключает случай t = 4. dy dt = dt t +4 e y =ln t +4 + C 1,C 1 IR Пояснения к тексту: знак читается как "равносильно" и обозначает, что у уравнений справа от знака и слева от знака множество решений совпадает, знак IR обозначает ммножество вещественных чисел, знак IN

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач.

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных

Подробнее

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости ГЛАВА УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ В этой главе исследуется устойчивость самого простого класса дифференциальных систем линейных систем В частности, устанавливается, что для линейных систем с постоянными

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

9. Принцип сжимающих отображений. Теоремы о неподвижной точке.

9. Принцип сжимающих отображений. Теоремы о неподвижной точке. Лекция 6 9 Принцип сжимающих отображений Теоремы о неподвижной точке Пусть D оператор, вообще говоря, нелинейный, действующий из банахова пространства B в себя Определение Оператор D, действующий из банахова

Подробнее

Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы Иванов И.И. Вариант 1.

Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы Иванов И.И. Вариант 1. Задание: Вариант #1 x 11x + 36x 36 = 0 Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы 04-06 Иванов И.И. Вариант 1 Этап 5. Тема: Методы решения алгебраических

Подробнее

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

Глава 1. Начала линейной алгебры

Глава 1. Начала линейной алгебры Глава Начала линейной алгебры Системы линейных уравнений Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: + + + + n n = + + + + nn = m + m + m + + mnn = m () Здесь n неизвестные

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

РАБОЧАЯ ПРОГРАММА дисциплины

РАБОЧАЯ ПРОГРАММА дисциплины ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)!

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)! 4.Метод парциальных амплитуд.. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: ( +! m ( +! ( + φ ( V ( φ ( (.6 и соответствующее ему граничное условие :!! e! φ ( { e + f (

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ . ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши

Подробнее

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина.

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина. 6 Раздел ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ Тема Существование и единственность решения краевой задачи Матричные функции Грина Рассмотрим на отрезке по линейную краевую задачу для системы из обыкновенных дифференциальных

Подробнее

10. Векторный и скалярный потенциалы

10. Векторный и скалярный потенциалы Векторный и скалярный потенциалы Уравнения Максвелла это, в общем случае, сложные интегральнодифференциальные уравнения, поэтому непосредственно их решать относительно трудно Были введены две вспомогательные

Подробнее

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика»

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика» Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники ТУСУР Кафедра

Подробнее

Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ Уравнение с частными производными это уравнение, содержащее частные производные. В отличие от обыкновенных дифференциальных уравнений (ОДУ), в которых неизвестная

Подробнее

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Учебная дисциплина Б.2.1 - Математика Профиль подготовки: Производственный менеджмент Тематика

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ Бережной Д.В. Тазюков Б.Ф. ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие

Подробнее

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ»

Подробнее

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Нижегородский государственный

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

О представлении поля в волноводе в виде суммы полей ТЕ и ТМ.

О представлении поля в волноводе в виде суммы полей ТЕ и ТМ. Журнал технической физики, том XVIII, вып 7, 1948 А Н Тихонов, А А Самарский О представлении поля в волноводе в виде суммы полей ТЕ и ТМ Несмотря на то, что утверждение о возможности разложения произвольного

Подробнее

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье.

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье. Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда..4. Равенство Парсеваля Пусть система вещественных функций g( ), g( ),..., g ( ),... ортогональна и

Подробнее

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1 ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 007 Управление, вычислительная техника и информатика 1 УДК 519.865 В.В. Поддубный, О.В. Романович МОДИФИКАЦИЯ МЕТОДА ЭЙЛЕРА С УРАВНИВАНИЕМ ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных) уравнений f = ) заключается в нахождении значений,

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

Дифференциальные уравнения и ряды

Дифференциальные уравнения и ряды Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» НМ Кравченко Дифференциальные уравнения и ряды Учебно-методическое пособие Научный редактор доц, канд

Подробнее

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы Численное решение смешанной краевой задачи явным методом сеток Методическая разработка по курсу Численные методы. Постановка задачи Г.К. Измайлов Решить методом сеток смешанную краевую задачу для дифференциального

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей)

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей) МАТЕМАТИКА ЕГЭ Задания С5 7 Неравенства (метод областей) Указания и решения Справочный материал Источники Корянов А Г г Брянск Замечания и пожелания направляйте по адресу: korynov@milru ЗАДАЧИ С ПАРАМЕТРАМИ

Подробнее

ИНТЕРФЕРЕНЦИЯ РЕАКТИВНЫХ КОМПОНЕНТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ. А.А. Колоколов,

ИНТЕРФЕРЕНЦИЯ РЕАКТИВНЫХ КОМПОНЕНТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ. А.А. Колоколов, Декабрь 1992 г. Том 162, 12 УСПЕХИ ФИЗИЧЕСКИХ НАУК МЕТОДИЧЕСКИЕ ЗАМЕТКИ ИНТЕРФЕРЕНЦИЯ РЕАКТИВНЫХ КОМПОНЕНТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ А.А. Колоколов, (Московский физико-технический институт, Московский станкоинструментальный

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x)

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x) 6 Ряды Фурье 6 Ортогональные системы функций Ряд Фурье по ортогональной системе функций Функции ϕ () и ψ (), определенные и интегрируемые на отрезке [, ], называются ортогональными на этом отрезке, если

Подробнее

Решение обыкновенных дифференциальных уравнений.

Решение обыкновенных дифференциальных уравнений. Решение обыкновенных дифференциальных уравнений Инженеру часто приходится иметь дело с техническими системами и технологическими процессами, характеристики которых непрерывно меняются со временем t Эти

Подробнее

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде:

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде: Уравнения В алгебре рассматривают два вида равенств тождества и уравнения Тождество это равенство которое выполняется при всех допустимых) значениях входящих в него букв Для тождества используют знаки

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений (ОДУ) первого

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие Министерство общего и профессионального образования Российской Федерации Санкт-Петербургский государственный технический университет Аксёнов АП СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Учебное пособие

Подробнее

Московский государственный технический университет им. Н. Э. Баумана.

Московский государственный технический университет им. Н. Э. Баумана. Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ» по теме: «РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ 2-ГО РОДА

Подробнее

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА)

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Постановка задачи. Рассматривается задача о вычислении однократного интеграла J(F ) = F (x) dx. ()

Подробнее