Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов"

Транскрипт

1 Электронный журнал «Труды МАИ». Выпуск 37 Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов А.А. Дудченко Е.А. Башаров Аннотация Разработка аналитического метода учета стеснения депланации при расчете напряженно-деформированного состояния (НДС) многослойной балки было главной целью исследования. На основе аналитических формул построенных на основе теории изгиба многослойной балки и теории кручения стержня сплошного сечения изложенных в работах В. В. Васильева[1] и В.З. Власова [] была разработана методика учета стеснения депланации балки из композиционного материала. Ключевые слова Многослойная балка напряженно-деформированное состояние стеснение депланации сечения крутящий момент статическая нагрузка. Введение Характерной чертой при нагружении слоистых балок произвольного сечения кручением является отклонение сечения от плоскости т.е. депланация сечения. Если закрепить сечение то в окрестности закрепления от депланации возникают дополнительные напряжения которые необходимо учитывать в расчете. Схема общего нагружения слоистой балки представлена на рис.1. ` 1

2 Рис.1 Конструктивно слоистая упругая балка состоит из набора пластин (пакетов) из стеклопластика на основе стеклоткани между которыми проложена резина. Резина применена с целью увеличения изгибной жесткости торсиона при разносе несущих слоев но без существенного повышения крутильной жесткости. Постановка задачи Рассмотрим стесненное кручение в районе заделки торсиона которая препятствует свободной депланации его сечений. В результате стеснения депланации в слоях слоистой балки в зоне влияния заделки возникают дополнительные нормальные усилия которые вызывают деформацию сечения и поток касательных напряжений. На боковых стенках пластин из-за их небольшой высоты явление депланации проявляется незначительно и можно считать что здесь справедлив закон плоских сечений. Характер стесненной депланации поперечного сечения балки представлен на рис.. `

3 Рис. Основные допущения в расчетной модели: Недеформируемость поперечного сечения; Пренебрегаем эффектом Пуассона ( μ 0 ); θ Депланация сечения линейно пропорциональна углу закручивания сечения ; M Крутящий момент постоянный по длине балки kp Const ; Влиянием каждого касательного напряжения друг на друга в уравнениях равновесия пренебрегаем. В расчете применен метод приведения 3-х мерной задачи к одномерной. Решение ищем в перемещениях. Перемещение любой точки слоистой упругой балки можно записать в виде: u( ) u ( ) f ( ) (1) u () неизвестная функция распределения перемещений при депланации. f ( ) функция свободной депланации. Выбор функции возможной депланации сечения вызывает некоторые трудности т.к. от этого будут зависеть точность полученных результатов расчета. Запишем функцию свободной депланации поперечного сечения стержня при кручении в виде изложенной в работе В.З Власова [1]: f ( ) () ` 3

4 Можно представить функцию депланации в виде предложенном в работе В.В Васильева []: σ f ( ) k λ sh( k) kchλ обобщенные коэффициенты жесткости. Запишем уравнения равновесия для балки в напряжениях: 0 и уравнение крутящего момента в сечении: M ( ) dd kp 0 0 (3) (4) M внешняя объемная продольная сила; kp внешний крутящий момент. Запишем потенциальную энергию деформации балки в форме: U L 0 F E G G σ E G G dfd (5) модули упругости и сдвига упругой балки. Запишем потенциальную энергии деформации балки через характеристики сечения: U L 0 EF ( u ) F f ( ) dd G( I I ) ( u ) G модуль упругости при сдвиге. I M dd kp θ d I dd Пренебрегая эффектом Пуассона который не учитывается в энергии нагружения балок получаем энергетический функционал в виде: (6) L U Ф( u u θ ) d 0 Ф подынтегральное выражение. (7) ` 4

5 Согласно принципу Лагранжа и вариационного исчисления получаем с учетом работы внешних сил дифференциальное уравнение: ( I ) u G( I I ) θ 0 ( E F) u G I Дополнительные нормальные усилия в зоне стеснения депланации вызыают дополнительный поток касательных напряжений который выражается в виде дополнительных усилий s s 0. Эти усилия находим из уравнения равновесия: Используя уравнения равновесия и уравнение моментов (4) по приведенной выше методике получаем -е дифференциальное уравнение совместности деформаций: G ( I I ) u G( I I ) θ M 0 Таким образом получили разрешающую систему: ( E G I U U () F) u G( I I ) u G( I I ) ( I ) u G( I I ) θ M kp kp θ 0 0 (11) Систему (11) можно свести к 1-му уравнению путем выбора разрешающей функции так чтобы удовлетворялось второе уравнение системы. Тогда пусть: u G I θ EFU ( ) I U G( I I ) U После подстановки (1) в (11) получаем разрешающее уравнение в виде: E FU или AU IV IV 4I I G I I BU C U G 4I I B G I I A E F Решение этого уравнения имеет вид: M ( I I ) С kp G( I I ) M kp. (8) (9) (10) (1) ` 5

6 A m A m U( ) e C1 e C C3 C4 U B B U 1 ( B< A) C B C B m - частное решение дифференциального уравнения A 1 C C3 C 4 константы решения. Константы интегрирования определяются из следующих граничных условий: при 0 : условия: U ( 0) U ( L) 0 при L : используем естественные граничные d Φ Φ 0 Φ d 0. Если в решении пренебречь влиянием касательных напряжений и зависимостью σ напряжения от координаты по то разрешающее дифференциальное уравнение будет второго порядка вида: U m U C U C e B m A : B < A Решение этого уравнения имеет вид: 1 C e m( L ) m( L ) U U частное решение C 1 C константы решения которые определяются из граничных условий: U ( 0) U ( L) 0 C C U C 1 m Отсюда получаем: m m ( 1 e ) Тогда разрешающую функцию можно записать в виде: m( L ) ml m C e e e U 1 m m 1 e 1 e ( L ) Далее с учетом (1) определяются функции m C 1 u () и (). Теперь можно определить значения нормальных и касательных напряжений в слоях слоистой балки по ее длине: θ C e ml ` 6

7 u σ E E u Gγ ( ) f ( ) f ( ) Gu ( ) Gγ f ( ) Gu ( ) Далее определяются значения нормальных и касательных усилий в слоях по длине балки: B11ε B11u f ( ) s B 33 γ s B 33 f ( ) f ( ) u ( ) γ s γ γ Bij - приведенные жесткости материала; Суммарные усилия в слоях слоистой балки по ее длине: Σ B Σ s sb s B sb - нормальные и касательные усилия по балочной теории s - дополнительные усилия от стеснения депланации. Пример расчета слоистой балки из КМ по приведенной методике В качестве примера расчета для подтверждения корректности предлагаемого подхода к определению напряженно-деформированного состояния рассмотрим слоистую балку нагруженную изгибающим и крутящим моментами и поперечной силой по конструкции аналогичная торсиону балочного типа который используется на несущем винте (НВ) вертолета «АНСАТ» конструкции Казанского вертолетного завода [3]. Была рассчитана консольная слоистая балка прямоугольного сечения состоящая из набора слоев стеклоткани Т-39 ТУ со связующим 5-11-БН ТУ и угольной ленты ЛУ-7 для увеличения прочности при кручении торсиона. Между слоями проложены слои резины марки Р-181 с целью увеличения изгибной жесткости при разносе несущих слоев. Характеристики одного слоя стеклоткани Т-39 приняты: модуль вдоль направления волокон E 6300 МПа модуль сдвига G 1 E МПа поперек направления МПа коэффициент Пуассона μ ` 7

8 пределы прочности материала вдоль направления волокон поперек направления и при σ сдвиге соответственно равны: 1800 b1 МПа σ b 48 МПа 1 5 МПа. направления волокон Характеристики одного слоя углеленты ЛУ-7 приняты: модуль вдоль E МПа поперек направления - E 9300 МПа модуль сдвига G МПа коэффициент Пуассона μ пределы прочности материала вдоль направления волокон поперек направления и при сдвиге соответственно равны: σ b МПа σ b 106 МПа 78 1 МПа. Используя методику оптимального проектирования изложенной в работе А. А. Дудченко [4] были получены геометрические параметры слоистой балки под эксплуатационные нагрузки для торсиона втулки несущего винта вертолета средней Р H грузоподъемности: ma Q _ ma 650H Q _ ma 1500H M _ ma 1500Hм M kp 10Hм. M _ ma 3400Hм Геометрические размеры слоистой балки прямоугольного сечения равны: длина L096 м ширина b 0160 м высота h0055 м. Толщина типового пакета (пластины) 364 мм толщина слоя резины 15 мм. Жесткостные характеристики слоистой балки: E 3341 k 3637 ; МПа; G 4356 λ 9096 ; I МПа; F *10 м *10 м ; I у *10 м Далее был произведен аналитический расчет НДС упругой слоистой балки типа торсион по приведенной выше методике. Решение проводилось с использованием программы MAPLE -1 для двух случаев выбора функции свободной депланации балки () и (3). Результаты расчета Были определены значения нормальных и касательных усилий в слоях в зоне стеснения депланации сечения при кручении слоистой балки. Результаты расчета усилий в слоях и s по длине слоистой балки представлены на Рис.3 и Рис.4 соответственно. ;. ` 8

9 а Рис.3 Зависимость распределения а) по В. Власову б) по В. Васильеву по длине слоистой балки б ` 9

10 а Рис.4 Зависимость распределения а) по В. Власову б) по В. Васильеву s по длине слоистой балки б Выводы Стеснение депланации сечения в районе закрепления балки приводит к существенно неравномерному распределению деформаций и вызывает концентрации напряжений в угловых точках сечения которые необходимо учитывать при расчете упругого слоистого торсиона. Следует учитывать и тот факт что этот эффект быстро затухает при ` 10

11 удалении от угловой точки и на расстоянии равном половине ширины сечения балки практически исчезает. Библиографический список 1) Власов В.З. Изб. труды Т. Тонкостенные стержни.- М: Изд. АН СССР ) Васильев В.В. Механика конструкций из КМ.-М: Машиностроение ) Расчетно-экспериментальное исследование прочности упругих элементов бесшарнирных винтов вертолетов.-ч.1 Ч. / Голованов А.И. Митряйкин В.И. Михайлов С.А. Конюхов А.В. Фетисов Л.В Шувалов В.А. Изв.вузов. Авиационная техника. Изд-во КГТУ. 4/ 001. С / 00.С ) Дудченко А.А. Оптимальное проектирование элементов авиационных 5) конструкций из композиционных материалов.- М: МАИ. 00. Сведения об авторах Дудченко Александр Александрович профессор кафедры 603 «Строительная механика и прочность» Московского авиационного института (государственного технического университета) д.т.н. Основные научные интересы в области строительной механики композиционных материалов и конструкций из них. Автор более 90 научных работ. Телефон ; Башаров Евгений Анатольевич аспирант кафедры 603 «Строительная механика и прочность» Московского авиационного института (государственного технического университета). Основные научные интересы в области статики и динамики силовых конструкций из композиционных материалов. Автор двух научных работ. Телефон ; ` 11

Исследование упругой линии трехслойной балки с существенно различающейся слоевой жесткостью

Исследование упругой линии трехслойной балки с существенно различающейся слоевой жесткостью Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/science/trudy/ УДК 69.735.0184 Исследование упругой линии трехслойной балки с существенно различающейся слоевой жесткостью А.А. Дудченко, Е.А. Башаров

Подробнее

Определение теплообразования в слоях резины слоистой балки типа торсион при циклическом нагружении

Определение теплообразования в слоях резины слоистой балки типа торсион при циклическом нагружении Электронный журнал «Труды МАИ». Выпуск www.mai.ru/sciece/rudy/ УДК 69.735.8 Определение теплообразования в слоях резины слоистой балки типа торсион при циклическом нагружении А.А. Дудченко Е.А. Башаров

Подробнее

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/cience/trudy/ УДК 539.3 Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе поперечном сдвиге

Подробнее

Нелинейная задача динамического изгиба стержня после потери устойчивости

Нелинейная задача динамического изгиба стержня после потери устойчивости Электронный журнал «Труды МАИ». Выпуск 7 www.mai.ru/siene/trud/ УДК 9.:. Нелинейная задача динамического изгиба стержня после потери устойчивости И.Н. Воробьев Т.В. Гришанина Аннотация Решена плоская задача

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА Механико-математический факультет РАБОЧАЯ ПРОГРАММА спецкурса: СОПРОМАТ. ЧАСТЬ 1 Кафедра Газовой и волновой и динамики Лектор - профессор Звягин

Подробнее

1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ 3 СОДЕРЖАНИЕ 1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ...4 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ...4 2.1. Цель преподавания дисциплины...4 2.2. Задачи изучения дисциплины...4 2.3. Перечень базовых дисциплин...5 2.4. Перечень дисциплин,

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

Расчет прочности тонкостенного стержня открытого профиля

Расчет прочности тонкостенного стержня открытого профиля НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.Алексеева Кафедра «Аэро-гидродинамика, прочность машин и сопротивление материалов» Расчет прочности тонкостенного стержня открытого профиля

Подробнее

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ Профессор, д.т.н. Богус Ш.Н., студент КубГАУ Лысов Д.С., Пономарев Р.В. Кубанский государственный аграрный университет Краснодар, Россия При увеличении пропускной способности

Подробнее

Указания к выполнению контрольной работы 3

Указания к выполнению контрольной работы 3 Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе

Подробнее

Лекция 3. Плоская задача теории упругости.

Лекция 3. Плоская задача теории упругости. Лекция 3 Плоская задача теории упругости. 3.1 Плоское напряженное состояние. 3. Плоская деформация. 3.3 Основные уравнения плоской задачи. 3.4 Использование функции напряжений 3.5 Решение плоской задачи

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика»

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика» Вопросы к вступительным экзаменам в аспирантуру по специальности «05.23.17 Строительная механика» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Основные понятия 1. Задачи сопротивления материалов. Стержень. Основные гипотезы

Подробнее

1. Цели и задачи дисциплины Цель дисциплины

1. Цели и задачи дисциплины Цель дисциплины 1.1. Цель дисциплины 1. Цели и задачи дисциплины Дисциплина «Сопротивление материалов» относится к общетехническому циклу и имеет своей целью усвоение будущими специалистами основ инженерной подготовки

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

Расчет торсиона несущего винта в системе MSC.Nastran

Расчет торсиона несущего винта в системе MSC.Nastran Расчет торсиона несущего винта в системе MSC.Nastran Лебедев И.М., КГТУ (КАИ) им.а.н.туполева, Казань Рассматриваются вопросы расчета упругой балки (торсиона) несущего винта легкого вертолета. Балка выполнена

Подробнее

Напряженное состояние композиционной панели в зоне отверстия

Напряженное состояние композиционной панели в зоне отверстия Электронный журнал «Труды МАИ». Выпуск 64 www.mai.ru/science/trudy/ УДК 629.7.023 Напряженное состояние композиционной панели в зоне отверстия А.И. Ендогур, В.А. Кравцов Аннотация В статье представлена

Подробнее

Деформированное состояние в точке. Связь между деформациями и напряжениями

Деформированное состояние в точке. Связь между деформациями и напряжениями Деформированное состояние в точке. Связь между деформациями и напряжениями. Деформированным состоянием в точке называется (-ются) ОТВТ: ) совокупность деформаций в точке; ) совокупность нормальных и касательных

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

Тычина К.А. III. К р у ч е н и е

Тычина К.А. III. К р у ч е н и е Тычина К.А. tychina@mail.ru К р у ч е н и е Крутящим называют момент, вектор которого направлен вдоль оси стержня. Кручением называется такое нагружение стержня, при котором в его поперечных сечениях возникает

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ по образовательной программе высшего образования программе подготовки научно-педагогических кадров в аспирантуре ФГБОУ ВО «Орловский государственный университет имени

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 4 Введение... 7

ОГЛАВЛЕНИЕ. Предисловие... 4 Введение... 7 ОГЛАВЛЕНИЕ Предисловие... 4 Введение... 7 Глава 1. Механика абсолютно твердого тела. Статика... 8 1.1. Общие положения... 8 1.1.1. Модель абсолютно твердого тела... 9 1.1.2. Сила и проекция силы на ось.

Подробнее

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 0 Энергетические методы определения перемещений 1 Обобщенные силы и перемещения Обобщенной силой (ОС) называется некоторое внешнее силовое воздействие

Подробнее

1. Цели и задачи дисциплины Цель дисциплины

1. Цели и задачи дисциплины Цель дисциплины 2 1.1. Цель дисциплины 1. Цели и задачи дисциплины Дисциплина «Сопротивление материалов» относится к общетехническому циклу и имеет своей целью усвоение будущими специалистами основ инженерной подготовки

Подробнее

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ УДК 59. Х.Г. Киямов кандидат технических наук доцент кафедры прикладной математики Н.М. Якупов доктор технических наук профессор кафедры строительной механики заведующий лабораторией ИММ КазНЦ РАН И.Х.

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Сопротивление материалов

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Сопротивление материалов ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Проектирование и управление в технических системах» МЕТОДИЧЕСКИЕ

Подробнее

Тычина К.А. В в е д е н и е.

Тычина К.А. В в е д е н и е. www.tchina.pro Тычина К.А. I В в е д е н и е. «Теоретическая механика» разработала уравнения равновесия тел, считая их абсолютно твёрдыми и неразрушимыми. Курс «Сопротивление материалов», следующий шаг

Подробнее

Устойчивое и неустойчивое упругое равновесие. Критическая сила. Критическое напряжение. Гибкость стержня

Устойчивое и неустойчивое упругое равновесие. Критическая сила. Критическое напряжение. Гибкость стержня Устойчивое и неустойчивое упругое равновесие. Критическая сила. Критическое напряжение. Гибкость стержня 1.Критическое напряжение в сжатом стержне большой гибкости определяется по формуле ОТВЕТ: 1) 2)

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

ИССЛЕДОВАНИЕ ДИНАМИКИ СТЕРЖНЕВЫХ ЭЛЕМЕНТОВ АВИАЦИОННЫХ КОНСТРУКЦИЙ

ИССЛЕДОВАНИЕ ДИНАМИКИ СТЕРЖНЕВЫХ ЭЛЕМЕНТОВ АВИАЦИОННЫХ КОНСТРУКЦИЙ ИССЛЕДОВАНИЕ ДИНАМИКИ СТЕРЖНЕВЫХ ЭЛЕМЕНТОВ АВИАЦИОННЫХ КОНСТРУКЦИЙ Гаврилов А.А., Кудина Л.И. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Оренбургский

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ УТВЕРЖДАЮ Декан факультета сервиса к.т.н., доцент Сумзина Л.В ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ Материаловедение основной образовательной программы высшего образования программы специалитета по направлению

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3 ОГЛАВЛЕНИЕ Предисловие... 3 Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ И ПОНЯТИЯ СТРОИТЕЛЬНОЙ МЕХАНИКИ... 4 1.1. Задачи и методы строительной механики... 4 1.2. Понятие о расчетной схеме сооружения и ее элементах.. 6 1.3.

Подробнее

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб Введение Настоящая программа базируется на основных разделах следующих дисциплин: Математика; Физика; Теоретическая механика; Сопротивление материалов; Теория упругости и пластичности; Статика, динамика

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИ- ПЛИНЫ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИ- ПЛИНЫ 1 Министерство образования и науки Республики Казахстан Павлодарский государственный университет им. С. Торайгырова Кафедра «Промышленное и гражданское строительство» МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ

Подробнее

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии

Подробнее

уравнение изогнутой оси балки и θ tg θ =.

уравнение изогнутой оси балки и θ tg θ =. Лекция 06 Деформации балок при изгибе Теорема Кастильяно При чистом изгибе балки её ось искривляется Перемещение центра тяжести сечения по направлению перпендикулярному к оси балки в её недеформированном

Подробнее

Расчет прочности и устойчивости стального стержня по СНиП II-23-81*

Расчет прочности и устойчивости стального стержня по СНиП II-23-81* Отчет 5855-1707-8333-0815 Расчет прочности и устойчивости стального стержня по СНиП II-3-81* Данный документ составлен на основе отчета о проведенном пользователем admin расчете металлического элемента

Подробнее

Рисунок 1 - Объемное НДС в точке

Рисунок 1 - Объемное НДС в точке ПОВЫШЕНИЕ НАГРУЗОЧНОЙ СПОСОБНОСТИ И ЭНЕРГОЕМКОСТИ НОВОГО УПРУГОГО ЭЛЕМЕНТА ИЗ КОМПОЗИЦИОННОГО МАТЕРИАЛА доц. Чуканин Ю.П., к.т.н., проф. Щербаков В.И. каф. «Сопромат» МГТУ «МАМИ» Для традиционных упругих

Подробнее

*

* Электронный журнал «Труды МАИ». Выпуск 73 www.ma.ru/scence/trudy/ УДК 678.06:621.64 Численно-аналитический метод расчета металлокомпозитного цилиндрического баллона давления Егоров А.В.*, Азаров А.В. Московский

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Подробнее

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов УДК 59. РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР 7 И. С. Ахмедьянов Самарский государственный аэрокосмический университет Рассматривается применение

Подробнее

Ключевые слова: консольная неравнобокая балка, тонкостенный открытый профиль, напряжения нормальные и касательные, прочность.

Ключевые слова: консольная неравнобокая балка, тонкостенный открытый профиль, напряжения нормальные и касательные, прочность. УДК 64.07.014.-415.046. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ ТОНКОСТЕННОЙ БАЛКИ ОТ- КРЫТОГО ПРОФИЛЯ Максак Татьяна Васильевна д.т.н., профессор кафедры Агроинженерии Ачинский филиал Красноярского государственного аграрного

Подробнее

Сопротивление материалов ОПД. 001 (шифр и наименование дисциплины)

Сопротивление материалов ОПД. 001 (шифр и наименование дисциплины) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСТПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

РАСЧЕТ КОМПОЗИТНЫХ ОБОЛОЧЕК ВРАЩЕНИЯ, КОМБИНИРОВАННЫХ СОСУДОВ ДАВЛЕНИЯ И РЕЗЕРВУАРОВ

РАСЧЕТ КОМПОЗИТНЫХ ОБОЛОЧЕК ВРАЩЕНИЯ, КОМБИНИРОВАННЫХ СОСУДОВ ДАВЛЕНИЯ И РЕЗЕРВУАРОВ РАСЧЕТ КОМПОЗИТНЫХ ОБОЛОЧЕК ВРАЩЕНИЯ, КОМБИНИРОВАННЫХ СОСУДОВ ДАВЛЕНИЯ И РЕЗЕРВУАРОВ Голушко К.С. Институт вычислительных технологий СО РАН, г. Новосибирск Конструкции, содержащие тонкостенные элементы,

Подробнее

И.М. Тараненко, канд. техн. наук

И.М. Тараненко, канд. техн. наук 5 УДК 69.735 И.М. Тараненко, канд. техн. наук ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНЫХ ДЕФОРМАЦИЙ СТЕРЖНЕЙ ИЗ КОМПОЗИТОВ ПОД ДЕЙСТВИЕМ ВНУТРЕННЕГО НАПРЯЖЕННОГО СОСТОЯНИЯ При проектировании силовых элементов

Подробнее

f r Рис. 1 расчетная модель обсадной

f r Рис. 1 расчетная модель обсадной Р УДК 6.45. Улитин Г.М., Царенко С.Н. (ДонНТУ РАСЧЕТ ОБСАДНОЙ КОЛОННЫ, КАК ЦИЛИНДРИЧЕСКОЙ ОБО- ЛОЧКИ, ПО ПОЛУБЕЗМОМЕНТНОЙ ТЕОРИИ. (Вести горного института Проведены исследования напряженно-деформированного

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 3 ЧАСТЬ ПЕРВАЯ

ОГЛАВЛЕНИЕ. Предисловие... 3 ЧАСТЬ ПЕРВАЯ ОГЛАВЛЕНИЕ Предисловие... 3 ЧАСТЬ ПЕРВАЯ Глава первая Растяжение и сжатие......6 1.1. Продольная сила...6 1.2. Нормальные напряжения, абсолютное удлинение и потенциальная энергия...8 1.3. Поперечная деформация

Подробнее

7. СОДЕРЖАНИЕ ТЕСТОВЫХ ЗАДАНИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ «ПРИКЛАДНАЯ МЕХАНИКА» (СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ) Вопрос Ответ Правильный

7. СОДЕРЖАНИЕ ТЕСТОВЫХ ЗАДАНИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ «ПРИКЛАДНАЯ МЕХАНИКА» (СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ) Вопрос Ответ Правильный . Прочность это. Жесткость это. Устойчивость это 4. К допущениям о свойствах материала элементов конструкций не относится 5. Пластина это способность материала сопротивляться действию нагрузок, не разрушаясь

Подробнее

Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ»

Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» 1. Цель и задачи освоения дисциплины Для студентов направления подготовки 08.03.01. «Строительство» сопротивление материалов является одной

Подробнее

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Деформации и перемещения Метод сечений Частные случаи нагружения

Подробнее

УДК ББК. Составитель Пайзулаев Магомед Муртазалиевич - к.т.н., доцент кафедры «Сейсмостойкое строительство» ДГИНХ.

УДК ББК. Составитель Пайзулаев Магомед Муртазалиевич - к.т.н., доцент кафедры «Сейсмостойкое строительство» ДГИНХ. УДК ББК Составитель Пайзулаев Магомед Муртазалиевич - к.т.н., доцент кафедры «Сейсмостойкое строительство» ДГИНХ. Внутренний рецензент Вагидов Мирзабег Мирзаагаевич - к.т.н., доцент кафедры «Сейсмостойкое

Подробнее

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации Теория деформированного состояния Понятие о тензоре деформаций, главные деформации Обобщенный закон Гука для изотропного тела Деформация объема при трехосном напряженном состоянии Потенциальная энергия

Подробнее

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ СОСТАВНЫХ БАЛОК ИЗ НЕОДНОРОДНЫХ МАТЕРИАЛОВ МЕТОДОМ НАЧАЛЬНЫХ ПАРАМЕТРОВ. д. т. н. Дудяк А.И., асп. Гурковская О.И.

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ СОСТАВНЫХ БАЛОК ИЗ НЕОДНОРОДНЫХ МАТЕРИАЛОВ МЕТОДОМ НАЧАЛЬНЫХ ПАРАМЕТРОВ. д. т. н. Дудяк А.И., асп. Гурковская О.И. УДК.7. ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ СОСТАВНЫХ БАЛОК ИЗ НЕОДНОРОДНЫХ МАТЕРИАЛОВ МЕТОДОМ НАЧАЛЬНЫХ ПАРАМЕТРОВ д. т. н. Дудяк А.И., асп. Гурковская О.И. УО «Белорусский национальный технический университет»,

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

Исследования по оптимизации конструктивно-силовой схемы самолета с прямым крылом из композиционных материалов

Исследования по оптимизации конструктивно-силовой схемы самолета с прямым крылом из композиционных материалов ТРУДЫ МФТИ. 2014. Том 6, 2 Хонг Фонг Нгуен, В. И. Бирюк 133 УДК 629.7.023.4 Хонг Фонг Нгуен 1, В. И. Бирюк 1,2 1 Московский физико-технический институт (государственный университет) 2 Центральный аэрогидродинамический

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

Дисциплина «Сопротивление материалов»

Дисциплина «Сопротивление материалов» Дисциплина «Сопротивление материалов» 1. Цель и задачи дисциплины Место дисциплины в структуре основной профессиональной образовательной программы Дисциплина «Сопротивление материалов» относится к вариативной

Подробнее

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ УДК 539.3 АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ к.ф.-м.н. 1 Чигарев А.В., асп. 2 Покульницкий А.Р. 1 Белорусский национальный технический университет,

Подробнее

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ КАФЕДРА СТРОИТЕЛЬНОЙ МЕХАНИКИ ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ Методические указания к упражнениям и расчетной

Подробнее

УПРАВЛЯЮЩИЕ И ИЗМЕРИТЕЛЬНЫЕ СИСТЕМЫ КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОГИБА ДИСКА ПЕРЕКРЫТИЯ В СТРУКТУРЕ КАРКАСНОГО ЗДАНИЯ

УПРАВЛЯЮЩИЕ И ИЗМЕРИТЕЛЬНЫЕ СИСТЕМЫ КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОГИБА ДИСКА ПЕРЕКРЫТИЯ В СТРУКТУРЕ КАРКАСНОГО ЗДАНИЯ УПРАВЛЯЮЩИЕ И ИЗМЕРИТЕЛЬНЫЕ СИСТЕМЫ УДК 59.:59.:64. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОГИБА ДИСКА ПЕРЕКРЫТИЯ В СТРУКТУРЕ КАРКАСНОГО ЗДАНИЯ А.В. БЫХОВЦЕВ, В.Е. БЫХОВЦЕВ, К.С. КУРОЧКА Учреждение образования «Гомельский

Подробнее

4.4. Секториальные характеристики сечения

4.4. Секториальные характеристики сечения 118 Сопротивление материалов Раздел 4 затем абсолютные ϕ 4 = 0.365 10 3, ϕ 3 = 0.879 + 0.365) 10 3 = 0.515 10 3, ϕ 2 = 4.370 0.879 + 0.365) 10 3 = 3.855 10 3, ϕ 1 = 3.845 + 4.370 0.879 + 0.365) 10 3 =

Подробнее

Сравнительный анализ решений задачи об изгибе пластины с использованием различных вариантов теории пластин

Сравнительный анализ решений задачи об изгибе пластины с использованием различных вариантов теории пластин #, декабрь 2015 УДК 539.3 Сравнительный анализ решений задачи об изгибе пластины с использованием различных вариантов теории пластин Баксараев Г.Д., студент Россия, 105005, г. Москва, МГТУ им Н.Э. Баумана

Подробнее

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ ОПД.Ф.12.5 ОСНОВЫ ФУНКЦИОНИРОВАНИЯ СИСТЕМ СЕРВИСА. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА основной образовательной программы высшего образования программы специалитета Специальность: 100101.65

Подробнее

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1.1. Статически неопределимые стержневые системы Статически неопределимыми системами называются системы, для которых, пользуясь только условиями статики, нельзя определить

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ АСТРАХАНСКОЙ ОБЛАСТИ Государственное автономное образовательное учреждение Астраханской области высшего профессионального образования «АСТРАХАНСКИЙ ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ

Подробнее

Задача 1. Решение. Рис. 1 Ступенчатый брус

Задача 1. Решение. Рис. 1 Ступенчатый брус Задача 1 Ступенчатый брус (рис. 1) нагружен силами P 1, P 2 и P 3, направленными вдоль его оси. Заданы длины участков a, b и c и площади их поперечных сечений F 1 и F 2. Модуль упругости материала Е 2

Подробнее

Расчет балки Ultralam

Расчет балки Ultralam Расчет балки Ultralam Расчетная схема Нагрузки Пролет Тип нагрузки Значение, кг(кг/м.п.) Коэф. надежности γ f Коэф. длительности γ d Привязка Х, м Длина S, м 0 распределенная 350 1 1 - - 0 распределенная

Подробнее

О ПЕРСПЕКТИВАХ РАЗВИТИЯ ПОДХОДА, ОСНОВАННОГО НА ИСПОЛЬЗОВАНИИ АЛГЕБРАИЧЕСКОЙ ПРОБЛЕМЫ КВАДРАТИЧНОГО ВИДА В ЗАДАЧАХ СТРОИТЕЛЬНОЙ МЕХАНИКИ

О ПЕРСПЕКТИВАХ РАЗВИТИЯ ПОДХОДА, ОСНОВАННОГО НА ИСПОЛЬЗОВАНИИ АЛГЕБРАИЧЕСКОЙ ПРОБЛЕМЫ КВАДРАТИЧНОГО ВИДА В ЗАДАЧАХ СТРОИТЕЛЬНОЙ МЕХАНИКИ УДК 624.04: 517.926.7+512.643.4 О ПЕРСПЕКТИВАХ РАЗВИТИЯ ПОДХОДА, ОСНОВАННОГО НА ИСПОЛЬЗОВАНИИ АЛГЕБРАИЧЕСКОЙ ПРОБЛЕМЫ КВАДРАТИЧНОГО ВИДА В ЗАДАЧАХ СТРОИТЕЛЬНОЙ МЕХАНИКИ А.Н. Потапов Рассмотрены вопросы

Подробнее

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ Дисциплина «Техническая механика» является частью модуля «Механика», представляет собой начальную ступень изучения дисциплины «Сопротивление материалов». Эта особенность обусловливает

Подробнее

А. А. Семенов, А. А. Овчаров. Математическая модель деформирования ортотропных конических оболочек

А. А. Семенов, А. А. Овчаров. Математическая модель деформирования ортотропных конических оболочек А. А. Семенов, А. А. Овчаров Математическая модель деформирования ортотропных конических оболочек Введение Наиболее широкое применение конические оболочки находят в авиационной технике и машиностроении.

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Расчетно - графические работы Для студентов -го курса инженерного факультета (специальности ИСБ, ИДБ, ИМБ, ИРБ, ИТБ) Составители: д.т.н.,

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

МАТЕРИАЛЫ ПО КОНТРОЛЮ И ОЦЕНКЕ УЧЕБНЫХ ДОСТИЖЕНИЙ

МАТЕРИАЛЫ ПО КОНТРОЛЮ И ОЦЕНКЕ УЧЕБНЫХ ДОСТИЖЕНИЙ МАТЕРИАЛЫ ПО КОНТРОЛЮ И ОЦЕНКЕ УЧЕБНЫХ ДОСТИЖЕНИЙ Для магистрантов ФМ и Т ВКГТУ, обучающихся по специальностям: 6М072400 «Технологические машины и оборудование» В О П Р О С Ы для текущего, рубежного и

Подробнее

Развитие библиотеки конечных

Развитие библиотеки конечных Развитие библиотеки конечных элементов ПК ЛИРА 1 Евзеров И. Д. lira-soft.com Стержень переменного сечения Размеры сечения линейно изменяются по длине стержня. При построении матрицы жесткости используются

Подробнее

Примеры решения задач по «Механике» Пример решения задачи 1

Примеры решения задач по «Механике» Пример решения задачи 1 Примеры решения задач по «еханике» Пример решения задачи Дано: схема конструкции (рис) kh g kh / m khm a m Определить реакции связей и опор Решение: Рассмотрим систему уравновешивающихся сил приложенных

Подробнее

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3.1. Сопротивление материалов. Задачи и определения. Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Первая задача сопротивления

Подробнее

МЕТОД УЧЕТА ПРОСТРАНСТВЕННОЙ РАБОТЫ. Богданов Игорь Яковлевич. Доцент, кандидат технических наук. Бобешко Артём Александрович

МЕТОД УЧЕТА ПРОСТРАНСТВЕННОЙ РАБОТЫ. Богданов Игорь Яковлевич. Доцент, кандидат технических наук. Бобешко Артём Александрович МЕТОД УЧЕТА ПРОСТРАНСТВЕННОЙ РАБОТЫ Богданов Игорь Яковлевич Доцент, кандидат технических наук Бобешко Артём Александрович Аспирант кафедры автомобильных дорог и городских сооружений Сибирского Федерального

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1 Задача 1 Рассматривается два загружения плоской рамы, состоящей из стержневых элементов квадратного поперечного сечения При загружении распределенными нагрузками q и 2q в точке к указанного на рисунке

Подробнее

3 ЗАДАЧИ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

3 ЗАДАЧИ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ ЗАДАЧИ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ Основные требования к оформлению контрольной работы Контрольная работа выполняется в рабочих тетрадях, на титульном листе которой должны быть указаны название дисциплины,

Подробнее

ВЛИЯНИЕ РАДИУСА ЗАКРУГЛЕНИЯ ОПОР НА ТОЧНОСТЬ ОПРЕДЕЛЕНИЯ МЕЖСЛОЙНОГО МОДУЛЯ СДВИГА АРМИРОВАННЫХ ПЛАСТИКОВ ИЗ ИСПЫТАНИЙ КОРОТКИХ БАЛОК НА ИЗГИБ

ВЛИЯНИЕ РАДИУСА ЗАКРУГЛЕНИЯ ОПОР НА ТОЧНОСТЬ ОПРЕДЕЛЕНИЯ МЕЖСЛОЙНОГО МОДУЛЯ СДВИГА АРМИРОВАННЫХ ПЛАСТИКОВ ИЗ ИСПЫТАНИЙ КОРОТКИХ БАЛОК НА ИЗГИБ Известия Челябинского научного центра, вып. 2 (11), 2001 МЕХАНИКА ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА УДК 539.3 ВЛИЯНИЕ РАДИУСА ЗАКРУГЛЕНИЯ ОПОР НА ТОЧНОСТЬ ОПРЕДЕЛЕНИЯ МЕЖСЛОЙНОГО МОДУЛЯ СДВИГА АРМИРОВАННЫХ

Подробнее

А. М. УЛАНОВ ОСНОВЫ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ. Лекции

А. М. УЛАНОВ ОСНОВЫ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ. Лекции МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА

Подробнее

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ. ÐÀÑ ÅÒÍÛÅ È ÒÅÑÒÎÂÛÅ ÇÀÄÀÍÈß

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ. ÐÀÑ ÅÒÍÛÅ È ÒÅÑÒÎÂÛÅ ÇÀÄÀÍÈß Ë. Ñ. Ìèíèí, Þ. Ï. Ñàìñîíîâ, Â. Å. Õðîìàòîâ ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ. ÐÀÑ ÅÒÍÛÅ È ÒÅÑÒÎÂÛÅ ÇÀÄÀÍÈß УЧЕБНОЕ ПОСОБИЕ ДЛЯ АКАДЕМИЧЕСКОГО БАКАЛАВРИАТА 3-е издание, исправленное и дополненное под редакцией

Подробнее

Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции сечения» Лектор: д.т.н., доцент И.Е.

Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции сечения» Лектор: д.т.н., доцент И.Е. Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции Лектор: д.т.н., доцент И.Е.Лысенко Английский ученый Роберт Гук открыл фундаментальную закономерность между

Подробнее

1. Предмет сопротивления материалов. Реальный объект и расчетная схема.

1. Предмет сопротивления материалов. Реальный объект и расчетная схема. 1. Предмет сопротивления материалов. Реальный объект и расчетная схема. Методами со противления материалов выполняются расчеты, на основании кото рых определяются необходимые размеры деталей машин и конструкций

Подробнее

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов.

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов. . РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ Усилия в статически неопределимых фермах как правило определяют методом сил. Последовательность расчета такая же как и для рам.. Степень статической неопределимости

Подробнее

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления.

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления. Лекция 14 Сложное сопротивление. Косой изгиб. Определение внутренних усилий, напряжений, положения нейтральной оси при чистом косом изгибе. Деформации при косом изгибе. 14. СЛОЖНОЕ СОПРОТИВЛЕНИЕ. КОСОЙ

Подробнее

Методические указания

Методические указания 1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЕЖИ И СПОРТА УКРАИНЫ КРАСНОАРМЕЙСКИЙ ИНДУСТРИАЛЬНЫЙ ИНСТИТУТ ГВУЗ «ДонНТУ» Татьянченко А.Г. Методические указания для самостоятельного изучения курса сопротивления

Подробнее

Расчет на жесткость при кручении

Расчет на жесткость при кручении Расчет на жесткость при кручении 1. Для круглого стержня, работающего на кручение, произведение жесткостью называется ОТВЕТ: 1) поперечного сечения на кручение; 2) поперечного сечения на растяжение-сжатие;

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

РАСЧЕТНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

РАСЧЕТНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Старовойтов Э. И., Леоненко Д. В., Гу Юй

Старовойтов Э. И., Леоненко Д. В., Гу Юй Белорусский государственный университет транспорта Гомель ДЕФОРМИРОВАНИЕ ТРЕХСЛОЙНОГО УПРУГОПЛАСТИЧЕСКОГО СТЕРЖНЯ СО СЖИМАЕМЫМ ЗАПОЛНИТЕЛЕМ Старовойтов Э. И. Леоненко Д. В. Гу Юй Eastoasti sadwi ea wit

Подробнее