Развитие библиотеки конечных

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Развитие библиотеки конечных"

Транскрипт

1 Развитие библиотеки конечных элементов ПК ЛИРА 1 Евзеров И. Д. lira-soft.com

2 Стержень переменного сечения Размеры сечения линейно изменяются по длине стержня. При построении матрицы жесткости используются базисные функции, удовлетворяющие однородным уравнениям равновесия. Построены матрицы масс и устойчивости. Реализованы основные типы сечений: брус, двутавр, швеллер и т.д.

3 Тонкостенный стержень l Стержень с секториальным моментом инерции (теория Власова): Статика, устойчивость, динамика. ' [ EI ( ) GI ( ) ] d m f. 1 f Реализованы основные типы сечений: брус, двутавр, швеллер и т.д., а также переменные сечения. Построены матрицы масс и устойчивости. /.

4 Уравнение равновесия при стесненном кручении имеет вид: EI GI m Оно отличается (формально) от уравнения для изгиба наличием слагаемого GI Базисные функции для изгиба - многочлены третьей степени. Они могут применяться и для стесненного кручения, однако более точные результаты дает использование общего решения однородного уравнения (1) A BCsh( ) Dch( ), / EI Построение базисных функций и матрицы жесткости из () обычно выполняется на отрезке [, L]. Это приводит к решению четырех систем линейных уравнений четвертого порядка. GI (1) () 4

5 Значительно проще выполнить построение на отрезке [ l, l], l L/, используя четность и нечетность функций 1, ch( ) и sh( ) соответственно. Система уравнений четвертого порядка на [ l, l] имеет вид ( l) ABl Csh Dch a 1, A Bl Csh Dch a BCch Dsh a, B Cch Dsh Для каждой из четырех систем одно из чисел равно единице, остальные - нулю. Она распадается на две легко решаемые системы второго порядка A Dch a 1 a, Dsh a4 a Bl Csh a a, B Cch a 4 a 1 a i, a 4 () (4) 5

6 Элементы матрицы жесткости вычисляются по известным формулам K ij a(, ), где функционал потенциальной энергии стесненного кручения имеет вид l i j a(, ) ( EI GI ) d (5) l Явное вычисление интегралов вида (5) достаточно громоздко. Применим формулу интегрирования по частям и воспользуемся тем, что базисные функции удовлетворяют однородному уравнению (1). Тогда a(, ) EI ( EI ( l) ( l) EI ( l) ( l) ( l) GI ( l)) ( l) ( EI ( l) GI ( l)) ( l) (6) 6

7 Используя () и очевидные формулы EI Получаем ( ) GI ( Csh( ) Dch( )), EI ( ) GI ( l) GI B (7) K GI /, K GI th /, K 11 GI, 11 1 ( lth /.5/( th)), K 4 GI ( lth /.5/( th)), K K K K, K K, K K K, K K. (8) Отметим, что в (8) нет экспоненциально растущих величин sh, ch. 7

8 Для вычисления усилий в начале и конце стержня, как и для изгиба, достаточно, в соответствии с (6), умножить матрицу жесткости элемента на вектор узловых перемещений и откорректировать на вектор нагрузок. Для вычисления усилий в произвольной точке стержня при изгибе применяется метод начальных параметров, основанный на интегрировании уравнения равновесия. 8

9 При стесненном кручении формулы аналогичны: EI EI ( ) EI ( ) GI ( ) EI () GI () () ( EI Слагаемое GI ( ) GI () вычисляется из (). Но при наличии распределенных по элементу нагрузок нужно получить точные значения () при этих нагрузках. Для этого решаем уравнение (1) с нулевыми граничными условиями и прибавляем полученное решение к конечно-элементному. mds () GI ()) ( s) mds GI ( ) GI () (9) (1) 9

10 Шестое узловое неизвестное для пластин В функционал потенциальной энергии добавляется слагаемое: G ( ( U / 1 U1 / ) / ) d1d. 1

11 Физически нелинейные стержни и оболочки с учетом сдвига. Геометрически нелинейный стержень с учетом секториального момента инерции. Новый алгоритм конденсации масс. 11

12 Элементы грунта: Исправлена ошибка в алгоритме учета различных модулей объемной деформации при нагрузке и разгрузке; Исправлено вычисление коэффициента запаса по сдвигу; Разработаны элементы неотражающей границы для динамических расчетов. Неотражающие граничные условия: где, - скорости продольной и поперечной волн. 1

13 Новые конечные элементы с узлами на серединах сторон Пластины: треугольник, четырехугольник. Объемные элементы: тетраэдр, треугольная и четырехугольная призмы. Плоские элементы переводятся в стандартные линейным преобразованием, объемные изопараметрически, с помощью своих базисных функций. 1

14 Погрешность МКЭ h Пропорциональна. Для элементов балок-стенок и объемных: - без промежуточных узлов р=1; - с промежуточными узлами р=. p 14

15 15

16 16

17 СВОБОДНОЕ И СТЕСНЕННОЕ КРУЧЕНИЕ СТЕРЖНЯ Ось 1 направлена вдоль прямолинейной оси стержня, оси, главные центральные оси сечения A, A EA EdA, EI E da, EI E da A жесткости,, n n A n единичный вектор нормали к границе сечения,, координаты центра кручения. Штрихами обозначается дифференцирование по Модуль Юнга E и модуль сдвига G E /( 1 ) могут быть переменными в A. Поскольку размеры сечения существенно меньше длины стержня, предполагается, что. Эти условия удовлетворяются, если положить (решение Сен-Венана [1,,]) U ( ) где c, U U 1 1 ( ) ( ( ) ( функция зависит только от,, функция 1 только от 1. ), ) (1) 17

18 Предположим отсутствие распределенных нагрузок и вычислим деформации и напряжения:, ( / 1 ( / 1 11, 1 G1, 1 G1. Для определения функции воспользуемся линейными однородными уравнениями равновесия ( U) / () и граничными условиями j j ) /, ) /, ( U). (4) j n j При, получаем тождества, при 1 имеем / / в A, (5) 11 / n 1n на. (6) () 18

19 Подставив () и приравняв нулю коэффициенты при 1, получим уравнения в A )) / / ( ( G )) / / ( ( G (7) и граничные условия на ) n ) / ( n ) / (( G. (8) Задача Неймана (7), (8) имеет единственное (с точностью до аддитивной постоянной c ) решение, если )d n n (. (9) Равенство (9) следует из формулы Грина d UVn d V U Vd U j j j / /. (1) Применив формулу Грина, получаем вариационную формулировку задачи (7), (8): da )) / v ) / ( / v ) / (( G A i i. (11) 19

20 Функцию A E da находим из (11) методом конечных элементов, определяем : E da A A EdA E da / EI, E da / EI A A, и с из условий, c E da / E A. (1) Вычисляем жесткость при свободном кручении GI 1 и секториальную жесткость EI : GI 1 G (( / ) ( / ) ) / da, EI E da. (1) A Изложенный метод распространяется и на тонкостенные сечения. Конечные элементы прямоугольники, искомая функция на каждом прямоугольнике представляется в виде y, y ) ( y ) y ( ), (14) ( 1 y где оси y, y направлены вдоль длинной и короткой, "тонкостенной", сторон. Подставив (14) в (11), получим вариационную формулировку для тонкостенного сечения. Такой подход универсален и не требует различных алгоритмов, приведенных, например, в [4], для открытых, замкнутых, полузамкнутых и т.д. сечений. A A

21 1

22

23

24 4

25 5

26 6

27 7

28 Спасибо за внимание! Москва, Дмитровское ш. д. 6а Тел./факс +7 (499) 9-- Техническая поддержка 8

ГЛАВА 15. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ 15.1 ОБЩЕЕ ОПИСАНИЕ И ПРИМЕНЯЕМЫЕ МЕТОДЫ

ГЛАВА 15. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ 15.1 ОБЩЕЕ ОПИСАНИЕ И ПРИМЕНЯЕМЫЕ МЕТОДЫ ГЛАВА 5 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ 5 ОБЩЕЕ ОПИСАНИЕ И ПРИМЕНЯЕМЫЕ МЕТОДЫ Программный комплекс ЛИРА основан на методе конечных элементов МКЭ и предназначен для расчета строительных конструкций Графическая система

Подробнее

Метод конечных элементов

Метод конечных элементов Метод конечных элементов 1. Область применения МКЭ. 2. Основная концепция МКЭ. 3. Преимущества МКЭ. 4. Разбиение расчётной области на конечные элементы. 5. Способ аппроксимации искомой функции в конечном

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

Расчет прочности тонкостенного стержня открытого профиля

Расчет прочности тонкостенного стержня открытого профиля НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.Алексеева Кафедра «Аэро-гидродинамика, прочность машин и сопротивление материалов» Расчет прочности тонкостенного стержня открытого профиля

Подробнее

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 0 Энергетические методы определения перемещений 1 Обобщенные силы и перемещения Обобщенной силой (ОС) называется некоторое внешнее силовое воздействие

Подробнее

Расчет плоской рамы методом сил

Расчет плоской рамы методом сил ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет Расчет плоской рамы методом сил

Подробнее

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3.1. Сопротивление материалов. Задачи и определения. Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Первая задача сопротивления

Подробнее

4.4. Секториальные характеристики сечения

4.4. Секториальные характеристики сечения 118 Сопротивление материалов Раздел 4 затем абсолютные ϕ 4 = 0.365 10 3, ϕ 3 = 0.879 + 0.365) 10 3 = 0.515 10 3, ϕ 2 = 4.370 0.879 + 0.365) 10 3 = 3.855 10 3, ϕ 1 = 3.845 + 4.370 0.879 + 0.365) 10 3 =

Подробнее

А. М. УЛАНОВ ОСНОВЫ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ. Лекции

А. М. УЛАНОВ ОСНОВЫ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ. Лекции МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА

Подробнее

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ Лекция 17 Энергетические методы расчета упругих систем. Потенциальная энергия деформации. Обобщенные силы и обобщенные перемещения. Основные энергетические уравнения механики (теорема Кастильяно). Метод

Подробнее

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного

Подробнее

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии

Подробнее

b + a + l + (Рис. 1) (8.2)

b + a + l + (Рис. 1) (8.2) Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ»

Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» 1. Цель и задачи освоения дисциплины Для студентов направления подготовки 08.03.01. «Строительство» сопротивление материалов является одной

Подробнее

НЕЛИНЕЙНЫЕ УЕДИНЕННЫЕ УДАРНО-ВОЛНОВЫЕ СТРУКТУРЫ В ВЯЗКОУПРУГИХ СТЕРЖНЯХ. Кубанский государственный аграрный университет Лаптев В.Н. канд. техн.

НЕЛИНЕЙНЫЕ УЕДИНЕННЫЕ УДАРНО-ВОЛНОВЫЕ СТРУКТУРЫ В ВЯЗКОУПРУГИХ СТЕРЖНЯХ. Кубанский государственный аграрный университет Лаптев В.Н. канд. техн. УДК 59:5:55 НЕЛИНЕЙНЫЕ УЕДИНЕННЫЕ УДАРНО-ВОЛНОВЫЕ СТРУКТУРЫ В ВЯЗКОУПРУГИХ СТЕРЖНЯХ Аршинов ГА канд физ-мат наук Кубанский государственный аграрный университет Лаптев ВН канд техн наук Кубанский государственный

Подробнее

ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ПОСЛЕ ПОТЕРИ УСТОЙЧИВОСТИ д.т.н. И. Д. Евзеров

ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ПОСЛЕ ПОТЕРИ УСТОЙЧИВОСТИ д.т.н. И. Д. Евзеров УДК 59 ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ПОСЛЕ ПОТЕРИ УСТОЙЧИВОСТИ д.т.н. И. Д. Евзеров Аннотация Рассматриваются геометрически нелинейные задачи в трехмерной вариационной постановке и шаговый метод для

Подробнее

Часть 1 Сопротивление материалов

Часть 1 Сопротивление материалов Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

Расчет прочности и устойчивости стального стержня по СНиП II-23-81*

Расчет прочности и устойчивости стального стержня по СНиП II-23-81* Отчет 5855-1707-8333-0815 Расчет прочности и устойчивости стального стержня по СНиП II-3-81* Данный документ составлен на основе отчета о проведенном пользователем admin расчете металлического элемента

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

Воронежская государственная технологическая академия, Воронеж

Воронежская государственная технологическая академия, Воронеж ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 009. Т. 50, N- 6 19 УДК 59.; 5; 517.946 РЕШЕНИЕ ЗАДАЧИ О КРУЧЕНИИ УПРУГОГО СТЕРЖНЯ s-угольного СЕЧЕНИЯ МЕТОДОМ РАСШИРЕНИЯ ГРАНИЦ А. Д. Чернышов Воронежская государственная

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 3 ЧАСТЬ ПЕРВАЯ

ОГЛАВЛЕНИЕ. Предисловие... 3 ЧАСТЬ ПЕРВАЯ ОГЛАВЛЕНИЕ Предисловие... 3 ЧАСТЬ ПЕРВАЯ Глава первая Растяжение и сжатие......6 1.1. Продольная сила...6 1.2. Нормальные напряжения, абсолютное удлинение и потенциальная энергия...8 1.3. Поперечная деформация

Подробнее

Реализация конечных элементов с узлами на сторонах в ПК ЛИРА 10.4

Реализация конечных элементов с узлами на сторонах в ПК ЛИРА 10.4 lira-soft.com +7 (499) 922-00-02 Реализация конечных элементов с узлами на сторонах в ПК ЛИРА 10.4 Евзеров И.Д. д.т.н., науч. руководитель проекта ЛИРА 10 Колесников А.В. технический директор «ЛИРА софт»

Подробнее

ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ ВЫЧИСЛЕНИЯ МАТРИЦ ЖЕСТКОСТИ КОНЕЧНЫХ ЭЛЕМЕНТОВ ВЫСОКОГО ПОРЯДКА МНОГОМЕРНЫХ ЗАДАЧ МАТФИЗИКИ

ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ ВЫЧИСЛЕНИЯ МАТРИЦ ЖЕСТКОСТИ КОНЕЧНЫХ ЭЛЕМЕНТОВ ВЫСОКОГО ПОРЯДКА МНОГОМЕРНЫХ ЗАДАЧ МАТФИЗИКИ Вычислительные технологии Том 1, 1, 1996 ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ ВЫЧИСЛЕНИЯ МАТРИЦ ЖЕСТКОСТИ КОНЕЧНЫХ ЭЛЕМЕНТОВ ВЫСОКОГО ПОРЯДКА МНОГОМЕРНЫХ ЗАДАЧ МАТФИЗИКИ А. Д. Матвеев Вычислительный центр СО РАН в г.

Подробнее

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6 Тема 5 Напряженное и деформированное состояние в точке. Лекция 6 Объемное напряженное состояние. 6. Главные напряжения и главные площадки. 6. Площадки экстремальных касательных напряжений. 6. Деформированное

Подробнее

Тычина К.А. III. К р у ч е н и е

Тычина К.А. III. К р у ч е н и е Тычина К.А. tychina@mail.ru К р у ч е н и е Крутящим называют момент, вектор которого направлен вдоль оси стержня. Кручением называется такое нагружение стержня, при котором в его поперечных сечениях возникает

Подробнее

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1 Труды международного симпозиума «Надежность и качество 009», Пенза том Горячев ВЯ, Савин АВ ОПРЕДЕЛЕНИЕ СВЯЗИ МЕЖДУ УСКОРЕНИЕМ И ПОПЕРЕЧНОЙ ДЕФОРМАЦИЕЙ УПРУГОГО ЭЛЕМЕНТА ДАТЧИКА Упругий элемент является

Подробнее

Курсовая работа по дисциплине: «дифференциальные уравнения»

Курсовая работа по дисциплине: «дифференциальные уравнения» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович

Подробнее

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов УДК 59. РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР 7 И. С. Ахмедьянов Самарский государственный аэрокосмический университет Рассматривается применение

Подробнее

Тема 12 Дифференциальные уравнения. Вычисление прогиба шарнирно-опертой на двух концах балки c одной сосредоточенной нагрузкой

Тема 12 Дифференциальные уравнения. Вычисление прогиба шарнирно-опертой на двух концах балки c одной сосредоточенной нагрузкой ЗАДАНИЕ Тема Дифференциальные уравнения Вычисление прогиба шарнирно-опертой на двух концах балки c одной сосредоточенной нагрузкой На шарнирно-опертую на двух концах балку длиной действует сила, приложенная

Подробнее

МКЭ в расчетах подпорных стен с учетом нелинейных свойств грунта

МКЭ в расчетах подпорных стен с учетом нелинейных свойств грунта Актаукенова Гулнур Сарбасовна (ЕНУ им. Л.Н.Гумилева. г.астана) МКЭ в расчетах подпорных стен с учетом нелинейных свойств грунта Numrcal calculaton of gravty rtanng wall and analyss of strss-strand condton

Подробнее

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ УДК 59. Х.Г. Киямов кандидат технических наук доцент кафедры прикладной математики Н.М. Якупов доктор технических наук профессор кафедры строительной механики заведующий лабораторией ИММ КазНЦ РАН И.Х.

Подробнее

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ УДК 539.3 АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ к.ф.-м.н. 1 Чигарев А.В., асп. 2 Покульницкий А.Р. 1 Белорусский национальный технический университет,

Подробнее

Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ

Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ Вестник ПГТУ. Механика. 9. 5 УДК 539.3: 534. Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ Предлагается

Подробнее

Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов

Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов Электронный журнал «Труды МАИ». Выпуск 37 www.mai.ru/science/trud/ Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов А.А. Дудченко Е.А. Башаров Аннотация

Подробнее

9.3. Энергетический метод исследования устойчивости стержней

9.3. Энергетический метод исследования устойчивости стержней 9.3. Энергетический метод исследования устойчивости стержней 251 9.3. Энергетический метод исследования устойчивости стержней Постановка задачи. Прямолинейный упругий стержень переменного сечения сжимается

Подробнее

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1.

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1. Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 4а ГОСТ 8509-86) и швеллера 4 (ГОСТ 840-89), требуется: 1. Вычертить сечение в масштабе 1: и указать на нем все оси и

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ и НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ - Российский государственный технологический

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

Метод конечных элементов

Метод конечных элементов Конспект лекций. Часть 1 Метод конечных элементов доц. Хандримайлов А. А. ХНАДУ, кафедра Теоретическая механика и гидравлика 013 Оглавление Лекция 1. Введение в метод конечных элементов (МКЭ)..... 3 1.

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА Механико-математический факультет РАБОЧАЯ ПРОГРАММА спецкурса: СОПРОМАТ. ЧАСТЬ 1 Кафедра Газовой и волновой и динамики Лектор - профессор Звягин

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Деформации и перемещения Метод сечений Частные случаи нагружения

Подробнее

КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ

КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ С.П.Тимошенко, Д.Х.Янг, У.Уивер КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ В монографии, написанной известным русским ученым и американскими специалистами, изложены результаты исследований различных аспектов теории колебаний

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА Механико-математический факультет. На правах рукописи ЧЖАО ЦЗЕ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА Механико-математический факультет. На правах рукописи ЧЖАО ЦЗЕ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА Механико-математический факультет На правах рукописи ЧЖАО ЦЗЕ УСТОЙЧИВОСТЬ СТАЦИОНАРНЫХ ДВИЖЕНИЙ МЕХАНИЧЕСКИХ СИСТЕМ, СОДЕРЖАЩИХ ДЕФОРМИРУЕМЫЕ

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3 ОГЛАВЛЕНИЕ Предисловие... 3 Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ И ПОНЯТИЯ СТРОИТЕЛЬНОЙ МЕХАНИКИ... 4 1.1. Задачи и методы строительной механики... 4 1.2. Понятие о расчетной схеме сооружения и ее элементах.. 6 1.3.

Подробнее

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3)

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3) Полная система уравнений теории упругости si F () i Лекция Полная система уравнений теории упругости. Уравнения совместности деформаций. Уравнения Бельтрами. Уравнения Ламе. Плоское напряженное и плоское

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

Задачи по аналитической геометрии 2012, мех-мат. МГУ

Задачи по аналитической геометрии 2012, мех-мат. МГУ Задачи по аналитической геометрии мех-мат МГУ Задача Дан тетраэдр O Выразить через векторы O O O вектор EF с началом в середине E ребра O и концом в точке F пересечения медиан треугольника Решение Пусть

Подробнее

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x)

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x) ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

Подробнее

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ ПОДЗЕМНЫХ ОБОЛОЧЕК В ПОДАТЛИВЫХ ИНЕРЦИОННЫХ СРЕДАХ ПРИ ДЕЙСТВИИ ПОДВИЖНЫХ НАГРУЗОК. Владимир Львовский

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ ПОДЗЕМНЫХ ОБОЛОЧЕК В ПОДАТЛИВЫХ ИНЕРЦИОННЫХ СРЕДАХ ПРИ ДЕЙСТВИИ ПОДВИЖНЫХ НАГРУЗОК. Владимир Львовский ИССЛЕДОВАНИЕ КОЛЕБАНИЙ ПОДЗЕМНЫХ ОБОЛОЧЕК В ПОДАТЛИВЫХ ИНЕРЦИОННЫХ СРЕДАХ ПРИ ДЕЙСТВИИ ПОДВИЖНЫХ НАГРУЗОК Владимир Львовский Автор работы поставил целью выяснить почему произошли несчастные случаи в подземных

Подробнее

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов»

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» 1. Историческое развитие учения о сопротивлении материалов. Диаграмма стального образца Ст 3. 2. Диаграмма Ф.Ясинского. 3. Основные понятия курса

Подробнее

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОДОЛЬНЫХ КОЛЕБАНИЙ И ЭВОЛЮЦИОННЫЕ УРАВНЕНИЯ ДЛЯ ЛИНЕЙНО-ВЯЗКОУПРУГОГО СТЕРЖНЯ. Аршинов Г.А. канд. физ.-мат.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОДОЛЬНЫХ КОЛЕБАНИЙ И ЭВОЛЮЦИОННЫЕ УРАВНЕНИЯ ДЛЯ ЛИНЕЙНО-ВЯЗКОУПРУГОГО СТЕРЖНЯ. Аршинов Г.А. канд. физ.-мат. УДК 60 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОДОЛЬНЫХ КОЛЕБАНИЙ И ЭВОЛЮЦИОННЫЕ УРАВНЕНИЯ ДЛЯ ЛИНЕЙНО-ВЯЗКОУПРУГОГО СТЕРЖНЯ Аршинов ГА канд физ-мат наук Кубанский государственный аграрный университет Математическая модель

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

Деформированное состояние в точке. Связь между деформациями и напряжениями

Деформированное состояние в точке. Связь между деформациями и напряжениями Деформированное состояние в точке. Связь между деформациями и напряжениями. Деформированным состоянием в точке называется (-ются) ОТВТ: ) совокупность деформаций в точке; ) совокупность нормальных и касательных

Подробнее

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ УЛЬЯНОВСК МИНИСТЕРСТВО ОБЩЕГО И

Подробнее

Проектирование сжатых стержней силовых авиационных конструкций с использованием критерия подобия

Проектирование сжатых стержней силовых авиационных конструкций с использованием критерия подобия УДК 69.78 Проектирование сжатых стержней силовых авиационных конструкций с использованием критерия подобия В.Е. Кичеев Предлагается новый подход к проектированию сжатых стержней. Сформирован критерий подобия

Подробнее

Глава 1. Начала линейной алгебры

Глава 1. Начала линейной алгебры Глава Начала линейной алгебры Системы линейных уравнений Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: + + + + n n = + + + + nn = m + m + m + + mnn = m () Здесь n неизвестные

Подробнее

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 26. Т. 47, N- 6 129 УДК 539.3 ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ В. В. Калашников, М. И. Карякин Ростовский

Подробнее

Лекция 3. Плоская задача теории упругости.

Лекция 3. Плоская задача теории упругости. Лекция 3 Плоская задача теории упругости. 3.1 Плоское напряженное состояние. 3. Плоская деформация. 3.3 Основные уравнения плоской задачи. 3.4 Использование функции напряжений 3.5 Решение плоской задачи

Подробнее

ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ

ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 ЛЕКЦИЯ Энергетические методы определения перемещений (продолжение) Теорема о взаимности работ Теорема о взаимности работ применима к системам, для которых

Подробнее

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/cience/trudy/ УДК 539.3 Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе поперечном сдвиге

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы.

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Рассмотрим несколько вариантов разностной аппроксимации линейного уравнения колебаний:

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1 Задача 1 Рассматривается два загружения плоской рамы, состоящей из стержневых элементов квадратного поперечного сечения При загружении распределенными нагрузками q и 2q в точке к указанного на рисунке

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

Расчет статически неопределимой плоской рамы методом сил

Расчет статически неопределимой плоской рамы методом сил МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Расчет статически

Подробнее

I. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СИСТЕМЫ

I. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СИСТЕМЫ I. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СИСТЕМЫ Методы определения усилий от неподвижной нагрузки. Виды нагрузок. Методы определения усилий в статически определимых системах: а) метод сечений, б) метод замены связей.

Подробнее

24 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПРОЕКТИРО- ВАНИЮ ЭЛЕМЕНТОВ ДВУТАВРОВОГО СЕЧЕНИЯ С ГОФРИ- РОВАННОЙ СТЕНКОЙ

24 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПРОЕКТИРО- ВАНИЮ ЭЛЕМЕНТОВ ДВУТАВРОВОГО СЕЧЕНИЯ С ГОФРИ- РОВАННОЙ СТЕНКОЙ 4 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПРОЕКТИРО- ВАНИЮ ЭЛЕМЕНТОВ ДВУТАВРОВОГО СЕЧЕНИЯ С ГОФРИ- РОВАННОЙ СТЕНКОЙ 4.. Общие рекомендации 4.. В элементах сложного двутаврового сечения для повышения их стойкости и

Подробнее

Тычина К.А. В в е д е н и е.

Тычина К.А. В в е д е н и е. www.tchina.pro Тычина К.А. I В в е д е н и е. «Теоретическая механика» разработала уравнения равновесия тел, считая их абсолютно твёрдыми и неразрушимыми. Курс «Сопротивление материалов», следующий шаг

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика»

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика» Вопросы к вступительным экзаменам в аспирантуру по специальности «05.23.17 Строительная механика» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Основные понятия 1. Задачи сопротивления материалов. Стержень. Основные гипотезы

Подробнее

6.1 Работа силы на перемещении

6.1 Работа силы на перемещении 6. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ. ТЕОРЕМА ВЗАИМНОСТИ РАБОТ ФОРМУЛА МАКСВЕЛЛА-МОРА 6.1 Работа силы на перемещении Пусть к точке приложена сила F и точка получает перемещение u по направлению действия силы

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского Министерство образования и науки Российской Федерации Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет Учебно-научный и инновационный комплекс

Подробнее

4, 2008 Технические науки. Машиностроение и машиноведение

4, 2008 Технические науки. Машиностроение и машиноведение 4, 2008 Технические науки. Машиностроение и машиноведение УДК 539.3:534.1 С. В. Шлычков, С. П. Иванов, С. Г. Кузовков, Ю. В. Лоскутов РАСЧЕТ ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫХ КОНСТРУКЦИЙ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Подробнее

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны Лекция 9. Теорема о разгрузке. Итак, рассмотрен ряд теорий о поведении материала за пределами упругости. Теперь обратимся к другому вопросу: что будет, если начать разгружать образец, который уже находится

Подробнее

Институт вычислительного моделирования СО РАН, Красноярск

Институт вычислительного моделирования СО РАН, Красноярск 16 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 24. Т. 45, N- 4 УДК 539.3 СМЕШАННЫЕ ПОСТАНОВКИ ЗАДАЧ ИЗГИБА ОДНОРОДНЫХ УПРУГИХ ПЛАСТИН И БАЛОК А. Д. Матвеев Институт вычислительного моделирования СО РАН,

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 47 по Сопротивлению материалов 1-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 47 по Сопротивлению материалов 1-й тур 2017 г МИИТ Задача 1 Задача 1 Консольная балка имеет прямоугольное поперечное сечение, но высота балки меняется в соответствии с приведенной на рисунке формулой. Материал балки имеет модуль упругости E. Требуется определить

Подробнее

Для данной балки из условия прочности подобрать номер двутавра. Решение

Для данной балки из условия прочности подобрать номер двутавра. Решение Задача 1 Для данной балки из условия прочности подобрать номер двутавра. Решение Дано: M = 8 кн м P = 4 кн q = 18 кн м L = 8 м a L = 0.5 b L = 0.4 c L = 0.3 [σ] = 160 МПа 1.Находим реакции опор балки:

Подробнее

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 5 193 УДК 539.3 ОБ УРАВНЕНИЯХ КОНЕЧНОГО ИЗГИБА ТОНКОСТЕННЫХ КРИВОЛИНЕЙНЫХ ТРУБ С. В. Левяков Сибирский научно-исследовательский институт авиации

Подробнее

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г)

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г) ПРИЛОЖЕНИЕ 1 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Задача 1 Ступенчатый брус из стали Ст нагружен, как показано на рис. П.1.1, а. Из условия прочности подобрать размеры поперечного сечения. Построить эпюру перемещения

Подробнее

Рис. 5. А.К. Попов ОСЕВОЕ РАСТЯЖЕНИЕ СТЕРЖНЯ В РАМКАХ МОМЕНТНОЙ ТЕОРИИ УПРУГОСТИ

Рис. 5. А.К. Попов ОСЕВОЕ РАСТЯЖЕНИЕ СТЕРЖНЯ В РАМКАХ МОМЕНТНОЙ ТЕОРИИ УПРУГОСТИ Рис. 5 Данные фильмы позволяют преподавателю сократить время изложения данного материала, повысить наглядность, и, в конечном счете, помогает студентам усвоить материал, ведь в нужное время масштабируемый

Подробнее

Ключевые слова: консольная неравнобокая балка, тонкостенный открытый профиль, напряжения нормальные и касательные, прочность.

Ключевые слова: консольная неравнобокая балка, тонкостенный открытый профиль, напряжения нормальные и касательные, прочность. УДК 64.07.014.-415.046. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ ТОНКОСТЕННОЙ БАЛКИ ОТ- КРЫТОГО ПРОФИЛЯ Максак Татьяна Васильевна д.т.н., профессор кафедры Агроинженерии Ачинский филиал Красноярского государственного аграрного

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

ОСНОВЫ СТРОИТЕЛЬНОЙ МЕХАНИКИ ПЛАСТИН

ОСНОВЫ СТРОИТЕЛЬНОЙ МЕХАНИКИ ПЛАСТИН ВН ЗАВЬЯЛОВ, ЕА МАРТЫНОВ, ВМ РОМАНОВСКИЙ ОСНОВЫ СТРОИТЕЛЬНОЙ МЕХАНИКИ ПЛАСТИН Учебное пособие Омск Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего

Подробнее

1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ 3 СОДЕРЖАНИЕ 1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ...4 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ...4 2.1. Цель преподавания дисциплины...4 2.2. Задачи изучения дисциплины...4 2.3. Перечень базовых дисциплин...5 2.4. Перечень дисциплин,

Подробнее

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН. по предмету «Прикладная механика»

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН. по предмету «Прикладная механика» МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Кафедра: «Машины и оборудование пищевой промышленности основы механики» РЕФЕРАТ

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

14.1. Система с двумя степенями свободы

14.1. Система с двумя степенями свободы Глава 14 МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ В разделе МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ вы научитесь определять частоты малых собственных колебаний механической системы с двумя степенями свободы. Другие темы этого раздела,

Подробнее