+ = ψ, то никакого разрыва напряжений

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "+ = ψ, то никакого разрыва напряжений"

Транскрипт

1 Линии разрыва напряжений Итак, линия разрыва напряжений это некоторая линия (поверхность в теле, на которой напряжения терпят разрыв Выделим мысленно в теле слой толщины δ, включающий в себя линию разрыва напряжений (рис, то есть Слой выбирается таким образом, что линия разрыва является предельным случаем слоя при δ Хотя напряжения разрывны, тем не менее условия равновесия выделенного объема должны выполняться На рис изображены действующие на объем касательные напряжения, с учетом парности Напряжения обозначенные индексом - действуют по одну сторону линии разрыва, а обозначенные индексом + по другую Перейдем от системы координат,, к системе s,n, (рис, которая повернута относительно первой на угол α ( рис Тогда: cosα snα При s + рассмотрении пластичного кручения были получены выражения k cosψ и k snψ, в силу этих выражений s k(cosψ cosα + snψ snα k cos( ψ α Аналогичным образом получаем: snα + cosα k sn( ψ α n Устремим δ к нулю, в пределе должны выполняться соотношения + n n и + s s Это не трудно понять, если вспомнить, что в равновесии силы, действующие на тело, должны компенсировать друг друга, и что сила есть произведение напряжения на площадь При δ площади граней, параллельных плоскостям sn и n тоже стремятся к нулю, поэтому напряжение может быть разрывно, s что не приведет к нарушению линии разрыва s + s Иная ситуация с напряжениями n : при δ площади граней, параллельных плоскости s, остаются конечными ( вообще не изменятся, следовательно для равновесия необходимо, чтобы n Перепишем это условие в виде: + n + + sn( ψ α sn( ψ α, где ψ и ψ углы между полным касательным напряжением и осью ( см рис 96 по разные стороны линий разрыва Если ψ + ψ, то никакого разрыва напряжений + нет, поэтому ψ + α π + ( ψ α или + π π α ψ + + ψ +

2 + π Угол ψ + индексом +, угол определяет направление характеристики в области, обозначенной π ψ + - аналогичная величина для второй области Таким образом α есть угол наклона бисектриссы того угла, где прошел разрыв Чтобы лучше пончть вышеизложенные рассуждения, рассмотрим некоторую аналогию Аналогия Прандтля При решении задачи об упругом кручении стержня была введеня функция ϕ:,, для которой было получено уравнение Пуассона ϕ ϕ + ΙΘ, с граничным условием ϕ на контуре L Теперь рассмотрим задачу о мембране Обозначим: w- прогиб мембраны, - давление, T- растягивающая сила на единицу длинны контура мембраны Тогда w w положение мембраны описывается уравнением: + с граничным T условием w То есть математически задача о стержне и о мембране эквивалентны Упругому состоянию стержня соответствует определенная форма мембраны, например, в случае круглого контура ( круглое сечение стержня и круглый конткр мембраны это купол сферы А какая форма соответствует пластическому состоянию стержня? Запишем условие пластичности: + k, или используя определение функции ϕ: k + Это дифференциальное уравнение описывает некоторую поверхность Выясним, что это за поверхность Если некоторая поверхность задана в виде ϕ (,, то для направляющих k косинусов нормали к поверхности справедлива формула: cosυ k + + k cosυ ; k В нашем случае: cosυ ; k cosυ const Таким образом, угол между нормалью и осью постоянный, также поверхности называются: поверхности постоянного ската Если контуром является окружность, то поверхность постоянного ската есть конус Если же контур прямоугольный, то поверхность имеет форму крыши ( см рис 4

3 При небольших давлениях Р мембрана прогибается несильно, так, что она имеет с крышей общие точки только по контуру С увеличением давления появляются области, где мембрана прижимается к крыше, появление этих областей соответствует появлению областей пластичности при кручении стержня Переходу всего стержня в пластическое состояние соответствует момент, при котором мембрана прижимается к крыше по всей поверхности То есть в аналогии Прандтля давление соответствует углу крутки θ в задаче о стержне Предельный крутящий момент Теперь появляется возможность решения конкретных задач Рассмотрим стержень квадратного сечения со стороной а ( рис 5 Как было выяснено выше, существует напряжение, при котором весь стержень переходит в пластическое состояние Это предельное состояние и будем исследовать Пунктиром на рис 5 изображены характеристики, перпендикулярные им стрелки одинаковы по величине напряжения, диагонали квадрата линии разрыва напряжений Опредилим, какой момент, приложеный к стержню соответствует этому состоянию Для этого рассмотрим треугольник OAB Напряжения в нем постоянны и параллельны стороне AB Площадь треугольника S OAB / 4, следовательно сила действующая на него F k, где k - предельное касательное напряжение Путем несложного интегрирования опредилим момент, создаваемый этой силой (рассматривается треугольник OAC: * M kdd k d k 8 * 8 Итак, искомый предельный момент - M k Теперь найдем предельный момент в случае круглого стержня (рис 6 Стержень полностью перешел в пластичное состояние, поэтому напряжения, возникающие в нем, не зависят от радиуса

4 Обозначив текущий радиус через r, получим: cos ψ / r,snψ + ctg ψ r snα Зададим контур стержня: cosα Где а- радиус, а α- угол между касательной к окружности и осью х Предельное напряжение k, следовательно его компоненты: k cosψ k snψ В данном случае функция Φ (ψ тождественно равна нулю (см(7: Φ( ψ ( ψ + ( ψ ctgψ cosψ + snψctgψ Поэтому (см(7: ctg ψ / ( * Предельный момент определяем по формуле: M df (из 7 где df rdrdθ - элемент площади сечения Подставляя сюда напряжения, выраженные через r, получаем: * M k + rdrdθ π k r dr πk r r Наконец, решиим задачу упругого кручения стержня эллиптичекого сечения Уравнение эллипса, как известно есть: + Тогда решение уравнения b ϕ ϕ Пуассона (77 (Л9: + ΙΘ будем искать в виде: ϕ A Условию на контуре ϕ это решение, очевидно, b удовлетворяет Для определения константы А подставим его в уравнение, ΙΘ b откуда находим: A Далее, вспоминая как вводилась функция ϕ, + b A A получаем:, Отсюда видно, что если взять b любую прямую, проходящую через начало координат, то вдоль этой прямой напряжения изменяются по линейному закону, достигая максмума на контуре, причем напавления напряжений, параллельны касательной, проведенной в точке пересечения прямой и контура Опредилим крутящий момент: M ( dd, где интеграл берется по эллипсу Подставляя напряжения и переходя к полярным координатам ( rcosα, brcosα, π π b получаем: M A br drdα πab ΙΘ + b

5 В случае окружности (b A ΙΘ /, и, следовательно момент: 4 M ΙΘπ / Пластическое плоское деформированное состояние Расмотрение задачи будем вести в рамках теории пластического течения Сен- Венана Вспомним некоторые постулатыэтой теории: в пластической области материал несжимаем, поэтому тензор деформаций совпадает с девиатором деформаций; девиатор скоростей деформаций сдвига пропорционален девиатору напряжений ( η ε λs j * j j (58 Л7 Проекци скоростей на X,Y, Z, как обычно, будем обозначать u, v и w соответственно Предположение плосской задачи заключается в том, что скорости изменяются только в плоскости (например XY и, кроме того, отсутствует скорость в направлении, перпендикулярном этой плоскости: u u(,, v v(,, w Скорости деформаций определяются по формуле: u u j ε j +, поэтому j γ γ ; следовательно в тензоре деформаций остается три ненулевых ε компоненты Из соотношения для девиаторов скоростей деформаций и напряжений (формула (58 Л7, получаем, то есть в тензоре напряжений остаются четыре компоненты:,,, Напряжение не равно нулю Действительно, рассмотрим связь ε и S : ( ε ε λ(, откуда следует, что:, где: + + Таким образом ( + Найдем главные напряжения в таком тензоре Для этого вспомним характеристическое уравнение (: det j δ j Раскроем этот опредилитель в нашем случае: ( ( ( Решая квадратное уравнение, находим:, ± + 4 Третий корень и, как было установлено выше, + Легко ( ( видеть, что для найденных напряжений выполняются неравенства: < < Будем считать, что рассматриваемый материал идеально пластичный, тогда условие пластичности Сен-Венана зпишутся следующим образом: ( ( + K S, где K S - константа Сен- 4 Венана Заметим, что если использовать условие пластичности Мизеса, то

6 результат будет тем же, с той лишь разницей, что вместо константы Сен-Венана будет стоять константа Мизеса k μ Обозначим угол между осью Х и направлением главного напряжения через ϕ Тогда напряжения,, напряжений примут следующий вид: k( χ + cos ϕ k( χ cos ϕ ((9 Л k sn ϕ Если ввести новую систему координат можно записать так: ( + + ( cos ϕ ( + ( cos ϕ ( sn ϕ Выше было напсано условие Сен- Венана, в частности ( k Теперь введем новую функцию χ: ( + kχ Сучетом последних двух равенств выражения для, повернутую относительно прежней на угол α (см рис7, то в ней напряжения запишутся так: t k( χ + cos ( ϕ α n k( χ cos ( ϕ α ((9 Л tn k sn ( ϕ α Формулы ((9Л и ((9Л показывают, что нам удалось выразить три гнизвестные через функции Это оказалось возможным, очевидно, из-за того, что напряжения были зависимы Действительно, эти напряжения зависимы, так как должны тождественно удовлетворять условиям пластичности Получим уравнения для определения функций ϕ и χ Если не рассматривать массовые силы, то в уравнениях равновесия останется по слагаемых: + и + Подставляя сюда напряжения из ((9Л, получим: χ χ sn ϕ + cos ϕ, + sn ϕ + cos ϕ Эта система из -х урвнений равновесия содержит -е неизвестные функции, то есть в отличие от упругой задачи, пластическая задача является статически опредилимой t n

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны Лекция 9. Теорема о разгрузке. Итак, рассмотрен ряд теорий о поведении материала за пределами упругости. Теперь обратимся к другому вопросу: что будет, если начать разгружать образец, который уже находится

Подробнее

Подставим эти выражения в последние две системы, и после преобразований уравнения несколько упростятся:

Подставим эти выражения в последние две системы, и после преобразований уравнения несколько упростятся: Запишем приращения функций χ ψ вдоль направления, определённого дифференциалами dx и dy: χ χ dx dy = dχ dy ϕ ϕ dx dy = dϕ y Введём новые функции и следующим образом: = χ ϕ, = χ ϕ. Тогда ϕ = ( ), χ = (

Подробнее

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6 Тема 5 Напряженное и деформированное состояние в точке. Лекция 6 Объемное напряженное состояние. 6. Главные напряжения и главные площадки. 6. Площадки экстремальных касательных напряжений. 6. Деформированное

Подробнее

после интегрирования получаем: = 2 pa, то есть формулу Лапласа. Растягивающие напряжение σ , если считать трубу тонкостенной (h<<a), = p.

после интегрирования получаем: = 2 pa, то есть формулу Лапласа. Растягивающие напряжение σ , если считать трубу тонкостенной (h<<a), = p. УСЛОВИЯ ПЛАСТИЧНОСТИ Рассмотрим круглую трубку длины l, радиуса а, и толщиной h Приложим к ней следующие нагрузки: растягивающую силу Р, крутящий момент М и внутреннее давление р Мысленно вырежем малый

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 4. ОБЪЕМНОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ И ТЕОРИИ ПРОЧНОСТИ

Подробнее

площадке компоненты (σn и τn соответственно). Пусть S- площадь наклонной площадки, тогда равенство сил в направлении нормали запишется в виде:

площадке компоненты (σn и τn соответственно). Пусть S- площадь наклонной площадки, тогда равенство сил в направлении нормали запишется в виде: Круги Мора Рассмотрим некоторый элемент (см. рис. в системе координат главных осей. Так как оси (ось перпендикулярна плоскости рис.- главные, то касательные напряжения на площадках, перпендикулярных к

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

Лекция 13: Классификация квадрик на плоскости

Лекция 13: Классификация квадрик на плоскости Лекция 13: Классификация квадрик на плоскости Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В предыдущих трех

Подробнее

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки Теория напряженного состояния Понятие о тензоре напряжений, главные напряжения Линейное, плоское и объемное напряженное состояние Определение напряжений при линейном и плоском напряженном состоянии Решения

Подробнее

Работа внешних сил. + δ и поверхностные δ. Изменение сил, естественно повлияют (5)

Работа внешних сил. + δ и поверхностные δ. Изменение сил, естественно повлияют (5) Работа внешних сил Рассмотрим некоторое тело, имеющее объём и поверхность Пусть в момент времени t к телу приложены объёмные силы X и поверхностные Pν Эти силы вызывают в теле перемещения относительно

Подробнее

Лекция 3. Плоская задача теории упругости.

Лекция 3. Плоская задача теории упругости. Лекция 3 Плоская задача теории упругости. 3.1 Плоское напряженное состояние. 3. Плоская деформация. 3.3 Основные уравнения плоской задачи. 3.4 Использование функции напряжений 3.5 Решение плоской задачи

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации Теория деформированного состояния Понятие о тензоре деформаций, главные деформации Обобщенный закон Гука для изотропного тела Деформация объема при трехосном напряженном состоянии Потенциальная энергия

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

1.4. ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА, МОМЕНТА ИМПУЛЬСА И ЭНЕРГИИ. и ее масса и скорость). Из закона изменения импульса системы

1.4. ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА, МОМЕНТА ИМПУЛЬСА И ЭНЕРГИИ. и ее масса и скорость). Из закона изменения импульса системы Импульс системы n материальных точек ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА, МОМЕНТА ИМПУЛЬСА И ЭНЕРГИИ где импульс i-й точки в момент времени t ( i и ее масса и скорость) Из закона изменения импульса системы где

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

Деформированное состояние в точке. Связь между деформациями и напряжениями

Деформированное состояние в точке. Связь между деформациями и напряжениями Деформированное состояние в точке. Связь между деформациями и напряжениями. Деформированным состоянием в точке называется (-ются) ОТВТ: ) совокупность деформаций в точке; ) совокупность нормальных и касательных

Подробнее

Тычина К.А. С л о ж н о е н а п р я ж ё н н о е с о с т о я н и е

Тычина К.А. С л о ж н о е н а п р я ж ё н н о е с о с т о я н и е www.tchina.pro Тычина К.А. IX С л о ж н о е н а п р я ж ё н н о е с о с т о я н и е П о л н о е н а п р я ж е н и е в п р о и з в о л ь н о й п л о щ а д к е Совокупность напряжений для всего множества

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

= ε i j (t). Как отмечалось выше, напря- = u

= ε i j (t). Как отмечалось выше, напря- = u Лекция 6 Итак, нам известно, что в упругом теле напряжения и деформации связаны законом Гука. Далее мы установили критерий пластичности. Попытаемся выяснить теперь, как связаны деформации и напряжения

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

Решение типового варианта «Комплексные числа. Многочлены и рациональные дроби» (результат запишите в тригонометрической форме),

Решение типового варианта «Комплексные числа. Многочлены и рациональные дроби» (результат запишите в тригонометрической форме), типового варианта «Комплексные числа Многочлены и рациональные дроби» Задание Даны два комплексных числа и cos sn Найдите и результат запишите в алгебраической форме результат запишите в тригонометрической

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ.

ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ЛЕКЦИЯ 5 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. 1 1. Уравнение поверхности и уравнения линии в пространстве. Геометрический смысл уравнений В аналитической геометрии всякую поверхность рассматривают как совокупность

Подробнее

p x = σ x l + τ yx m + τ zx n, σ ν = p x l + p y m + p z n. (11.1.5)

p x = σ x l + τ yx m + τ zx n, σ ν = p x l + p y m + p z n. (11.1.5) ГЛАВА 11 РАСЧЕТ НА ПРОЧНОСТЬ ПРИ СЛОЖНОМ НАПРЯЖЕННОМ СО- СТОЯНИИ В гл. 9 в примерах 9.3, 9.4 мы столкнулись с напряженными состояниями, которые отличаются от простых состояний растяжения-сжатия и чистого

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Хабаровск Издательство ТОГУ

Хабаровск Издательство ТОГУ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет».частные

Подробнее

b + a + l + (Рис. 1) (8.2)

b + a + l + (Рис. 1) (8.2) Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

Подробнее

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 8.1. Функции нескольких переменных. Частные производные П л а н 1. Понятие функции двух и нескольких переменных.. Предел и непрерывность

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости

Подробнее

α, отсчитываемый от положительного направления оси до прямой L против

α, отсчитываемый от положительного направления оси до прямой L против ЛЕКЦИЯ 9 Уравнение прямой на плоскости угол Уравнение прямой с угловым коэффициентом Пусть дана некоторая прямая L Углом наклона прямой L к оси O называется α, отсчитываемый от положительного направления

Подробнее

z удовлетворяют уравнению F ( x,

z удовлетворяют уравнению F ( x, Аналитическая геометрия в пространстве В главе будут рассмотрены некоторые линии и поверхности в пространстве Будем исходить из наглядного представление о линии и поверхности известного из курса математики

Подробнее

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА М-8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ Цель работы: определение модуля сдвига и момента инерции диска методом крутильных колебаний. Приборы и принадлежности:

Подробнее

1.5. ВСЕМИРНОЕ ТЯГОТЕНИЕ

1.5. ВСЕМИРНОЕ ТЯГОТЕНИЕ 15 ВСЕМИРНОЕ ТЯГОТЕНИЕ Согласно закону всемирного тяготения, сила с которой материальная точка массой притягивает материальную точку массой, задается следующим выражением:, (1) где и радиус-векторы точек

Подробнее

Задачи по аналитической геометрии 2012, мех-мат. МГУ

Задачи по аналитической геометрии 2012, мех-мат. МГУ Задачи по аналитической геометрии мех-мат МГУ Задача Дан тетраэдр O Выразить через векторы O O O вектор EF с началом в середине E ребра O и концом в точке F пересечения медиан треугольника Решение Пусть

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Доц. Кузьменко В.С. ЛАБОРАТОРНАЯ РАБОТА -: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Студент группы Допуск Выполнение Защита Цель работы: изучить виды деформации твердого тела и определить

Подробнее

Глава 9 Кривые на плоскости. Кривые второго порядка

Глава 9 Кривые на плоскости. Кривые второго порядка Глава 9 Кривые на плоскости. Кривые второго порядка 9. Основные понятия Говорят, что кривая Г в прямоугольной системе координат Оху имеет уравнение F (, )=0, если точка М(х, у) принадлежит кривой в том

Подробнее

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления.

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления. Лекция 14 Сложное сопротивление. Косой изгиб. Определение внутренних усилий, напряжений, положения нейтральной оси при чистом косом изгибе. Деформации при косом изгибе. 14. СЛОЖНОЕ СОПРОТИВЛЕНИЕ. КОСОЙ

Подробнее

1 = = 0. (1) R + 1 = C, (2) 1(R)

1 = = 0. (1) R + 1 = C, (2) 1(R) . Электростатика. Электростатика Урок 7 Разделение переменных в сферической и цилиндрической системах координат Оператор Лапласа в сферической системе координат записывается в виде = 2 = 2 ) + sin θ )

Подробнее

Курс: Прикладные задачи МСС. По Ширко И.В., МФТИ

Курс: Прикладные задачи МСС. По Ширко И.В., МФТИ Курс: Прикладные задачи МСС. По Ширко И.В., МФТИ Курс составлен на основе лекций, читающихся для студентов 3 курса МФТИ факультета аэрофизики и космических исследований. Предполагает знание основ тензорного

Подробнее

ПЛАСТИЧЕСКОЕ ТЕЧЕНИЕ БЫСТРОВРАЩАЮЩЕЙСЯ КОНИЧЕСКОЙ ТРУБЫ. (Институт механики НАН РА)

ПЛАСТИЧЕСКОЕ ТЕЧЕНИЕ БЫСТРОВРАЩАЮЩЕЙСЯ КОНИЧЕСКОЙ ТРУБЫ. (Институт механики НАН РА) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 007 Задоян М А ПЛАСТИЧЕСКОЕ ТЕЧЕНИЕ БЫСТРОВРАЩАЮЩЕЙСЯ КОНИЧЕСКОЙ ТРУБЫ (Институт механики НАН РА) Исследуется предельное пластическое состояние

Подробнее

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12 Контрольная работа. Даны матрицы A, B и D. Найти AB 9D, если: 4 7 ( ) 6 9 6 A = 3 9 7, B =, D = 3 8 3. 3 7 7 3 7 Перемножим матрицы A 3 и B 3. Результирующая будет C размера 3 3, состоящая из элементов

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными.

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными. ЛЕКЦИЯ N9. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными..дифференциальные уравнения. Общие понятия.....дифференциальные уравнения

Подробнее

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями)

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) 10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Представьте выражение в виде многочлена стандартного вида и найдите его

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: В.П.Белкин

РЕШЕНИЕ ЗАДАЧ по теме АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Составитель: В.П.Белкин РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: ВПБелкин Занятие Прямая на плоскости Пример Определить коэффициенты k, b в уравнении прямой y = kx+ b, если прямая определена уравнением x y=

Подробнее

УРАВНЕНИЯ ПЛОСКОГО НАПРЯЖЕННОГО СОСТОЯНИЯ ПРИ УСЛОВИИ ПЛАСТИЧНОСТИ МИЗЕСА ШЛЕЙХЕРА

УРАВНЕНИЯ ПЛОСКОГО НАПРЯЖЕННОГО СОСТОЯНИЯ ПРИ УСЛОВИИ ПЛАСТИЧНОСТИ МИЗЕСА ШЛЕЙХЕРА 44 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2004. Т. 45, N- 6 УДК 59.74 УРАВНЕНИЯ ПЛОСКОГО НАПРЯЖЕННОГО СОСТОЯНИЯ ПРИ УСЛОВИИ ПЛАСТИЧНОСТИ МИЗЕСА ШЛЕЙХЕРА А. М. Коврижных Новосибирский военный институт,

Подробнее

Вычисление объемов тел с помощью поверхностного интеграла

Вычисление объемов тел с помощью поверхностного интеграла Глава 8 Вычисление объемов тел с помощью поверхностного интеграла 8.1 Необходимые сведения из теории До сих пор мы учились вычислять непосредственно поверхностные интегралы. Во многих приложениях однако

Подробнее

КОНТРОЛЬНАЯ РАБОТА Найти косинус угла между векторами BA и BC, если ( 3; 2;3) ; ; ; ;

КОНТРОЛЬНАЯ РАБОТА Найти косинус угла между векторами BA и BC, если ( 3; 2;3) ; ; ; ; КОНТРОЛЬНАЯ РАБОТА Элементы векторной алгебры аналитической геометрии и линейной алгебры Найти косинус угла между векторами BA и BC если C Сделать чертеж B A Найти косинус угла между векторами AB и AC

Подробнее

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =.

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =. ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) Определение векторного поля Определение векторной линии Задача о работе силового поля Полем называется множество, элементы которого удовлетворяют

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

Прямая на плоскости. Степень уравнения (1) определяет порядок линии. Будем говорить, что уравнение (1) определяет (задает) линию L.

Прямая на плоскости. Степень уравнения (1) определяет порядок линии. Будем говорить, что уравнение (1) определяет (задает) линию L. Прямая на плоскости Общее уравнение прямой. Прежде чем вводить общее уравнение прямой на плоскости введем общее определение линии. Определение. Уравнение вида F(x,y)=0 (1) называется уравнением линии L

Подробнее

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду:

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду: Пример Вычислить определитель Решение типовых задач 5 5 7, разложив его по 9 9 элементам первой строки 7 5 7 5 5 6 9 9 9 9 Пример Вычислить определитель, приведя его к треугольному виду: 5 7 Обозначим

Подробнее

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2)

(x x 0 ) 2 + (y y 0 ) 2 = R 2. (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2. A (x x 0 ) + B (y y 0 ) = 0. (1) Ax + By + C = 0. (2) Занятие 9 Прямая на плоскости и плоскость в пространстве На этом занятии мы будем заниматься кривыми и поверхностями, которые задаются простейшими уравнениями алгебраическими уравнениями первой степени.

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ УПРУГОСТИ

ЭЛЕМЕНТЫ ТЕОРИИ УПРУГОСТИ РОСЖЕЛДОР Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ростовский государственный университет путей сообщения» (ФГБОУ ВПО РГУПС) ТВ Суворова ЭЛЕМЕНТЫ

Подробнее

Лекция 7. Работа. Теорема об изменении кинетической энергии

Лекция 7. Работа. Теорема об изменении кинетической энергии Лекция 7 Работа. Теорема об изменении кинетической энергии. Консервативные силы. Потенциальная энергия частицы в потенциальном поле. Примеры: упругая сила, гравитационное поле точечной массы. Работа. Теорема

Подробнее

Поверхностные интегралы 1-го типа (продолжение)

Поверхностные интегралы 1-го типа (продолжение) Глава 5 Поверхностные интегралы -го типа (продолжение) 5 Задачи в классе Задача 5 (4349) Вычислить интеграл где часть поверхности конуса z d, x = ρ cos ϕ sin α, y = ρ sin ϕ sin α, z = ρ cos α ( ( ρ h,

Подробнее

Определение модуля Юнга по прогибу стержня.

Определение модуля Юнга по прогибу стержня. Санкт-Петербургский государственный университет Физический факультет Первая физическая лаборатория Лабораторная работа 6 Определение модуля Юнга по прогибу стержня. Санкт-Петербург 007 г. Методическое

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

Кривые второго порядка

Кривые второго порядка Министерство образования и науки Российской Федерации Ярославский государственный университет им. П. Г. Демидова Кафедра алгебры и математической логики С. И. Яблокова Кривые второго порядка Часть Практикум

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

Московская городская олимпиада по теоретической механике. МЭИ(ТУ)

Московская городская олимпиада по теоретической механике. МЭИ(ТУ) Московская городская олимпиада по теоретической механике. МЭИ(ТУ) - 010 Задача 1. Система сил приложена к точкам (0, 0, a), (0, b, 0) и (c, 0, 0) твердого тела. Дано: F 1 = 4F F 4, F 4 = 1кН, F 5 = F 3.

Подробнее

Лекция 16: Классификация квадрик в пространстве

Лекция 16: Классификация квадрик в пространстве Лекция 16: Классификация квадрик в пространстве Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Данная лекция

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

Лекция 10. Касательные напряжения при изгибе

Лекция 10. Касательные напряжения при изгибе Лекция 10. Касательные напряжения при изгибе 1. Формула Журавского для касательных напряжений. 2. Касательные напряжения в тонкостенных сечениях. 3. Центр изгиба. 1 Рассмотрим прямой изгиб балки с выпуклым

Подробнее

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3)

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3) Полная система уравнений теории упругости si F () i Лекция Полная система уравнений теории упругости. Уравнения совместности деформаций. Уравнения Бельтрами. Уравнения Ламе. Плоское напряженное и плоское

Подробнее

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения»

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Государственное образовательное учреждение Среднего профессионального образования «Котовский индустриальный техникум» МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Котовск, 4 г. Учебное

Подробнее

Задачи с параметром (графический прием решения) Введение. План решения задач с параметром графическим методом

Задачи с параметром (графический прием решения) Введение. План решения задач с параметром графическим методом Задачи с параметром (графический прием решения) Введение Применение графиков при исследовании задач с параметрами необычайно эффективно. В зависимости от способа их применения выделяют два основных подхода.

Подробнее

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн.

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

Подробнее

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 26. Т. 47, N- 6 129 УДК 539.3 ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ В. В. Калашников, М. И. Карякин Ростовский

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Консультация 6 ПРЯМАЯ НА ПЛОСКОСТИ ЗАДАЧА 1. Через точку M = (4, 3) провести прямую так чтобы площадь треугольника, образованного этой прямой и осями координат, была равна 3.

Подробнее

Единый государственный экзамен по математике, 2007 год демонстрационная версия. Часть 1

Единый государственный экзамен по математике, 2007 год демонстрационная версия. Часть 1 Единый государственный экзамен по математике, 7 год демонстрационная версия Часть A Найдите значение выражения 6p p при p = Решение Используем свойство степени: Подставим в полученное выражение Правильный

Подробнее

Кривые второго порядка

Кривые второго порядка Министерство образования и науки Российской Федерации Ярославский государственный университет им. П. Г. Демидова Кафедра алгебры и математической логики Кривые второго порядка Часть I Методические указания

Подробнее

7.8. Упругие силы. Закон Гука

7.8. Упругие силы. Закон Гука 78 Упругие силы Закон Гука Все твердые тела в результате внешнего механического воздействия в той или иной мере изменяют свою форму, так как под действием внешних сил в этих телах изменяется расположение

Подробнее

Приложения поверхностного интеграла 1-го типа

Приложения поверхностного интеграла 1-го типа Глава 6 Приложения поверхностного интеграла 1-го типа 6.1 Необходимые сведения На прошлых занятиях мы уже освоили методы вычисления поверхностных интегралов 1-го типа, оперируя при этом преимущественно

Подробнее

11 класс, базовый уровень. Задание 1. Вариант 0 (демонстрационный, с решениями)

11 класс, базовый уровень. Задание 1. Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Разложите на множители: 3 11 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) b 3 + 1 Найдите числа A, B, C, при которых справедливо

Подробнее

Тема 12 «Системы двух уравнений с двумя неизвестными».

Тема 12 «Системы двух уравнений с двумя неизвестными». Тема 1 «Системы двух уравнений с двумя неизвестными». Системой уравнений называется некоторое количество уравнений, которые должны выполняться одновременно. Решением системы уравнений с двумя переменными

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ ЛЕКЦИЯ 7 Элементы теории напряженного состояния. 1 Напряженное состояние в точке (НС)

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ ЛЕКЦИЯ 7 Элементы теории напряженного состояния. 1 Напряженное состояние в точке (НС) В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 7 Элементы теории напряженного состояния 1 Напряженное состояние в точке (НС) Как было сказано ранее, НС в точке это совокупность напряжений,

Подробнее

Кривые второго порядка.

Кривые второго порядка. Кривые второго порядка. Определение : Линией кривой) второго порядка называется множество {М} точек плоскости, декартовы координаты X, Y) которых удовлетворяют алгебраическому уравнению второй степени:,

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

Дифференциальные характеристики кривых линий

Дифференциальные характеристики кривых линий Лекция 6. Кривые линии Кривая линия (или просто кривая) - это геометрическое место точек, координаты которых являются функциями одной переменной. Если уравнение кривой в декартовой системе координат алгебраическое,

Подробнее

Решение задач заочного тура 2011

Решение задач заочного тура 2011 Решение задач заочного тура 0 I Математический блок Задача Найдите число натуральных корней уравнения Ответ: 00 0 решений Решение задачи Представим число в виде Тогда правая часть данного уравнения равна

Подробнее

ЛЕКЦИЯ 11. Линии второго порядка. В качестве примера найдем уравнения задающие окружность, параболу, эллипс и. Окружность.

ЛЕКЦИЯ 11. Линии второго порядка. В качестве примера найдем уравнения задающие окружность, параболу, эллипс и. Окружность. ЛЕКЦИЯ Линии второго порядка гиперболу В качестве примера найдем уравнения задающие окружность, параболу, эллипс и Окружность Окружностью называется множество точек плоскости, равноудалённых от заданной

Подробнее

1. Геометрия комплексных чисел

1. Геометрия комплексных чисел . Геометрия комплексных чисел В первой главе комплексные числа изучались с алгебраической точки зрения. Мы рассмотрели основные алгебраические операции и свойства комплексных чисел. Но комплексные числа

Подробнее

1. Геометрия масс (продолжение) Рис. 10.1

1. Геометрия масс (продолжение) Рис. 10.1 ЛЕКЦИЯ 10 ЭЛЛИПСОИД ИНЕРЦИИ. КИНЕТИЧЕСКИЙ МОМЕНТ И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ПРИ ВРАЩЕНИИ ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ. ДИНАМИЧЕСКИЕ УРАВНЕНИЯ ЭЙЛЕРА. СЛУЧАЙ ЭЙЛЕРА 1. Геометрия масс (продолжение) Рис. 10.1 Выберем

Подробнее

Глава 6 КООРДИНАТЫ И ВЕКТОРЫ

Глава 6 КООРДИНАТЫ И ВЕКТОРЫ Глава 6 КООРДИНАТЫ И ВЕКТОРЫ 6.1. КООРДИНАТЫ И ВЕКТОРЫ НА ПРЯМОЙ 6.1.1. Координатная ось. Координата точки на оси. Длина отрезка с заданными координатами концов. Координата точки, делящей отрезок в заданном

Подробнее

Тройной интеграл. 1 Понятие тройного интеграла. Волченко Ю.М. Содержание лекции. f (P i ) V i (1) i=1

Тройной интеграл. 1 Понятие тройного интеграла. Волченко Ю.М. Содержание лекции. f (P i ) V i (1) i=1 Тройной интеграл Волченко Ю.М. Содержание лекции Понятие тройного интеграла. Условия его существования. Теорема о среднем. Вычисление тройного интеграла в декартовых и криволинейных координатах. Тройной

Подробнее

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3.. Напряжения Уровень оценки прочности по нагрузке отличают простота и доступность. Расчеты при этом чаще всего минимальны - требуется определить только саму нагрузку. Для

Подробнее

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Тема ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Лекция.. Прямые на плоскости П л а н. Метод координат на плоскости.. Прямая в декартовых координатах.. Условие параллельности и перпендикулярности

Подробнее

МАТЕМАТИКА ЕГЭ 2011, ЗАДАЧИ С2 (лекция для учителей в издательстве «Бином» ) Замечания и пожелания направляйте по адресу:

МАТЕМАТИКА ЕГЭ 2011, ЗАДАЧИ С2 (лекция для учителей в издательстве «Бином» ) Замечания и пожелания направляйте по адресу: МАТЕМАТИКА ЕГЭ 0, ЗАДАЧИ С (лекция для учителей в издательстве «Бином» 000) Замечания и пожелания направляйте по адресу: prokof@nderu Различные методы решения задач на определение углов в пространстве

Подробнее

5. Динамика вращательного движения твердого тела

5. Динамика вращательного движения твердого тела 5. Динамика вращательного движения твердого тела Твердое тело это система материальных точек, расстояния между которыми не меняются в процессе движения. При вращательном движении твердого тела все его

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

Двумерное установившееся движение вязкой жидкости 1

Двумерное установившееся движение вязкой жидкости 1 КЛАССИЧЕСКИЕ РАБОТЫ. ОБЗОРЫ Двумерное установившееся движение вязкой жидкости 1 Дж. Б. Джеффри Цель данной работы заключается в поиске некоторых новых решений уравнений движения вязкой жидкости. Имеется

Подробнее