1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

Размер: px
Начинать показ со страницы:

Download "1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)"

Транскрипт

1 Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ -го порядка и некоторые задачи для нелинейных ОДУ -го порядка Подробно будет изучена краевая задача с граничными условиями -го рода (Дирихле) и отмечены некоторые особенности задач с граничными условиями -го рода (Неймана) и 3-го рода Краевая задача для линейного дифференциального уравнения второго порядка Постановка задачи Рассмотрим линейное ОДУ -го порядка + a + a u = f d d < < с дополнительными условиями первого рода (задача Дирихле) u = u u = u предполагая что a a f [ ] Определение Классическим решением задачи Дирихле будем называть функцию u удовлетворяющую уравнению и краевым (граничным) условиям [ ] Замечание В случае граничных условий -го и 3-го рода u ( ) [ ] Преобразуем уравнение к более удобному для дальнейшего исследования виду a d Умножим уравнение на p = e > p = a p Получим p a p p a u p f d + + = d p q f или d L[ u] p q u f d = d Далее везде где не оговорено другое будем использовать обозначение d L[ u] = p q u d d Замена переменных u y v v и удовлетворяет краевым = + где [ ] u u условиям например u = y + u + приводит задачу к задаче с нулевыми граничными условиями Ly [ ] = f Lv [ ] f < < y = y = f [ ]

2 Поэтому не ограничивая общности рассмотрим краевую задачу Ly [ ] = f < < [ ] [ ] B y = B y = где операторы краевых условий могут иметь вид: B y y [ ] [ ] B y [ ] B y dy d или dy + hy d где h - постоянная (3) Формулы Грина Тождество Лагранжа Получим Пусть u v [ ] Умножим L[ u ] на v и проинтегрируем от до по частям dv v( ξ ) L[ u] ( ξ) = p( ξ) v( ξ) p( ξ) q( ξ) u( ξ) v( ξ) + (4) первая формула Грина Меняя в (4) местами функции v и u и вычитая почленно полученное соотношение из (4) получим вторая формула Грина ( vl[ u] ul[ v] ) = p ( ξ) v ( ξ) u ( ξ) dv Следствие Нетрудно доказать (проведите необходимые выкладки самостоятельно) что на подпространстве дважды непрерывно дифференцируемых функций удовлетворяющих однородным краевым условиям оператор d L[ u] = p q u d d является самосопряженным те ( ulv [ ]) = ( vlu [ ]) где скалярное произведение ( uv ) = uvd Для этого нужно произвести интегрирование по частям в равенстве ( ulv [ ]) = ( vlu [ ]) и учесть граничные условия причем в случае граничных условий 3 го рода при = имеем + hu = = hu d d dv dv + hv = = hv d d dv p v u = p ( v hu + u hv ) = Аналогично обращается в подстановка в точке = Заменим во второй формуле Грина верхний предел интегрирования на [ ] dv ( vl[ u] ul[ v] ) = p ( ξ) v ( ξ) u ( ξ)

3 и продифференцируем обе части написанного равенства по переменной : d dv vl[ u] ul[ v] = p v u d d d Подставив вместо uи v функции y ( ) и y ФСР однородного уравнения получим d dy dy y L[ y ] y L[ y ] = p y y = тождество Лагранжа d d d = = W Далее интегрируя последнее равенство будем иметь p W = p W = формула Лиувилля Остроградского 3 Теорема единственности решения неоднородной краевой задачи Рассмотрим однородную краевую задачу (однородное уравнение и нулевые краевые условия): Ly [ ] = < < (5) N [ y] = N [ y] = Если у такой задачи есть ненулевое решение то его можно трактовать как собственную функцию задачи Штурма Лиувилля отвечающую нулевому собственному значению: Ly [ ] = y < < λ [ ] [ ] B y = B y = Теорема Если однородная краевая задача имеет только тривиальное решение то соответствующая ей неоднородная задача имеет не более одного решения Доказательство Пусть y ( ) и y решения задачи Ly [ ] = f < < B [ y] = B [ y] = тогда w = y y решение однородной краевой задачи Lw [ ] = < < B [ w] = B [ w] = которая по условию имеет только нулевое решение те w или y y 4 Теорема о достаточных условиях единственности решения неоднородной краевой задачи Сформулируем некоторые достаточные условия того что однородная краевая задача имеет только тривиальные решения Теорема Пусть в операторе L[ u ] q Тогда однородная краевая задача имеет: ) в случае граничных условий го рода только тривиальное решение; ) в случае граничных условий го рода только тривиальное решение если q > или нетривиальное решение u = cont если q ; Доказательство Пусть y = u решение однородной задачи Применим первую формулу Грина: u( ξ ) L[ u] ( ξ ) d ξ p( ξ ) u( ξ ) p q u d d ξ d ξ ξ = = ξ + ξ ξ = Далее

4 = p( ξ) u( ξ) p( ξ) q( ξ) u ( ξ) p( ξ) q( ξ) u ( ξ) + + = = Так как p > q то оба слагаемых под интегралом неотрицательны а равенство возможно лишь в когда d Поэтому u = cont независимо от граничных условий ) Если заданы граничные условия го рода u = u = тогда u = cont = u = u = ) В случае граничных условий го рода: если q > u = cont = d если q 5 Функции Грина и ее свойства Определение Функцией Грина краевой задачи называется функция -х переменных G ( ) такая что ) G ( ) определена и непрерывна в квадрате { } { } ; ) G ( ) удовлетворяет однородному уравнению L[ G ] = при < < ; 3) G ( ) удовлетворяет нулевым граничным условиям; 4) В точке = первая производная имеет разрыв I рода: ( ) = + = ( + ) ( ) = d d d p = Замечание Из определения функции G() следует что ) ( + ) ( ) = ; d d p d d = + ; d + = d а) ( ) ( ) б) Теорема 3 Пусть однородная краевая задача (5) имеет только тривиальное решение Тогда существует единственное решение неоднородной краевой задачи (3) которое может быть выражено через функцию Грина: y = G ( ) f( d ) Доказательство Рассмотрим первую краевую задачу L[ y] = f < < y = y = где < p ; q f [ ] Решением данной краевой задачи будем считать дважды дифференцируемую функцию удовлетворяющую уравнению и граничным условиям Пусть соответствующая однородная задача имеет только нулевое решение те Ly [ ] = y y = y =

5 Тогда неоднородная (при f ) краевая задача имеет единственное решение (Теорема ) Построим это решение Пусть известны два нетривиальных решения двух задач Коши для однородного уравнения с начальными условиями в точках = и = : Ly [ ] = Ly [ ] = y : и y : y = y = Тогда y так как в противном случае Ly [ ] = y y = y = Аналогично y иначе Ly [ ] = y y = y = Функции y ( ) и y - линейно независимы на отрезке [ ] Действительно если бы y и y были линейно зависимы например y = y ( ) тогда y = y = что противоречит тому что y 3 Разрешим исходное уравнение относительно старшей производной p q f y + y y = = f p p p и будем строить его решение методом вариации постоянных в виде y = ( y ) + ( y ) Дифференцируя получим СЛАУ для и : ( y ) + ( y ) = y + y = f Определитель данной системы есть определитель Вронского Δ = W который отличен от нуля так как из результата п следует что функции y y - линейно независимы Поэтому существует единственное решение СЛАУ которое можно найти по формулам Крамера: Δ = y y yf yf f y = Δ = y f = = y f y f p( W ) = p( W ) Из формулы Лиувилля-Остроградского имеем pw = = pw откуда = y f = y f Далее путем интегрировании найдем = y( ) f( ) d+ = + = + y f d y f d Подставляя ( ) и ( ) в формулу для решения получим y y y = y f d y f d y y Из граничных условий определим константы и :

6 = y y y = y( ) f( d ) y( ) f( d ) y y = = = = = y y y = y f d y f d y y = = = Следовательно = y y y y = + y f d f d Обозначим G ( ) = y y y y = y y p W y y где G ( ) - функция Грина Из вида функции Грина следует что она симметричная те G ( ) = y y( ) y y( ) = y y( ) p W y y( ) (6) Следовательно y = G ( ) f( d ) что и требовалось доказать Замечание (физический смысл функции Грина) Рассмотрим краевую задачу: Ly [ ] = δ ( ) ( ) y = y = те уравнение с внешним источником сосредоточенным в точке (; ) Решение методом функции Грина дает y = G ( ) δ ( ) d= G ( ) те G ( ) это значение решения y в точке (; ) если в точке расположен источник f = δ ( ) Пример (статическая задача о профиле струны) Рассмотрим следующую задачу y = f < < f [] y = y = те в используемых обозначениях p q а L[ y] y Решение Рассмотрим однородную задачу которая очевидно имеет только тривиальное решение: y = y = + y = = y = = y Следовательно исходная задача имеет единственное решение Построим функцию Грина Выберем два решения каждое из которых удовлетворяет одному из граничных условий:

7 y = y : y = y = y = y : y = y = Далее воспользуемся формулой (6) и получим ( ) G ( ) = ( ) где = p W = = Следовательно G ( ) = Иногда бывает удобнее не использовать готовую формулу (6) ввиду ее трудной для запоминания структуры а действовать непосредственно по определению Итак используя полученные выше функции y ( ) и y ищем функцию Грина в виде y = G ( ) = y = ( )( ) Из условий непрерывности функции Грина и скачка ее производной в точке = ( ) = ( ) ( ) = ( ) = = откуда тот же что и выше окончательный результат ( ) G ( ) = ( ) Теперь решение задачи запишем в виде y = ( ) = получим G f( d ) Физический смысл полученного решения профиль струны при статической нагрузке f ( ) В частности если нагрузка сосредоточена например в точке = то интеграл 3 вычисляется Точный ответ и соответствующий профиль струны приведены ниже: y = δ f y = G( ) f( d ) = G = 3 y y = = ( ) 3 3


Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

14. Задача Штурма-Лиувилля.

14. Задача Штурма-Лиувилля. Лекция 8 4 Задача Штурма-Лиувилля Рассмотрим начально-краевую задачу для дифференциального уравнения в частных производных второго порядка описывающего малые поперечные колебания струны Струна рассматривается

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

(иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные можно рассматривать как равноправные

(иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные можно рассматривать как равноправные Основные типы ДУ 1. Уравнения с разделенными переменными ДУ (3) всегда можно записать в виде M (, d N(, d 0 (иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

{ общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского -

{ общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского - { общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского - вронскиан однородного линейного дифференциального уравнения

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

Линейные неоднородные уравнения n-го порядка. Метод Лагранжа

Линейные неоднородные уравнения n-го порядка. Метод Лагранжа Линейные неоднородные уравнения n-го порядка. Метод Лагранжа Лекция 6 В. Н. Задорожный, В. Ф. Зальмеж, А. Ю. Трифонов, А. В. Шаповалов Курс: Дифференциальные уравнения Семестр 3, 2009 год portal.tpu.ru

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или (

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или ( Глава 8 Уравнения в частных производных первого порядка Лекция 3 Общее уравнение в частных производных первого порядка имеет вид,,,, F x 0,, x z = или ( F x, z,gradz = 0 Проблема существования и единственности

Подробнее

10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Понятие об обыкновенном дифференциальном уравнении и его решении Обыкновенным дифференциальным уравнением называется уравнение содержащее независимую

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Основные определения Нормальная система дифференциальных уравнений называется линейной если функции f f K f линейны относительно неизвестных функций Из этого

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение.

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение. Лекция Дифференциальные уравнения -го порядка Основные виды дифференциальных уравнений -го порядка и их решение Дифференциальные уравнения является одним из самых употребительных средств математического

Подробнее

Уравнения первого порядка

Уравнения первого порядка Глава 1. Введение Лекция 1 1. Понятие дифференциального уравнения. Основные определения. 2. Общее решение дифференциального уравнения, общий интеграл. 3. Постановка основных задач для обыкновенных дифференциальных

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Краевые задачи. ни разу, все функции комплекснозначные. , такое, что (2) верно. (0,0,0) задача имеет хоть одно решение, а именно ) ~ (

Краевые задачи. ни разу, все функции комплекснозначные. , такое, что (2) верно. (0,0,0) задача имеет хоть одно решение, а именно ) ~ ( Краевые задачи L ни разу все функции комплекснозначные Определение: - задачей называют задачу найти такое что верно задача имеет хоть одно решение а именно Предложение : - линейный оператор L и - линейные

Подробнее

ГЛАВА III. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ГЛАВА III. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ГЛАВА III СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 7 Задачи приводящие к понятию систем дифференциальных уравнений Рассмотрим систему уравнений m m m F m m m F 7 LLLLLLLLLLLLLLLLLLLLL L L m m m F где независимая

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

Интегралы и дифференциальные уравнения. Лекции 18-19

Интегралы и дифференциальные уравнения. Лекции 18-19 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 18-19 Линейные

Подробнее

4. Задачи на условный экстремум. Рассмотрим задачу об отыскании экстремума функционала b. a, с граничными условиями. удовлетворяют уравнению связи

4. Задачи на условный экстремум. Рассмотрим задачу об отыскании экстремума функционала b. a, с граничными условиями. удовлетворяют уравнению связи Лекция 0 4 Задачи на условный экстремум Рассмотрим задачу об отыскании экстремума функционала V [ ] = F(,,,,,, где = (, = (, с граничными условиями ( = 0, ( = 0; ( =, ( = Кроме того, предположим, что функции

Подробнее

Лекция2. Дифференциальные уравнения первого порядка

Лекция2. Дифференциальные уравнения первого порядка Лекция. Дифференциальные уравнения первого порядка Уравнения с разделяющимися переменными... Однородные уравнения... 3 Линейные уравнения первого порядка.... 7 Линейные однородные дифференциальные уравнения....

Подробнее

2 Решение ищем МЕТОДОМ РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ в виде:

2 Решение ищем МЕТОДОМ РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ в виде: функции Бесселя 5 6/7 73 7 Найти решение смешанной задачи: Δ y s < π > s < π π где - минимальный положительный корень Бесселя ( Уроев стр 5 7 (пример стр 69 7 пример стр 7-7 Фарлоу У с ЧП для научных работников

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

9.1 Классические ортогональные полиномы Определение классических ортогональных полиномов. τ(x) = Ax + B, (9.3)

9.1 Классические ортогональные полиномы Определение классических ортогональных полиномов. τ(x) = Ax + B, (9.3) Классические ортогональные полиномы Определение классических ортогональных полиномов Основные свойства классических ортогональных полиномов 9 Лекция 9.1 Классические ортогональные полиномы 9.1.1 Определение

Подробнее

Лекция 5 Решение волнового уравнения. 1. Решение Даламбера 2. Формула Даламбера 3. Решение 1-й начально краевой задачи для волнового уравнения

Лекция 5 Решение волнового уравнения. 1. Решение Даламбера 2. Формула Даламбера 3. Решение 1-й начально краевой задачи для волнового уравнения Лекция 5 Решение волнового уравнения 1. Решение Даламбера 3. Решение 1-й начально краевой задачи для волнового уравнения 1.Решение Даламбера Рассмотрим уравнение колебаний однородной струны 2 u t 2 = 2

Подробнее

Методические указания по курсу «Интегральные уравнения»

Методические указания по курсу «Интегральные уравнения» Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный исследовательский ядерный университет «МИФИ» Волгодонский инженерно-технический институт

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 43 Аннотация Нормальные системы ДУ Задача и теорема Коши Частные и общее решения Системы линейных ДУ первого

Подробнее

1. Интегрирование системы дифференциальных уравнений методом исключения переменных

1. Интегрирование системы дифференциальных уравнений методом исключения переменных Интегрирование системы дифференциальных уравнений методом исключения переменных Один из основных методов интегрирования системы дифференциальных уравнений заключается в следующем: из уравнений нормальной

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

Линейные и нелинейные уравнения физики. Уравнение Бесселя. Функции Бесселя первого рода

Линейные и нелинейные уравнения физики. Уравнение Бесселя. Функции Бесселя первого рода Линейные и нелинейные уравнения физики Уравнение Бесселя. Функции Бесселя первого рода Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич ГЛАВА Цилиндрические функции 3. Функции Бесселя первого

Подробнее

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению.

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению. ТЕМА 7 Задача Штурма-Лиувилля Собственные значения и собственные функции Сведение задачи Штурма-Лиувилля к интегральному уравнению Основные определения и теоремы Оператором Штурма-Лиувилля называется дифференциальный

Подробнее

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия 8 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ 8 Основные понятия Линейным дифференциальным уравнением -го порядка с переменными коэффициентами называется уравнение

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИРЭА ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Работа посвящена моделированию динамических систем с использованием элементов

Подробнее

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами По условию теоремы L [ ] B ( m Тогда в силу линейности оператора L имеем: m m m L L ] B [ Системы линейных дифференциальных уравнений с постоянными коэффициентами Собственные значения и собственные векторы

Подробнее

= 0 u. функции, μ - j-й по порядку положительный нуль функции Бесселя,

= 0 u. функции, μ - j-й по порядку положительный нуль функции Бесселя, функции Бесселя 8 7/8 8 7в Решить смешанную задачу u Δu < > u u ; u u g( s u u < где g - гладкие на [ ] функции - j-й по порядку положительный нуль функции Бесселя j K j K ; Δu u u yy y s Уроев стр 5 7

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

Дифференциальные уравнения Контрольная работа Вариант 19 Часть 1

Дифференциальные уравнения Контрольная работа Вариант 19 Часть 1 Дифференциальные уравнения Решение контрольных на wwwmatburoru Дифференциальные уравнения Контрольная работа Вариант Часть Задание Построить интегральные кривые при помощи изоклин ( d ( d 0 Решение d d

Подробнее

В. И. Кузоватов, А. М. Кытманов ПРИНЦИП СИММЕТРИИ ДЛЯ РЕШЕНИЙ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА В ПОЛУПРОСТРАНСТВЕ

В. И. Кузоватов, А. М. Кытманов ПРИНЦИП СИММЕТРИИ ДЛЯ РЕШЕНИЙ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА В ПОЛУПРОСТРАНСТВЕ УДК 517.95 В. И. Кузоватов, А. М. Кытманов ПРИНЦИП СИММЕТРИИ ДЛЯ РЕШЕНИЙ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА В ПОЛУПРОСТРАНСТВЕ В работе рассмотрен принцип симметрии для функций, являющихся решениями уравнения Гельмгольца

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

ЛЕКЦИЯ 2 Простейший случай теоремы Пикара. S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью

ЛЕКЦИЯ 2 Простейший случай теоремы Пикара. S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью ЛЕКЦИЯ 2 Простейший случай теоремы Пикара S 5. Простейший случай теоремы Пикара: автономное уравнение с глобально липшицевой правой частью Теорема 1. Пусть B банахово пространство с нормой.. Пусть функция

Подробнее

Лекция Дифференцирование сложной функции

Лекция Дифференцирование сложной функции Лекция 8 Дифференцирование сложной функции Рассмотрим сложную функцию t t t f где ϕ t t t t t t t f t t t t t t t t t Теорема Пусть функции дифференцируемы в некоторой точке N t t t а функция f дифференцируема

Подробнее

Лекция 12. Задачи классического вариационного исчисления

Лекция 12. Задачи классического вариационного исчисления Лекция Задачи классического вариационного исчисления Постановка задачи J u infsup G u G u & r u U R 3 Γ 4 Граничные условия 4 закрепленные когда значения траектории закреплены на обоих концах отрезка [

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

p p dx dx dy dx dy + 2 y = = 0 смещение C 2 = 1. Таким образом, частное решение данного ДУ = x+ 1) Найти решение ДУ y ( y

p p dx dx dy dx dy + 2 y = = 0 смещение C 2 = 1. Таким образом, частное решение данного ДУ = x+ 1) Найти решение ДУ y ( y +, ) Найти решение ДУ ( ) удовлетворяющее начальным условиям,. Данное уравнение не содержит в явном виде независимой переменной x ; интегрируем его методом понижения порядка. Суть метода заключается в

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

Дифференциальные уравнения Т С

Дифференциальные уравнения Т С Дифференциальные уравнения. 1999. Т.35. 6. С.784-792. УДК 517.957 ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ КРАЕВЫХ ЗАДАЧ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С НЕЛИНЕЙНОСТЯМИ Ю. В. Жерновый 1. Введение. Постановка задачи. Наиболее

Подробнее

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения ГЛАВА 4 Системы обыкновенных дифференциальных уравнений ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Основные определения Для описания некоторых процессов и явлений нередко требуется несколько функций Отыскание этих функций

Подробнее

Уравнения в полных дифференциалах

Уравнения в полных дифференциалах [Ф] Филиппов АВ Сборник задач по дифференциальным уравнениям Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика» 00 URL: http://librarbsaz/kitablar/846pf [М] Матвеев НМ Сборник задач и упражнений по

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

Интегралы и дифференциальные уравнения. Лекции 20-21

Интегралы и дифференциальные уравнения. Лекции 20-21 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 20-21 Линейные

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 4 Аннотация Линейные дифференциальные уравнения (ЛДУ) -го порядка, однородные и неоднородные Теорема о существовании

Подробнее

А.В. Чичурин О СУЩЕСТВОВАНИИ ОБЩИХ ИНТЕГРАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ У УРАВНЕНИЯ АБЕЛЯ ПЕРВОГО РОДА

А.В. Чичурин О СУЩЕСТВОВАНИИ ОБЩИХ ИНТЕГРАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ У УРАВНЕНИЯ АБЕЛЯ ПЕРВОГО РОДА МАТЭМАТЫКА 9 УДК 579 АВ Чичурин О СУЩЕСТВОВАНИИ ОБЩИХ ИНТЕГРАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ У УРАВНЕНИЯ АБЕЛЯ ПЕРВОГО РОДА Рассматривается метод построения общего интеграла специальной формы для нелинейного дифференциального

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

x - заданные непрерывные функции от х (или

x - заданные непрерывные функции от х (или ЛЕКЦИЯ 3 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Определение: Линейным уравнением -го порядка называет уравнение, линейное относительно неизвестной функции и ее производной. Оно имеет вид:

Подробнее

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений»

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» Задание Выясните, являются ли функции ( ) e и e решениями дифференциального уравнения d ( ) d 0 на промежутке ( ; )..

Подробнее

ФУНДАМЕНТАЛЬНЫЕ НАУКИ. Математика 3 РАЗЛОЖЕНИЕ ПО СОБСТВЕННЫМ ФУНКЦИЯМ, СВЯЗАННЫМ С КРАЕВЫМИ ЗАДАЧАМИ ТЕПЛОПРОВОДНОСТИ ДЛЯ ДВУХСЛОЙНЫХ ТЕЛ

ФУНДАМЕНТАЛЬНЫЕ НАУКИ. Математика 3 РАЗЛОЖЕНИЕ ПО СОБСТВЕННЫМ ФУНКЦИЯМ, СВЯЗАННЫМ С КРАЕВЫМИ ЗАДАЧАМИ ТЕПЛОПРОВОДНОСТИ ДЛЯ ДВУХСЛОЙНЫХ ТЕЛ УДК 57.99.7 РАЗЛОЖЕНИЕ ПО СОБСТВЕННЫМ ФУНКЦИЯМ, СВЯЗАННЫМ С КРАЕВЫМИ ЗАДАЧАМИ ТЕПЛОПРОВОДНОСТИ ДЛЯ ДВУХСЛОЙНЫХ ТЕЛ канд. пед. наук, доц. В.С. ВАКУЛЬЧИК, канд. физ.-мат. наук, доц. И.Б. СОРОГОВЕЦ, С.А.

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

Список задач с решениями по функциональному анализу.

Список задач с решениями по функциональному анализу. Список задач с решениями по функциональному анализу Пусть линейное нормированное пространство Доказать, что для любых элементов выполняется неравенство из аксиом нормы:, тогда: Можно ли в пространстве

Подробнее

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя.

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Линейные и нелинейные уравнения физики Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич

Подробнее

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ.

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. ЛЕКЦИЯ Вводные замечания Дифференциальные уравнения занимают в математике особое место. Математическое исследование разнообразных природных явлений

Подробнее

АСИМПТОТИКА РЕШЕНИЯ СИНГУЛЯРНО ВОЗМУЩЕННЫХ НЕЛИНЕЙНЫХ ИНТЕГРОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ М. К. Дауылбаев

АСИМПТОТИКА РЕШЕНИЯ СИНГУЛЯРНО ВОЗМУЩЕННЫХ НЕЛИНЕЙНЫХ ИНТЕГРОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ М. К. Дауылбаев Сибирский математический журнал Январь февраль, 2. Том 41, 1 УДК 517.948 АСИМПТОТИКА РЕШЕНИЯ СИНГУЛЯРНО ВОЗМУЩЕННЫХ НЕЛИНЕЙНЫХ ИНТЕГРОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ М. К. Дауылбаев Аннотация: Рассмотрено сингулярно

Подробнее

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами.

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами. Лекция 7 2 Уравнения Фредгольма 2го рода с вырожденными ядрами Этот случай отличается тем, что решение интегрального уравнения сводится к решению линейной алгебраической системы и может быть легко получено

Подробнее

1. Метод Эйлера. Задача нахождения частного решения y = y( x) дифференциального уравнения

1. Метод Эйлера. Задача нахождения частного решения y = y( x) дифференциального уравнения . Метод Эйлера Задача нахождения частного решения дифференциального уравнения ( ) f (6.) может быть приближенно решена численными методами. Для нахождения частного решения уравнения (6.) на отрезке [ a

Подробнее

Модуль 4. Линейные дифференциальные уравнения и системы. Лекция 4.1. Аннотация

Модуль 4. Линейные дифференциальные уравнения и системы. Лекция 4.1. Аннотация Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 41 Аннотация Линейные дифференциальные уравнения (ЛДУ) -го порядка, однородные и неоднородные Теорема о существовании

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

1. Задача для неоднородного уравнения теплопроводности в шаре.

1. Задача для неоднородного уравнения теплопроводности в шаре. УМФ семинар К 6 3 1. Задача для неоднородного уравнения теплопроводности в шаре. 1.1. 711. Найти ограниченную функцию ur, t из условий u t a u + fr, t, в Ω T ; ur,, в B ; u, t, ur, t

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 5 УРАВНЕНИЯ ЛАГРАНЖА ВТОРОГО РОДА КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ В ОБОБЩЁННЫХ КООРДИНАТАХ

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 5 УРАВНЕНИЯ ЛАГРАНЖА ВТОРОГО РОДА КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ В ОБОБЩЁННЫХ КООРДИНАТАХ ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 5 УРАВНЕНИЯ ЛАГРАНЖА ВТОРОГО РОДА КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ В ОБОБЩЁННЫХ КООРДИНАТАХ ТЕОРЕМА ОБ ИЗМЕНЕНИИ ПОЛНОЙ МЕХАНИЧЕСКОЙ ЭНЕРГИИ Лектор: Батяев Евгений Александрович

Подробнее

Теория устойчивости разностных схем

Теория устойчивости разностных схем Теория устойчивости разностных схем 1 Устойчивость решения задачи Коши по начальным данным и правой части Пусть B банахово (то есть полное нормированное) пространство функций, заданных в некоторой области

Подробнее

Ответы к экзамену по курсу дифференциальные уравнения

Ответы к экзамену по курсу дифференциальные уравнения МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. ЛОМОНОСОВА Физический факультет Ответы к экзамену по курсу дифференциальные уравнения Июль 215 1) Сформулируйте теорему существования решения задачи Коши

Подробнее

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли Математический анализ Раздел: Дифференциальные уравнения Тема: Однородные уравнения Линейные уравнения Уравнения Бернулли Лектор Рожкова СВ 07 год 8 Однородные уравнения Функция M, называется однородной

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Интегралы и дифференциальные уравнения. Лекция 22

Интегралы и дифференциальные уравнения. Лекция 22 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция Нормальные

Подробнее

Алашеева Е.А. Дифференциальные уравнения КОНСПЕКТ ЛЕКЦИЙ

Алашеева Е.А. Дифференциальные уравнения КОНСПЕКТ ЛЕКЦИЙ ФЕДЕРАЛЬНОЕ АГЕНСТВО СВЯЗИ Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ Кафедра

Подробнее

П3. Обоснование численного метода решения систем сингулярных интегральных уравнений задач дифракции на решетках 1. Введение

П3. Обоснование численного метода решения систем сингулярных интегральных уравнений задач дифракции на решетках 1. Введение П3 Обоснование численного метода решения систем сингулярных интегральных уравнений задач дифракции на решетках Введение В работах [ 4] показано что задачи дифракции электромагнитных волн как на ограниченных

Подробнее

6. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА Решения линейного однородного уравнения в частных производных первого порядка

6. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА Решения линейного однородного уравнения в частных производных первого порядка 6 УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА 6 Решения линейного однородного уравнения в частных производных первого порядка Линейным однородным уравнением первого порядка в частных производных называется

Подробнее

22. Линейные уравнения с частными производными первого порядка

22. Линейные уравнения с частными производными первого порядка Линейные уравнения с частными производными первого порядка Понятие уравнения с частными производными и его интегрирование Уравнением с частными производными называется соотношение связывающее неизвестную

Подробнее

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков.

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков. ЛЕКЦИЯ 3 Линейные дифференциальные уравнения высших порядков Линейные неоднородные и однородные дифференциальные уравнения второго порядка Интегрирование ЛОДУ и ЛНДУ второго порядка с постоянными коэффициентами

Подробнее