Тема 5. Оценка интегралов от быстро меняющихся и быстро осциллирующих функций

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Тема 5. Оценка интегралов от быстро меняющихся и быстро осциллирующих функций"

Транскрипт

1 Тема 5. Оценка интегралов от быстро меняющихся и быстро осциллирующих функций На этом занятии рассматривается вычисление интегралов от быстро меняющихся и быстро осциллирующих функций. Обсуждаются случаи собственных и несобственных интегралов. Рассматривается асимптотика функции интегральной экспоненты. Как пример, очень быстро меняющейся функции рассматривается дельта-функция Дирака. I() = e x f(x)dx, () где функция f(x) монотонно убывает при x. Из-за наличия экспоненциального множителя подынтегральная функция быстро убывает. Поэтому при для интеграла () может быть найдена общая асимптотическая формула. Проинтегрируем в () по частям: I() = e x f(x)dx = e f()+ e x f (x)dx (2) Интегрируя по частям еще раз, находим для : I() = e [ f()+f ()+... ] (3) Пример. Интегральная экспонента, который называется интегральной экспонентой: E m (z) = zx dx e x m = zm z x dx e x m (4) Здесь m натуральное число. Пользуясь общей формулой (3), получаем для z E m (z) e z z ( m z +... ). (5) I = f(x)g(x)dx (6) И.С. Бурмистров

2 Если функция f(x) меняется на отрезке [, b] медленно по сравнению с функцией g(x), т.е. f (x)/f(x) g (x)/g(x), то интеграл (6) можно оценить следующим образом ( ) b +b I f 2 g(x)dx (7) Пример 2. Дельта-функция Дирака I() = 2 +x 2e x2 dx. (8) Найдем его значение при. Если считать, что медленная функция f(x) = exp( x 2 ), а быстрая функция g(x) = /( 2 +x 2 ), то так как f (x)/f(x) = 2x и g (x)/g(x) = 2x/( 2 +x 2 ), при x функция f(x) медленная по-сравнению с g(x). При x > функция f(x) быстро убывает, поэтому можно думать, что эта область вносит в интеграл (8) малый вклад и для его оценки можно воспользоваться формулой (7): I() = +x 2e 2 x 2 dx +x2dx = π. (9) Этот же ответ можно получить более аккуратно. Сделаем ряд точных преобразований: x I() = 2 dx = 2 dte t e 2 x 2 tx 2 dx = e t π +x dt 2e 2 t+ 2 = πe 2 При интеграл 2 e t t dt = 2 πe 2 Поэтому из (), находим при Таким образом, если определить функцию то мы доказали следующее равенство e x2 dx = 2 πe 2 e x2 dx π 2 e x2 dx. () dx = () ( I() = π 2 ). (2) π lim δ (x) = π 2 +x2, (3) δ (x)e x2 dx = (4) И.С. Бурмистров 2

3 Аналогично можно показать, что для функции f(x), убывающей на бесконечности, выполняется равенство lim Предел функции δ (x) при называется дельта-функцией Дирака δ (x)f(x)dx = f() (5) Дельта-функция Дирака δ(x) определяется как функция, удовлетворяющая следующим свойствам: ) δ(x) = приx, 2) δ(x = ) = +, (6) 3) Из определения (6) следуют свойства: δ(x)dx =. δ(x)f(x)dx = f(), δ(x) = δ(x), δ(g(x)) = g (x ) δ(x x ) (7) Здесь функция g(x) обращается в нуль при x = x, g(x ) =. на конечном отрезке [,b]: f(x) sin(ωx)dx. (8) Для определенности будем считать, что f(x) при x [,b]. Для выяснения поведения этого интеграла при ω можно воспользоваться интегрированием по частям: f(x)sin(ωx)dx = ω [f()cos(ω) f(b)cos(ωb)]+ ω f (x)cos(ωx)dx (9) При ω, можно отбросить второй член в правой части выражения (9), и найти f(x)sin(ωx)dx = ( ) ω [f()cos(ω) f(b)cos(ωb)]+o ω (2) В случае, когда f() = f(b) = необходимо учесть следующий член в /ω разложении с помощью интегрирования по частям интеграла в правой части в выражении (9). Тогда получаем: ( ) (b)sin(ωb) f ()sin(ω)]+o (2) ω 2[f ω 2 И.С. Бурмистров 3

4 Пусть теперь интервалы интегрирования бесконечные. Тогда для сходимости интеграла (8) нужно, чтобы функция f(x) вместе со всеми своими производными обращалась в нуль при x ±. Тогда видно, что разложение по степеням /ω будет давать нуль во всех порядках. f(x) cos(ωx)dx. (22) Поведение интеграла при ω определяется поведением функции f(x) в комплексной плоскости. Пример 3. Перепишем интеграл (23) в следующем виде: cos(ωx) dx. (23) +x2 dte t cos(ωx)e tx2 dx. (24) Интеграл по x может быть вычислен точно (см. задачу к теме 4). Тогда находим π e t ω2 /4t dt t = πω ωg(x) dx e (25) x где функция g(x) = x+/4x. При ω интеграл можно вычислить методом перевала. Функция g(x) имеет максимум: g (x) = при x = /2. Поэтому I(ω) 2πωe ω e 2ω(x /2)2 dx = πe ω (26) Заметим, что приближенное выражение (26) совпадает с точным ответом. Обратим внимание, что I(ω) при ω ведет себя экспоненциально. Для оценки интегралов (8) и (22) было существенно, что функция f(x) непрерывна и конечна на интервале интегрирования. Пример 4. e x sin(ωx) dx x. (27) И.С. Бурмистров 4

5 Интегрируя по частям, находим: 2 С другой стороны, дифференцирование по параметру дает I (ω) = 2ω Сравнивая выражения (28) и (29), при ω, находим e x x [ sin(ωx) ωcos(ωx) ] dx x. (28) e x xcos(ωx)dx. (29) I(ω) 2ωI (ω) = C ω. (3) Обратим внимание, что интеграл (27) при ω убывает медленнее, чем в примерах выше. Вычисление постоянной C требует точного вычисления интеграла (27). Вопрос: найти точное выражение для интеграла (27). Вычислить постоянную C. Задача 5. Функция erf(z) = 2 z π e x2 dx называется функцией ошибок. Вычислить первые два члена ее асимпточеского разложения при z. Задача 5.2 Функция Ci(z) = z cosx x dx называется интегральным косинусом. Вычислить первые два члена ее асимпточеского разложения при z. Задача 5.3 Доказать следующие соотношения: δ(x)f(x)dx = f(), δ(x) = δ(x), δ(g(x)) = g (x ) δ(x x ) Задача 5.4 Вычислить точно интегралы а) e x sin(ωx)dx, б) xe x sin(ωx)dx И.С. Бурмистров 5

6 и проверить выполнение асимптотических формул (2) и (2). Задача 5.5 Вычислить асимптотики интегралов при ω и ω : а) sin(ωx) dx, б) x(+x 2 ) e x2 sin 2 (ωx)dx Задача 5.6 Вычислить асимптотику интеграла при ω : sin 2 (ωx) e x2 dx ωx 2 Показать, что функция δ ω (x) = sin 2 (ωx)/[πωx 2 ] в пределе ω является дельта-функцией Дирака. Задача 5.7 Вычислить асимптотику интеграла при ω и ω : sin(ωx) sinx dx И.С. Бурмистров 6

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1 Глава 3. Числовые ряды 3.. Занятие 0 3... Сумма ряда Рассмотрим числовую последовательность {a k } k=. ОПРЕДЕЛЕНИЕ 3... Рядом называется выражение вида a + a 2 +...+ a k +...= a k. k= Величина a k называется

Подробнее

Семинар по теме Метод перевала

Семинар по теме Метод перевала Семинар по теме Метод перевала апреля 16 г. Задача 1 формула Стирлинга) Найти асимптотику гамма-функции при z 1: Γz + 1) = t z e t dt Покажем сперва, чем интересна гамма-функция. Во-первых, интегрируя

Подробнее

9. Определенный интеграл Вычисление определенных интегралов.

9. Определенный интеграл Вычисление определенных интегралов. 9. Определенный интеграл 9.1. Вычисление определенных интегралов. ТЕОРИЯ Определенный интеграл от заданной на отрезке функции можно задать несколькими способами. Важно, что набор средств, доступных для

Подробнее

Лекция Несобственные интегралы

Лекция Несобственные интегралы Лекция..9. Несобственные интегралы Аннотация: Рассматриваются несобственные интегралы первого и второго рода. Вводится понятие главного значения несобственного интеграла. Определенный интеграл был введен

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики Учебно-методическое пособие для студентов факультета прикладной математики и информатики

Подробнее

10. Несобственный интеграл

10. Несобственный интеграл . Несобственный интеграл ТЕОРИЯ При определении интеграла Римана от участвующих в нем объектов, а именно промежутка интегрирования и заданной на нем функции, предполагались выполненными следующие условия:

Подробнее

1 0. Первообразная и неопределенный интеграл Определение Функцию F(x) называют первообразной для функции f(x) на промежутке X,

1 0. Первообразная и неопределенный интеграл Определение Функцию F(x) называют первообразной для функции f(x) на промежутке X, Глава 4. Интеграл 1. Неопределенный интеграл 1 0. Первообразная и неопределенный интеграл Определение Функцию F(x) называют первообразной для функции f(x) на промежутке X, если x X: F'(x) = f(x). Пример

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Семинар 5 по теме Интегралы от быстроменяющихся функций и асимптотические разложения

Семинар 5 по теме Интегралы от быстроменяющихся функций и асимптотические разложения Семинар 5 по теме Интегралы от быстроменяющихся функций и асимптотические разложения апреля 6 г. Метод стационарной фазы Часто в приложениях встречаются определённые осциллирующие интегралы типа: b a fd

Подробнее

Математический анализ

Математический анализ Математический анализ Лектор д.ф.-м.н. В.В.Чепыжов * Факультет математики ВШЭ, 2017 г. 2 семестр Лекция 15 (21 марта 2017) 1. Интеграл Фурье. Основная теорема На прошлых лекциях были установлены условия,

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

Об асимптотическом разложении интегралов с медленно убывающим ядром. J h J h h, h 0 h 0 k... ; O. (3)

Об асимптотическом разложении интегралов с медленно убывающим ядром. J h J h h, h 0 h 0 k... ; O. (3) АН Тихонов и АА Самарский Об асимптотическом разложении интегралов с медленно убывающим ядром Рассмотрим интеграл вида J[ ; ] d ядро которого () при имеет характер - функции если В работе [] было получено

Подробнее

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1 В.В. Жук, А.М. Камачкин 5 Функциональные последовательности и ряды. Равномерная сходимость, возможность перестановки предельных переходов, интегрирование и дифференцирование рядов и последовательностей.

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО Лектор Никита Александрович Евсеев Программа курса лекций (3-й семестр, лекции 36 ч., семинары 36 ч., экз.). Аналитические функции комплексного переменного Комплексные

Подробнее

О формулах суммирования и интерполяции

О формулах суммирования и интерполяции О формулах суммирования и интерполяции А В Устинов УДК 51117 1 Введение Известно, что числа Бернулли B n и полиномы Бернулли B n x) возникают в самых разных вопросах теории чисел и приближенного анализа

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Задача Первая теорема сравнения

Задача Первая теорема сравнения Первая теорема сравнения Постановка задачи: Исследовать сходимость ряда с неотрицательными членами где = f(, u (), u 2 (),...) и u (), u 2 (),...- функции с известными наименьшими и наибольшими значениями,

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл Δ = i i

Интегрируемость функции (по Риману) и определенный интеграл Δ = i i Интегрируемость функции (по Риману) и определенный интеграл Основные понятия и теоремы 1. Интегральные суммы и определенный интеграл. Пусть функция f(x) определена на промежутке [a, b] (где a < b). Произвольное

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения 1. Кафедра Информатики, вычислительной техники и информационной безопасности 2. Направление

Подробнее

РЯДЫ. 1. Числовые ряды

РЯДЫ. 1. Числовые ряды РЯДЫ. Числовые ряды. Основные определения Пусть дана бесконечная последовательность чисел Выражение (бесконечная сумма) a, a 2,..., a n,... a i = a + a 2 + + a n +... () i= называется числовым рядом. Числа

Подробнее

Приближенное вычисление определенных интегралов. 1. Формула трапеций.

Приближенное вычисление определенных интегралов. 1. Формула трапеций. ЛЕКЦИЯ N 7. Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов..... Формула трапеций.....формула парабол.... Несобственные интегралы....

Подробнее

11. Несобственный интеграл

11. Несобственный интеграл . Несобственный интеграл.. Говоря в предыдущем параграфе об определенном интеграле, мы рассматривали ограниченные функции, заданные на ограниченных замкнутых промежутках числовой прямой (если хотя бы одно

Подробнее

Семинар по теме Интегралы с параметрами

Семинар по теме Интегралы с параметрами Семинар по теме Интегралы с параметрами апреля 6 г. Бета-функция Эйлера Порой приходится иметь дело с интегралами вида: B(p, q) = t p ( t) q dt или интегралами, которые сводятся к интегралам такого вида

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

7 Тригонометрические ряды Фурье

7 Тригонометрические ряды Фурье 35 7 Тригонометрические ряды Фурье Ряды Фурье для периодических функций с периодом T. Пусть f(x) - кусочно - непрерывная периодическая функция с периодом T. Рассмотрим основную тригонометрическую систему

Подробнее

Т. И. Коршикова, Ю.А. Кирютенко. Несобственные интегралы, зависящие от параметра (Методическое пособие по практическим занятиям)

Т. И. Коршикова, Ю.А. Кирютенко. Несобственные интегралы, зависящие от параметра (Методическое пособие по практическим занятиям) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Т. И. Коршикова,

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

n =1,2, K. Ряд называют

n =1,2, K. Ряд называют 2. Признаки сходимости знакоположительных рядов Ряд u называют знакоположительным, если все его члены неотрицательны, т.е. если u 0 для любого,2, K. Ряд называют знакоотрицательным, если все его члены

Подробнее

РЯДЫ. Учебное пособие

РЯДЫ. Учебное пособие РЯДЫ Учебное пособие Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б Н Ельцина Ряды Учебное пособие Рекомендовано методическим

Подробнее

Лекция 4. Гармонический анализ. Ряды Фурье

Лекция 4. Гармонический анализ. Ряды Фурье Лекция 4. Гармонический анализ. Ряды Фурье Периодические функции. Гармонический анализ В науке и технике часто приходится иметь дело с периодическими явлениями, т. е. такими, которые повторяются через

Подробнее

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ РЕШЕНИЕ ЗАДАЧ

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ РЕШЕНИЕ ЗАДАЧ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им МВ Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА МАТЕМАТИКИ НТ Левашова, НЕ Шапкина НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ РЕШЕНИЕ ЗАДАЧ Пособие для студентов II курса

Подробнее

2. Сформулируйте определение того, что предел (по Коши) функции f(x) не равен + 3. Вычислите предел, не используя правила Лопиталя: lim

2. Сформулируйте определение того, что предел (по Коши) функции f(x) не равен + 3. Вычислите предел, не используя правила Лопиталя: lim Билет 1 1 Сформулируйте определение того, что предел (по Коши) функции f(x) равен + при x + Сформулируйте и докажите теорему о пределе произведения двух функций 2 Сформулируйте определение того, что предел

Подробнее

Лекция 3. Интегральный признак

Лекция 3. Интегральный признак С. А. Лавренченко www.lwreceko.ru Лекция Интегральный признак Перед прослушиванием этой лекции рекомендуется повторить несобственные интегралы (лекция 9 и практическое занятие 9 из модуля «Интегральное

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Mth-Net.Ru Общероссийский математический портал Мария И. Медведева, О порядке сходимости квадратурных формул на функциях из пространства потенциала Рисса, Журн. СФУ. Сер. Матем. и физ., 8, том, выпуск

Подробнее

Числовые характеристики непрерывных случайных величин

Числовые характеристики непрерывных случайных величин Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X + = px ( ) xp( x)

Подробнее

21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр

21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр -е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр Найти разложения функции в степенной ряд по степеням, вычислить радиус сходимости степенного ряда: A f()

Подробнее

Содержание. В2-05, В2-12 Весна 2008 Лекции, часть II

Содержание. В2-05, В2-12 Весна 2008 Лекции, часть II В-5, В- Весна 8 Лекции, часть II Содержание. Приложения определенного интеграла.. Вычисление площади плоской фигуры........................... Площадь фигуры в декартовых координатах...................

Подробнее

Семинар 4. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ Теоретические вопросы для самостоятельного изучения

Семинар 4. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ Теоретические вопросы для самостоятельного изучения Семинар. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ Теоретические вопросы для самостоятельного изучения. Определенный интеграл и его геометрический смысл.. Свойства определенного интеграла. Теорема о среднем

Подробнее

МЕТОДИЧЕСКОЕ ПОСОБИЕ 6 СЕМЕСТР ТЕСТОВАЯ ВЕРСИЯ

МЕТОДИЧЕСКОЕ ПОСОБИЕ 6 СЕМЕСТР ТЕСТОВАЯ ВЕРСИЯ МЕТОДИЧЕСКОЕ ПОСОБИЕ 6 СЕМЕСТР ТЕСТОВАЯ ВЕРСИЯ А. А. Пожарский Содержание Предисловие 2 1 занятие 1. O-символика. 4 2. Асимптотика интегралов типа Лапласа. 5 3. Асимптотика интегралов типа Фурье. 10 2

Подробнее

Е.В. Небогина, О.С. Афанасьева РЯДЫ. ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Е.В. Небогина, О.С. Афанасьева РЯДЫ. ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ ЕВ Небогина, ОС Афанасьева РЯДЫ ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ Самара 9 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

Пространство S быстро убывающих функций Свёртка Функция Хевисайда

Пространство S быстро убывающих функций Свёртка Функция Хевисайда 1 2 Оглавление 1 Ряды Фурье 5 1.1 Тригонометрический ряд Фурье............ 5 1.2 Только sin & cos..................... 7 1.3 Ряд Фурье в комплексной форме........... 11 1.4 f(x) = c k?.......................

Подробнее

ГЛАВА 3 (продолжение). Функции случайных величин. Характеристическая функция.

ГЛАВА 3 (продолжение). Функции случайных величин. Характеристическая функция. Оглавление ГЛАВА 3 продолжение. Функции случайных величин. Характеристическая функция... Функция одного случайного аргумента.... Основные числовые характеристики функции случайного аргумента.... Плотность

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Министерство образования Российской Федерации МАТИ Российский государственный технологический университет им.к.э.циолковского Кафедра «Высшая математика» ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Варианты курсовых

Подробнее

+ z n 1. Получено рекуррентное соотношение: Применяя это соотношение, найдем

+ z n 1. Получено рекуррентное соотношение: Применяя это соотношение, найдем Региональная олимпиада по математике для студентов технических специальностей вузов Декабрь 205 г., СибГАУ Задания для второго и старших курсов с решениями. Пусть E единичная матрица порядка n, а I квадратная

Подробнее

Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ

Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ 28.1. Пространства D, D основных и обобщенных функций Понятие обобщенной функции обобщает классическое понятие функции и дает возможность выразить в математической форме такие

Подробнее

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега. 1. Типы сходимости функциональных последовательностей

ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега. 1. Типы сходимости функциональных последовательностей ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега 1. Типы сходимости функциональных последовательностей На лекции 3 было отмечено, что имеются следующие виды сходимости функциональных последовательностей:

Подробнее

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x)

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x) 6 Ряды Фурье 6 Ортогональные системы функций Ряд Фурье по ортогональной системе функций Функции ϕ () и ψ (), определенные и интегрируемые на отрезке [, ], называются ортогональными на этом отрезке, если

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости).

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости). «Ряды» Тесты для самопроверки Необходимый признак сходимости ряда Теорема необходимый признак сходимости Если ряд сходится то lim + Следствие достаточное условие расходимости ряда Если lim то ряд расходится

Подробнее

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход.

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход. Метод Ритца Выделяют два основных типа методов решения вариационных задач. К первому типу относятся методы, сводящие исходную задачу к решению дифференциальных уравнений. Эти методы очень хорошо развиты

Подробнее

М. В. Дейкалова КОМПЛЕКСНЫЙ АНАЛИЗ Вопросы к экзамену (группа МХ-201, 2015) Вопросы первого коллоквиума 1

М. В. Дейкалова КОМПЛЕКСНЫЙ АНАЛИЗ Вопросы к экзамену (группа МХ-201, 2015) Вопросы первого коллоквиума 1 М. В. Дейкалова КОМПЛЕКСНЫЙ АНАЛИЗ Вопросы к экзамену (группа МХ-21, 215) Вопросы первого коллоквиума 1 1. Дифференцируемость функции комплексного переменного в точке. Условия Коши Римана (Даламбера Эйлера).

Подробнее

Семинар Лекция 3 АБСОЛЮТНО НЕПРЕРЫВНЫЕ ФУНКЦИИ. 1. Определения и свойства

Семинар Лекция 3 АБСОЛЮТНО НЕПРЕРЫВНЫЕ ФУНКЦИИ. 1. Определения и свойства Семинар Лекция 3 АБСОЛЮТНО НЕПРЕРЫВНЫЕ ФУНКЦИИ 1. Определения и свойства Напомним определение, данное на лекции. Определение 1. Функция f(x) называется абсолютно непрерывной на отрезке [; b], если для

Подробнее

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения Обыкновенные дифференциальные уравнения Лекторы: В. А. Кондратьев, Ю. С. Ильяшенко III IV семестры, программа экзамена 2003 2004 г, варианты 2001 2009 г. 1. Программа экзамена 1.1. Первый семестр Введение.

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Численное интегрирование

Численное интегрирование к.ф.-м.н. Уткин Павел Сергеевич 1 e-mil: utkin@icd.org.ru, pvel_utk@mil.ru (926) 2766560 Данная лекция доступна по адресу http://mipt.ru/eduction/chir/computtionl_mthemtics/study/mterils/compmth/lectures/

Подробнее

Основные определения, формулы и теоремы

Основные определения, формулы и теоремы Основные определения, формулы и теоремы Ряды 1. Супремум и инфинум. Наименьшее число, ограничивающее сверху некоторое множество чисел называется точной верхней гранью или супремумом этого множества. Двойственным

Подробнее

ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции.

ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции. ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции..окрестность бесконечно удаленной точки.....разложение Лорана в окрестности бесконечно удаленной точки.... 3.Поведение

Подробнее

Несобственные интегралы первого рода

Несобственные интегралы первого рода ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им НИЛобачевского» Несобственные интегралы

Подробнее

3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций

3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций 3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций Рассмотрим два знака менительно к несобственным интегралом с бесконечным верхним пределом. Аналогичные знаки имеют

Подробнее

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ. Кафедра «Математика»

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ. Кафедра «Математика» ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Математика» Учебно-методическое пособие по дисциплине «Математика» «Ряды Часть II» Авторы

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

Интегралы и дифференциальные уравнения. Лекции 9-10

Интегралы и дифференциальные уравнения. Лекции 9-10 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов -го курса -го семестра специальностей РЛ,,3,6, БМТ, Лекции 9- Признаки сходимости

Подробнее

5. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА (ПО ПЛОЩАДИ ПОВЕРХНОСТИ) 1. Задача, приводящая к понятию поверхностного интеграла I рода

5. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА (ПО ПЛОЩАДИ ПОВЕРХНОСТИ) 1. Задача, приводящая к понятию поверхностного интеграла I рода 5 ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА ПО ПЛОЩАДИ ПОВЕРХНОСТИ Поверхностный интеграл I рода представляет собой такое же обобщение двойного интеграла каким криволинейный интеграл I рода является по отношению к

Подробнее

7 1. Даны комплексные числа z1 8 8i. 1) Изобразите их на комплексной плоскости. 2) Запишите число 3) Запишите число z 2. в тригонометрической форме.

7 1. Даны комплексные числа z1 8 8i. 1) Изобразите их на комплексной плоскости. 2) Запишите число 3) Запишите число z 2. в тригонометрической форме. ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен научиться: находить тригонометрическую и показательную формы комплексного числа по

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода

Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода Метод разделения переменных применяется для решения линейных однородных уравнений с линейными однородными граничными условиями вида α 0, β0, 0,

Подробнее

М. С. Семчёнок, Е. Н. Бегун, В. А. Власьева, В. Г. Галкина Математика Конспект лекций

М. С. Семчёнок, Е. Н. Бегун, В. А. Власьева, В. Г. Галкина Математика Конспект лекций 009 М. С. Семчёнок, Е. Н. Бегун, В. А. Власьева, В. Г. Галкина Математика Конспект лекций Часть третья Конспект вёл А. Димент СПбГУКиТ, ФАВТ, гр. 7 ГЛАВА 0. ЧИСЛОВЫЕ РЯДЫ 0.. ПОНЯТИЕ О СХОДИМОСТИ ЧИСЛОВЫХ

Подробнее

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2 Содержание Числовые ряды. Основные понятия 2 Необходимый признак сходимости ряда 3 Простейшие свойства числовых рядов 2 4 Знакоположительные ряды 3 5 Знакочередующиеся ряды 9 6 Знакопеременные ряды 0 7

Подробнее

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин Лекция ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ ЦЕЛЬ ЛЕКЦИИ: построить метод линеаризации функций случайных величин; ввести понятие комплексной случайной величины и получить ее числовые характеристики; определить характеристическую

Подробнее

ОГЛАВЛЕНИЕ. 7. Ряд Фурье для функции, заданной на отрезке длины 2я... 28

ОГЛАВЛЕНИЕ. 7. Ряд Фурье для функции, заданной на отрезке длины 2я... 28 Предисловие к первому изданию... 8 Предисловие ко второму изданию... 10 Глава 1. Тригонометрические ряды Ф урье... 11 1. Периодические функции... 11 2. Гармоники... 13 3. Тригонометрические многочлены

Подробнее

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ.

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл

Интегрируемость функции (по Риману) и определенный интеграл Интегрируемость функции (по Риману) и определенный интеграл 1. Для данных функций на указанных сегментах найдите верхнюю S и нижнюю s суммы Дарбу при разбиении сегментов на n равных частей: а) f(x) = x

Подробнее

и с боковой поверхностью, имеющей образующую, парал- лельную оси OZ т.е. ( )

и с боковой поверхностью, имеющей образующую, парал- лельную оси OZ т.е. ( ) 8 и с боковой поверхностью, имеющей образующую, парал- поверхностью z = f(, лельную оси OZ т.е. f(, s= v ц ( D) 4 Вычисление интеграла по фигуре от скалярной функции в декартовой системе координат Вычисление

Подробнее

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу 1. Дайте определение конечного предела последовательности. Приведите пример последовательности,

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Рязанский государственный университет им СА Есенина» ЛГ Насыхова, МТ Терехин ЧИСЛОВЫЕ

Подробнее

Модуль величины Занятие 1

Модуль величины Занятие 1 2013 Модуль величины Занятие 1 Захаров В.С. Екатеринбург 01.09.2013 Введение. Не секрет, что одной из самых сложных для понимания тем школьного курса математики является «модуль величины» Чтобы лучше освоить

Подробнее

ОГБПОУ. «Рязанский колледж электроники»

ОГБПОУ. «Рязанский колледж электроники» ОГБПОУ «Рязанский колледж электроники» Курс лекций по предмету: «МАТЕМАТИКА» Преподаватель: Мозгова Л.Н. I. Предел функций. Число А называется пределом функции f(x) в точке x=a A= (или f(x) при x a) если

Подробнее

. Если промежуток времени ti

. Если промежуток времени ti Определенный интеграл Задачи, приводящие к понятию определенного интеграла ) Пусть тело движется с переменной скоростью v( t ) Найти путь, пройденный телом за промежуток времени [ ; ] Разобьем отрезок

Подробнее

Производная и дифференциал. Лекция 4-5

Производная и дифференциал. Лекция 4-5 Производная и дифференциал Лекция 4-5 Приращения функции и аргумента Пусть функция y f ( x) определена в некоторой окрестности U( x) точки x и x U( x) произвольная точка из этой окрестности. Разность x

Подробнее

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) 8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) Общие сведения 1. Кафедра Информатики, вычислительной техники и информационной безопасности 2. Направление

Подробнее

В.Ф. Бутузов ЧИСЛОВЫЕ РЯДЫ ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ. Учебное пособие

В.Ф. Бутузов ЧИСЛОВЫЕ РЯДЫ ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ. Учебное пособие МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ В.Ф. Бутузов ЧИСЛОВЫЕ РЯДЫ ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ Учебное пособие Москва 05 Предисловие

Подробнее

a......, a,... называют членами...

a......, a,... называют членами... РЯДЫ Числовые ряды Основные понятия числового Пусть дана последовательность вещественных или комплексных чисел Числовым рядом называется сумма всех членов числовой последовательности: Числа,,,, называют

Подробнее

ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ ИЗДАТЕЛЬСТВО ТГТУ

ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ ИЗДАТЕЛЬСТВО ТГТУ ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ ИЗДАТЕЛЬСТВО ТГТУ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «Тамбовский государственный технический университет» ЭЛЕМЕНТЫ ОПЕРАЦИОННОГО ИСЧИСЛЕНИЯ

Подробнее

Лекция Интеграл как функция верхнего предела

Лекция Интеграл как функция верхнего предела СА Лавренченко wwwlwrencenkoru Лекция Интеграл как функция верхнего предела Формула Ньютона-Лейбница Рекомендуется, чтобы студенты перед прослушиванием этой лекции повторили лекцию 5 о первообразных из

Подробнее

1 Элеметарная теория погрешностей. 2

1 Элеметарная теория погрешностей. 2 Содержание Элеметарная теория погрешностей. Решение СЛАУ. 4. Нормы в конечномерных пространствах... 4. Обусловленность СЛАУ............ 5.3 Итерационные методы решения линейных систем......................

Подробнее

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными.

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными. ЛЕКЦИЯ N9. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными..дифференциальные уравнения. Общие понятия.....дифференциальные уравнения

Подробнее

ОТНОШЕНИЯ ПОРЯДКА И АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

ОТНОШЕНИЯ ПОРЯДКА И АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ Глава. ОТНОШЕНИЯ ПОРЯДКА И АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ.. Сравнение поведения функций. О-символика В этой, вводной, главе будет обсуждаться сравнительное поведение функций, а также асимптотическое

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

Математический анализ 1-й семестр 1-го курса НМУ учебного года. М. Э. Казарян Программа

Математический анализ 1-й семестр 1-го курса НМУ учебного года. М. Э. Казарян Программа Математический анализ -й семестр -го курса НМУ 205-206 учебного года. М. Э. Казарян Программа. Рациональные и вещественные числа. Рациональное число как класс эквивалентности пар целых чисел. Рациональное

Подробнее

1.Разложение аналитической функции в степенной ряд.

1.Разложение аналитической функции в степенной ряд. ЛЕКЦИЯ N37. Ряды аналитических функций. Разложение аналитической функции в степенной ряд. Ряд Тейлора. Ряд Лорана..Разложение аналитической функции в степенной ряд.....ряд Тейлора.... 3.Разложение аналитической

Подробнее

Математический анализ-2

Математический анализ-2 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. Ломоносова Бакинский филиал ХИМИЧЕСКИЙ ФАКУЛЬТЕТ Э. М. Галеев Математический анализ-2 Баку - 215 Учебное пособие Галеев Э.М. Математический анализ-2. Учебное

Подробнее

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0 Ряды Лорана Более общим типом степенных рядов являются ряды, содержащие как положительные, так и отрицательные степени z z 0. Как и ряды Тейлора, они играют важную роль в теории аналитических функций.

Подробнее

ξ i; i высота. Тогда площадь каждой полоски

ξ i; i высота. Тогда площадь каждой полоски Тема КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ Лекция КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ ПЕРВОГО РОДА Задачи приводящие к понятию криволинейного интеграла первого рода Определение и свойства криволинейного интеграла первого рода Вычисление

Подробнее