«Функции нескольких переменных»

Размер: px
Начинать показ со страницы:

Download "«Функции нескольких переменных»"

Транскрипт

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет «МИФИ» Волгодонский инженерно-технический институт - филиал НИЯУ МИФИ Методические указания по теме: «Функции нескольких переменных» Волгодонск

2 Задача Найти частные производные от функций: а) Решение Частную производную находим как производную функции f ) по аргументу в предположении что const Поэтому ) ) Аналогично б) ) ) ) ) в) e e ) e arctg г) ) ) ) ) ) ) ) ) e ) e arctg )) arctg )) cos Задача Продифференцировать сложную функцию: а)

3 Решение Так как и зависят от переменных и то функция в конечном итоге зависит от переменных и и ее частные производные можно найти по формулам: Следовательно б) ln ) t e t Найти Решение Так как функция в конечном итоге зависит от одной переменной t то ее производную можно найти по формуле: d d d d Тогда t e t dt dt dt dt d dt Задача Дана функция ) 9) N ) и точки а) найти полные дифференциалы функции -го и -го порядков б) вычислить значение функции в точке в) вычислить приближенное значение исходя из значения функции в точке и заменив приращение функции при переходе от точки к точке N функции в точке N дифференциалом г) оценить в процентах относительную погрешность получающуюся при замене приращения функции ее дифференциалом д) составить уравнения касательной плоскости и нормали к поверхности f ) в точке K ) Решение а) Вычислим частные производные функции -го и -го порядков 6 Тогда полный дифференциал -го порядка равен: 6

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 d d d ) d 6) d Полный дифференциал второго порядка: d d ) d dd d) ) dd 6d d dd d) f ) 9 f N) f 9) 87 б) Вычислим значение функции в точке ) в) Вычислим значение функции в точке N ) с помощью микрокалькулятора: Вычислим приближенное значение функции в точке N с помощью дифференциала по формуле: d ) где дифференциал функции d ) приближенно равен приращению функции при переходе от точки ) к точке N 9) 7 Дифференциал d ) 9 ) 7) 6) Тогда дифференциал d ) 8 9 Получим приближенное значение функции d ) 9 9 г) Оценим относительную погрешность вычисления: f N) 87 9 % % % f N) 9 д) Составим уравнения касательной плоскости и нормали к поверхности f ) в точке K ) ) Уравнение касательной плоскости имеет вид: ) ) 6 8

5 Подставив в это уравнение значения частных производных в точке и координаты точки K получим: ) 8 ) Окончательно 8 Канонические уравнения нормали к поверхности проходящей через точку K перпендикулярно касательной плоскости имеет вид: нормали Задача 8 Следовательно имеем уравнения Дана функция а) исследовать функцию на экстремум б) найти наибольшее и наименьшее значения функции в замкнутой области D заданной системой неравенств сделать чертеж области Решение а) Найдем стационарные точки функции из системы уравнений: Следовательно Точка ) - стационарная точка функции Вычислим значения частных производных второго порядка в точке ) A B Составим дискриминант AC B Так как то экстремум есть так как A то ) - точка минимума C

6 б) Построим область D заданную системой неравенств Это треугольник с вершинами в точках О) А-) В-) Наибольшее и наименьшее значения в замкнутой области D функция f ) может достигать в стационарных точках принадлежащих области D и на границе области Поэтому: Вычислим значение функции в стационарной точке ) принадлежащей области D: f ) ) Вычислим значения функции в точках О) А-) В-) которые являются точками «стыковки» различных участков границы области f O) ) f A) ) 6 f B) ) 6 Вычислим значения функции в критических точках на границе области I участок: принадлежащая [-] ) II участок: - критическая точка

7 принадлежащая [-] ) III участок: точка принадлежащая [-] ) - критическая точка - критическая Из всех вычисленных значений выберем наибольшее и наименьшее: 6 в точках ) ) в точке наиб наим )

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

Контрольная работа 3.

Контрольная работа 3. Контрольная работа В промежутке между сессиями студенты должны провести самостоятельную подготовку Проработать теоретический материал по лекциям на тему «Функции нескольких переменных» (Материал представлен

Подробнее

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен: уметь применять таблицу производных и правила дифференцирования для вычисления производных элементарных функций находить производные

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ Пензенский государственный университет ОГНикитина ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ Учебное пособие Пенза УДК 5755 Никитина ОГ Функции нескольких переменных Дифференциальное исчисление:

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ Российский государственный технологический

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн.

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

Подробнее

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ М и н и с т е р с т в о о б р а з о в а н и я и н а у к и Р о с с и й с к о й Ф е д е р а ц и и Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Производная сложной и неявно заданной функции нескольких переменных Касательная плоскость и нормаль к поверхности Пусть f ( где (t (t причём функции f ( (t (t дифференцируемы Тогда

Подробнее

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных.

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных. ЛЕКЦИЯ Экстремум функции нескольких переменных Экстремум функции нескольких переменных Необходимые и достаточные условия существования экстремума Точка M, 0) называется точкой минимума максимума) функции

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ ВЫСШАЯ МАТЕМАТИКА 3

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ ВЫСШАЯ МАТЕМАТИКА 3 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ Ю.Г. Костына, Г.П. Мартынов ВЫСШАЯ МАТЕМАТИКА Дифференциальное исчисление функций нескольких переменных,

Подробнее

Задача 1. Даны вершины треугольника АВС. Найти:

Задача 1. Даны вершины треугольника АВС. Найти: Задача. Даны вершины треугольника АВС. Найти: ) длины сторон, ) уравнения сторон, ) угол при вершине В, ) площадь треугольника АВС, ) центр, радиус и уравнение окружности, описанной около треугольника

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Министерство образования РФ Сибирская государственная автомобильно-дорожная академия (СибАДИ) ЛН Романова ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Курс лекций Омск Издательство СибАДИ ЛН РОМАНОВА ФУНКЦИИ НЕСКОЛЬКИХ

Подробнее

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера.

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера. Билет.. Определение матрицы (с примерами квадратной и прямоугольной матриц).. Геометрический смысл многочлена Тейлора первого порядка (формулировка, пример, рисунок). ( x) ctg(x). 4. Метод хорд графического

Подробнее

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ. 1. Основные понятия. Если каждой паре независимых друг от друга переменных

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ. 1. Основные понятия. Если каждой паре независимых друг от друга переменных ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ 1. Основные понятия. Если каждой паре независимых друг от друга переменных, из некоторого множества D ставится в соответствие переменная величина, то называется функцией двух

Подробнее

Решения типовых задач. Задача 1. Доказать по определению предела числовой последовательности, что lim. Решение. n 2n

Решения типовых задач. Задача 1. Доказать по определению предела числовой последовательности, что lim. Решение. n 2n Решения типовых задач Задача Доказать по определению предела числовой последовательности что n li n n Решение По определению число является пределом числовой последовательности n n n N если найдется натуральное

Подробнее

РГРТУ. ТИПОВОЙ РАСЧЕТ «Функции нескольких переменных» Задание 1. Найти область определения функции. z z ln y. z arcsin. ln z. z 81.

РГРТУ. ТИПОВОЙ РАСЧЕТ «Функции нескольких переменных» Задание 1. Найти область определения функции. z z ln y. z arcsin. ln z. z 81. ТИПОВОЙ РАСЧЕТ «Функции нескольких переменных» Задание Найти область определения функции f, и изобразить её на координатной плоскости 9 6 ln ln 8 ln arccos ln ln 5 arccos 5 6 8 6 7 8 arcsin ln 7 9 arcsin

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

ϕ, π ϕ и ϕ. В каждом интервале

ϕ, π ϕ и ϕ. В каждом интервале Вариант + Найти область определения функции: y lg Область определения данной функции определяется неравенством + те Далее знаменатель не должен обращаться в нуль: lg или ± Кроме того аргумент логарифма

Подробнее

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения. Э. Е. Поповский П. П.

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения. Э. Е. Поповский П. П. Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Э Е Поповский П П Скачков ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Типовой расчет Екатеринбург 1 Федеральное

Подробнее

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x)

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x) Приложение Определение производной Пусть и значения аргумента, а f ) и f ) - ( ( соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Подробнее

,. Тогда. , где ( ) Q - часть плоскости x + y + z =1, расположенная

,. Тогда. , где ( ) Q - часть плоскости x + y + z =1, расположенная 3 область (D ) В нашем случае n - вектор нормали к плоскости XOY те n k { } = ϕ, ϕ, Тогда = =,,, а n { } cos γ =, + + ( ϕ) ( ϕ) ( ϕ) ( ϕ) dq = + + dd Замечание Если поверхность ( Q) правильная в направлении

Подробнее

Вариант 1 1. Исходя из определения производной, найти f '(x 0 ) для функций:

Вариант 1 1. Исходя из определения производной, найти f '(x 0 ) для функций: Вариант Исходя из определения производной, найти f '( 0 ) для функций: tg f ( ) = ( ), 0 = + sin, 0 f ( ) = 0 =0 0, = 0, Найти производную функций: y = ln( +) y = sin + ( ) 5 + + + y = e y = 5 y = + 6

Подробнее

1. ПРОИЗВОДНАЯ. f x lim lim x. в точке x. dy Существуют и другие обозначения производной: y,, называется сложной, если u есть функция от x :

1. ПРОИЗВОДНАЯ. f x lim lim x. в точке x. dy Существуют и другие обозначения производной: y,, называется сложной, если u есть функция от x : СОДЕРЖАНИЕ ПРОИЗВОДНАЯ Определение производной Дифференцирование неявных функций Логарифмическое дифференцирование Производные высших порядков Дифференцирование функции, заданной параметрически 6 Уравнение

Подробнее

Вариант 6 1. Исходя из определения производной, найти f '(x 0 ) для функций:

Вариант 6 1. Исходя из определения производной, найти f '(x 0 ) для функций: Вариант 6 Исходя из определения производной, найти f '( 0 ) для функций: f ( ) =, 0 = f ( ) = ln( ), 0 0 =0 0, = 0, Найти производную функций: ( ) ln( y = + ) y = 5 0 + sin( ) y = ( ) y = 5 y = + 6 y =

Подробнее

Исследование функции двух переменных.

Исследование функции двух переменных. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению.

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению. ЛЕКЦИЯ N. Скалярное поле. Производная по направлению. Градиент. Касательная плоскость и нормаль к поверхности. Экстремумы функции многих переменных. Условный экстремум.. Скалярное поле. Производная по

Подробнее

Вопросы и задачи для контрольной работы. 1. Линейная алгебра

Вопросы и задачи для контрольной работы. 1. Линейная алгебра Вопросы и задачи для контрольной работы Линейная алгебра Матрицы и определители Вычислить определители: а), б), в), г) Решить уравнение 9 9 Найти определитель матрицы B A C : A, B Найти произведение матриц

Подробнее

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3 Вариант Найти область определения функции : y arccos Область определения данной функции определяется неравенством Умножим неравенство на и освободимся от знака модуля: Из левого неравенства находим или

Подробнее

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления»

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления» 4 Методические указания к выполнению контрольной работы «Производная и ее приложения Приложения дифференциального исчисления» Производная Приложения дифференциального исчисления Производной функции f (

Подробнее

P Проверим выполнение достаточных

P Проверим выполнение достаточных Функции нескольких переменных (ФНП). Локальный экстремум. 1) Исследовать на локальный экстремум функцию z z e ; а) -х переменных б) 3-х переменных 3 3 3 u u z z 17 48 z. а) z e e e e 1 1 z e e Находим

Подробнее

Дифференциальное исчисление функций нескольких переменных

Дифференциальное исчисление функций нескольких переменных Министерство образования и науки Российской Федерации Московский государственный университет геодезии и картографии ОВ Исакова, ЛА Сайкова Дифференциальное исчисление функций нескольких переменных Рекомендовано

Подробнее

Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей

Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей Методические указания к решению контрольной работы 1 по дисциплине «Математика» для студентов первого курса строительных специальностей Кафедра высшей математики АВ Капусто Минск 016 016 Кафедра высшей

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

Пределы. Производные. Функции нескольких переменных

Пределы. Производные. Функции нескольких переменных Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

Подробнее

ЗАДАЧА 1. Найти пределы функций, не пользуясь правилом Лопиталя в пунктах а) г); с использованием правила Лапиталя в пункте д). 2.

ЗАДАЧА 1. Найти пределы функций, не пользуясь правилом Лопиталя в пунктах а) г); с использованием правила Лапиталя в пункте д). 2. ЗАДАЧА Найти пределы функций, не пользуясь правилом Лопиталя в пунктах а) г); с использованием правила Лапиталя в пункте д) х + х х + + 6х а) lim ; б) lim ; х х + х х х ( + х ) + х в) lim ; х х + Решение

Подробнее

Вариант 14 x. Область определения данной функции определяется неравенством > 0.

Вариант 14 x. Область определения данной функции определяется неравенством > 0. Вариант Найти область определения функции : lg 5 + Область определения данной функции определяется неравенством > 5+ Найдём корни знаменателя:, Так как ветви параболы 5+ направлены вверх, то 5+ 6< при

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

для всех k. Ответ: График представлен на рисунке. 3. Построить график функции: y = 2. Область определения функции: вся числовая ось: x (,

для всех k. Ответ: График представлен на рисунке. 3. Построить график функции: y = 2. Область определения функции: вся числовая ось: x (, Вариант 9 Найти область определения функции : y + lg Область определения данной функции определяется следующим неравенством: >, те > Далее, знаменатель не должен обращаться в нуль: или ± Объединяя результаты,

Подробнее

Дифференциальное исчисление функций нескольких переменных

Дифференциальное исчисление функций нескольких переменных Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Дифференциальное исчисление функций нескольких

Подробнее

Данная функция определена на всей числовой оси, кроме точки x = 2. Если x 2± 0, то y +

Данная функция определена на всей числовой оси, кроме точки x = 2. Если x 2± 0, то y + Вариант Найти область определения функции : y + + lg(5 Область определения данной функции определяется следующими неравенствами: + те 5 > те < 5 Далее знаменатель не должен обращаться в нуль: lg( 5 или

Подробнее

Тема. Логарифмические уравнения, неравенства и системы уравнений

Тема. Логарифмические уравнения, неравенства и системы уравнений Тема. Логарифмические уравнения, неравенства и системы уравнений I. Общие указания 1. В процессе работы над темой, разбирая примеры и самостоятельно решая предложенные задачи, постарайтесь в каждом случае

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 3. Аналитическая геометрия на плоскости 1. Составить уравнения прямых, проходящих через точку A(4; 1) a) параллельно прямой

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ РАЗДЕЛА

Подробнее

Функции нескольких переменных

Функции нескольких переменных Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» Институт образовательных информационных технологий Функции нескольких переменных Методические указания

Подробнее

и плоскостью, проходящей через точки K(0; 0; 1), L(2; 4; 6), M(2; 2; 3). 4. Дана функция Вычислить ее производную 20-го порядка в точке x = 0.

и плоскостью, проходящей через точки K(0; 0; 1), L(2; 4; 6), M(2; 2; 3). 4. Дана функция Вычислить ее производную 20-го порядка в точке x = 0. Билет Матрицы, действия над ними Числовая последовательность, свойства бесконечно малых последовательностей Вычислить расстояние от точки M( ; ; ) до плоскости, проходящей через точки A( ; ; 0), B( ; ;

Подробнее

Дифференциальное исчисление функций нескольких переменных

Дифференциальное исчисление функций нескольких переменных Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

Вариант 13. Область определения данной функции определяется двумя неравенствами 1. Данная функция определена на всей числовой оси, кроме точки x = 2

Вариант 13. Область определения данной функции определяется двумя неравенствами 1. Данная функция определена на всей числовой оси, кроме точки x = 2 Вариант Найти область определения функции : y arcsi + Область определения данной функции определяется двумя неравенствами и Умножим первое неравенство на и освободимся от знака модуля: Из левого неравенства

Подробнее

Национальный банк Республики Беларусь УО Полесский государственный университет М.А. РОМАНОВА, Л.Н. БАЗАКА. ПолесГУ

Национальный банк Республики Беларусь УО Полесский государственный университет М.А. РОМАНОВА, Л.Н. БАЗАКА. ПолесГУ Национальный банк Республики Беларусь УО Полесский государственный университет М.А. РОМАНОВА, Л.Н. БАЗАКА ВЫСШАЯ МАТЕМАТИКА. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ И ЕГО ПРИЛОЖЕНИЯ Сборник задач для студентов нематематических

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Логвенков С.А., Мышкис П.А. Самовол В.С. СБОРНИК ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Логвенков С.А., Мышкис П.А. Самовол В.С. СБОРНИК ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Логвенков СА, Мышкис ПА Самовол ВС СБОРНИК ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Учебное пособие для факультетов менеджмента, политологии и социологии Москва Издательство МЦНМО

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

Вариант 18. Область определения данной функции определяется неравенством 1. 2 или x 2 / 3. Из правого неравенства x 2 или x 2

Вариант 18. Область определения данной функции определяется неравенством 1. 2 или x 2 / 3. Из правого неравенства x 2 или x 2 Вариант Найти область определения функции : arccos Область определения данной функции определяется неравенством Освободимся от знака модуля: Если то Из левого неравенства находим или / Из правого неравенства

Подробнее

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию:

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию: Вариант 7 Найти область определения функции : y + / lg Область определения данной функции определяется следующими условиями:, >, те > / Далее, знаменатель не должен обращаться в нуль: или Объединяя результаты,

Подробнее

Функции многих переменных Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Функции многих переменных Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Функции многих переменных Конспект лекций и практикум для

Подробнее

Область определения данной функции определяется неравенством 5x x 6> 0 являются числа x =, x 3. Так как ветви параболы

Область определения данной функции определяется неравенством 5x x 6> 0 являются числа x =, x 3. Так как ветви параболы Вариант 5 Найти область определения функции lg5 Область определения данной функции определяется неравенством 5 > Корнями уравнения 5+ являются числа, Так как ветви параболы + 5 направлены вниз, то неравенство

Подробнее

Дифференциальное исчисление функций нескольких переменных

Дифференциальное исчисление функций нескольких переменных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами:

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами: Вариант 7 Найти область определения функции : y Область определения данной функции определяется двумя неравенствами: и > Второе неравенство выполняется при всех значениях Корнями уравнения являются числа

Подробнее

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1,

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1, Глава Экстремумы функции двух переменных Экстремум функции двух переменных При решении многих экономических задач приходится вычислять наибольшее и наименьшее значения В качестве примера рассмотрим задачу

Подробнее

Вопросы к экзамену по математике для студентов ИСиА (1 курс, 1, 2 и 9 гр) специальности , семестр

Вопросы к экзамену по математике для студентов ИСиА (1 курс, 1, 2 и 9 гр) специальности , семестр Вопросы к экзамену по математике для студентов ИСиА ( курс,, и 9 гр) специальности 6, 6 семестр Теоретическая часть часть Матрицы Действия с ними Определители квадратных матриц Свойства Миноры и алгебраические

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ.

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» СИ, Бородина, МЮ Старовская ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ

Подробнее

Методические указания к решению контрольной работы 2 по дисциплине «Математика» для студентов первого курса строительных специальностей

Методические указания к решению контрольной работы 2 по дисциплине «Математика» для студентов первого курса строительных специальностей Методические указания к решению контрольной работы по дисциплине «Математика» для студентов первого курса строительных специальностей Кафедра высшей математики А.В. Капусто Минск 07 07 Кафедра «Высшая

Подробнее

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ ООО «Резольвента» www.resolventa.ru resolventa@list.ru (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

Очная форма обучения. Бакалавры. I курс, 1 семестр. Направление «Управление в технических системах» Дисциплина - «Математика».

Очная форма обучения. Бакалавры. I курс, 1 семестр. Направление «Управление в технических системах» Дисциплина - «Математика». «Управление в технических системах» семестр Очная форма обучения Бакалавры I курс, семестр Направление «Управление в технических системах» Дисциплина - «Математика» Содержание Содержание Балльно - рейтинговая

Подробнее

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции.

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции. Решение типового варианта ИДЗ «Дифференциальные уравнения» Задание Убедиться, что функция = (ln + C) удовлетворяет уравнению = Найдём производную данной функции = ln + C + = ln + C + Подставим данное выражение

Подробнее

x 2 > x 1 следует, что f(x 2 ) > f(x 1 ). f = f(x 2 ) f(x 1 ) > 0. Значит,

x 2 > x 1 следует, что f(x 2 ) > f(x 1 ). f = f(x 2 ) f(x 1 ) > 0. Значит, Тема 38 «Возрастание и убывание функций». (без вычисления производной) В данном разделе рассмотрим задачи на возрастание и убывание функции, в которых не надо вычислять производные. Функцию у = f(x) называют

Подробнее

Задания для самостоятельного решения. 5. Напишите уравнение касательной к графику функции f ( x) x 3 1в точках с абсциссами x 0 =-1 и x 0 =2

Задания для самостоятельного решения. 5. Напишите уравнение касательной к графику функции f ( x) x 3 1в точках с абсциссами x 0 =-1 и x 0 =2 Задания для самостоятельного решения. Найдите область определения функции 6x. Найдите тангенс угла наклона к оси абсцисс касательной, проходящей через точку М (;) графика функции. Найдите тангенс угла

Подробнее

Учебный план дисциплины.

Учебный план дисциплины. 3 Учебный план дисциплины. Студенты дневного отделения изучают математику на I и II курсах. Общий объем учебных часов на дисциплину 600 часов. В первом семестре изучаются следующие разделы: линейная алгебра,

Подробнее

Лекции подготовлены доц. Мусиной М.В. Производная функции.

Лекции подготовлены доц. Мусиной М.В. Производная функции. Производная функции Понятие производной является одним из основных математических понятий Производная широко используется при решении целого ряда задач математики, физики и других наук, в особенности при

Подробнее

Производная Задачи для самостоятельного решения. 1 Найти первую производную функции:

Производная Задачи для самостоятельного решения. 1 Найти первую производную функции: Производная Задачи для самостоятельного решения Найти первую производную функции: 4 cos (7 ) lg( ) e 4 tg arcsin( 4) arctg tg log () 4 log (4 ) 6 7 ln(/ ) arctg ( sin ( )) ( cos( )) 7 7 8 log arctg ctg(

Подробнее

5. Экстремум функции двух переменных.

5. Экстремум функции двух переменных. 88 5. Экстремум функции двух переменных. Точка M (, ) является точкой максимума (минимума) функции z = f(,), если найдется такая окрестность точки M, что для всех точек M(,) из этой окрестности выполняется

Подробнее

26. x x. y ; наибольшее значение функции y. 6 1, наименьшее значение функции x y 2 0. x z

26. x x. y ; наибольшее значение функции y. 6 1, наименьшее значение функции x y 2 0. x z 1) Найти наибольшее и наименьшее значения функции 1 1 на отрезке 6. Чтобы найти наибольшее и наименьшее значения функции на отрезке, надо: а) найти стационарные точки, расположенные на данном отрезке,

Подробнее

ЛЕКЦИЯ N21. Полный дифференциал, частные производные и дифференциалы высших порядков.

ЛЕКЦИЯ N21. Полный дифференциал, частные производные и дифференциалы высших порядков. ЛЕКЦИЯ N Полный дифференциал, частные производные и дифференциалы высших порядков Полный дифференциал Частные дифференциалы Частные производные высших порядков Дифференциалы высших порядков 4Производные

Подробнее

x возрастает; 4. Необходимые и достаточные условия существования экстремумов: 1) Если функция y f x

x возрастает; 4. Необходимые и достаточные условия существования экстремумов: 1) Если функция y f x Тема: Исследование функций Обор корней показательных уравнений Подготовка к ЕГЭ (задание ; ; 8) Производная Формулы дифференцирования: 0 Const k m k n n n sin cos cos sin cos sin tg ctg ln Правила дифференцирования:

Подробнее

II. Исследование функций с помощью пределов и производных

II. Исследование функций с помощью пределов и производных Типовые задачи к экзамену по математике ФЗ- ( семестр) I Пределы si( ) Найти предел, используя правило Лопиталя - Бернулли: lim cos( ) Найти предел, используя правило Лопиталя - Бернулли: lim l si(4 )

Подробнее

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Веб- страница кафедры http://kvm.gubkin.ru 1 Функции многих переменных 2 Определение

Подробнее

16.2.Н. Производная.

16.2.Н. Производная. 6..Н. Производная 6..Н. Производная. Оглавление 6..0.Н. Производная Введение.... 6..0.Н. Производная сложной функции.... 5 6..0.Н. Производные от функций с модулями.... 7 6..0.Н. Возрастание и убывание

Подробнее

Производная функции. 1. Производные некоторых функций: C Свойства производных: 4. Общий смысл производной.

Производная функции. 1. Производные некоторых функций: C Свойства производных: 4. Общий смысл производной. Производная функции. 1. Производные некоторых функций: C 0 2. 3. Свойства производных: 4. Общий смысл производной. Геометрический смысл производной есть тангенс угла наклона касательной, проведенной к

Подробнее

ЛЕКЦИЯ 18. Дифференциал функции в точке. Производная сложной и обратной функции.

ЛЕКЦИЯ 18. Дифференциал функции в точке. Производная сложной и обратной функции. ЛЕКЦИЯ 8 Дифференциал функции в точке Производная сложной и обратной функции Дифференциал функции в точке Пусть функция f () определена в некоторой окрестности точки Если приращение функции f () можно

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» БОРИСОГЛЕБСКИЙ ФИЛИАЛ (БФ ФГБОУ ВО «ВГУ») УТВЕРЖДАЮ Заведующий

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Глава 9. Частные производные

Глава 9. Частные производные Глава 9 Частные производные 9 Частные производные, градиент и дифференциал Пусть M, ) внутренняя точка области определения функции f, Частной производной функции f, по переменной называется предел f, )

Подробнее

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

Функции нескольких переменных.

Функции нескольких переменных. Московский Государственный Технический Университет имени НЭ Баумана Дубограй ИВ Скуднева ОВ Левина А И Функции нескольких переменных методические указания для подготовки к аттестации Москва Издательство

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Лекция 9 ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Понятие экстремума функции многих переменных Некоторые сведения о квадратичных формах 3 Достаточные условия экстремума Понятие экстремума функции многих переменных

Подробнее

«ИССЛЕДОВАНИЕ ФУНКЦИЙ»

«ИССЛЕДОВАНИЕ ФУНКЦИЙ» Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы «ИССЛЕДОВАНИЕ ФУНКЦИЙ»

Подробнее

Программа письменного экзамена по «Высшей математике» в зимнюю сессию учебного года, для I курса экономического факультета дневного

Программа письменного экзамена по «Высшей математике» в зимнюю сессию учебного года, для I курса экономического факультета дневного Программа письменного экзамена по «Высшей математике» в зимнюю сессию - учебного года для I курса экономического факультета дневного отделения (специальностей «экономика» и «экономическая теория») заочного

Подробнее

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ:

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: 11 Функциональная связь Предел функции 1 Производная функции 1 Механический физический и геометрический смысл производной 14 Основные

Подробнее

В.И. Иванов С.И. Васин

В.И. Иванов С.И. Васин Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы «ИССЛЕДОВАНИЕ ФУНКЦИЙ»

Подробнее

Содержание. Балльно - рейтинговая система

Содержание. Балльно - рейтинговая система 78 «Строительство» семестр Очная форма обучения Специалисты I курс, семестр Направление 78 «Строительство» Дисциплина - «Математика-» Содержание Содержание Балльно - рейтинговая система Контрольная работа

Подробнее

Выпускной экзамен по алгебре и началам анализа, 1999 год базовые классы. Вариант Решите уравнение 2cos xsin x+ cos2x= 0.

Выпускной экзамен по алгебре и началам анализа, 1999 год базовые классы. Вариант Решите уравнение 2cos xsin x+ cos2x= 0. Выпускной экзамен по алгебре и началам анализа, 1999 год базовые классы Сайт элементарной математики Дмитрия Гущина www.mathnet.spb.ru Работа 1 1 Решите уравнение 5 6 5 + 5 = 65.. Решите неравенство log

Подробнее