Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии."

Транскрипт

1 ЛЕКЦИЯ Числовые последовательности Бесконечно большие и бесконечно малые последовательности Основные свойства бесконечно малых последовательностей Числовые последовательности Если каждому из множества натурального ряда чисел,,,, поставлено в соответствие по определённому закону некоторое вещественное число, то множество чисел,,, () называется числовой последовательностью и обозначается { }, при этом называется общим членом числовой последовательности, а число называются элементами или членами числовой последовательности - его номером Числа Например, последовательность с общим членом, будет последовательностью чисел,,,,,, Последовательность с общим членом ( ) чисел 0,, 0,,,( ( ) ), { ( ) } будет последовательностью Арифметическая и геометрическая прогрессия также являются числовыми последовательностями Арифметическая прогрессия это числовая последовательность с общим членом d( ), где d разность арифметической прогрессии Например,,, 9,, -, ;, ( ), d Геометрическая прогрессия это числовая последовательность с общим членом q,,,,где q знаменатель геометрической прогрессии Например:,, ;, q Арифметические действия над числовыми последовательностями Пусть даны последовательности { } и { } Произведением последовательности { } { } { m, те m, m,, m,; m } на число m назовем последовательность: 8

2 Суммой данных последовательностей { } и { } { } { } { } Разностью данных последовательностей { } и { } { } { } { } Произведение последовательностей: { } { } { } { } Частное последовательностей: { } ; назовем последовательность назовем последовательность при { } 0 Числовая последовательность называется возрастающей, если каждый ее член больше предыдущего, иными словами, если для всякого > верно неравенство > Аналогично дается определение убывающей числовой последовательности Вместе возрастающие и убывающие последовательности называются монотонными последовательностями Последовательность,, состоять из отдельных точек координатной плоскости, можно изобразить «графиком», который будет Последовательность,,, называется ограниченной сверху (снизу), если существует такое число M (число m ), что любой элемент этой последовательности удовлетворяет неравенству M ( m ) Последовательность,,, называется ограниченной, если она ограничена с сверху и снизу, те существуют числа M и m такие, что любой элемент этой последовательности удовлетворяет неравенству m M (рис) 9

3 Последовательность,,, Рис называется неограниченной, если для любого положительного числа A существует элемент этой последовательности, удовлетворяющий неравенству A (те либо > A, либо < A ) малыми Бесконечно большие и бесконечно малые последовательности Числовые последовательности бывают бесконечно большими и бесконечно Последовательность { } называется бесконечно большой, если для любого положительного числа А, сколь угодно большого, можно указать номер N такой, что при N все элементы последовательности удовлетворяют неравенству > A Например, последовательность натурального ряда чисел,,,, является бесконечно большой, тк, какое ни возьми число N, начиная с которого, для N, члены последовательности будут всё-таки больше А Последовательность,,,,,,,,, не является бесконечно большой, так как для всех нечетных членов этой последовательности неравенство выполняться > A не будет Последовательность {α } называется бесконечно малой, если для любого положительного числа ε, сколь угодно малого, можно указать номер N такой, что при N все элементы α < ε 80

4 Например, геометрическая прогрессия, у которой знаменатель q <, является бесконечно малой числовой последовательностью Рассмотрим геометрическую прогрессию с общим членом :,,,,,,,, 8 Выберем сколь угодно малое число ε, например, ε 0, Начиная с номера N, для всех членов последовательности справедливо неравенство < 0, Если выбрать ε 0,0, то, начиная с номера N 8, для всех членов последовательности справедливо < 0,0 Если в неравенстве α <ε раскрыть модульные скобки, то (-ε < α <ε ) показывает, что начиная с номера N, зависящего от ε, все члены последовательности попадают на интервал (-ε ;ε ) Для рассмотренного примера, при ε 0,, начиная с N члены последовательности попадают на интервал (-0,;0,); при ε 0,0 на интервал (-0,0;0,0) Чем меньше ε, тем больше номер N Все члены последовательности приближаются к нулю, но ни при одном, не обращаются в нуль Рассмотрим пример последовательности с общим членом ( ),,,,, Изобразим точками на числовой оси элементы этой последовательности (см рис) Рис Числовая последовательность с общим членом (-) Видно, что члены последовательности приближаются к нулю, при этом ни один элемент последовательности не равен нулю Для любого, сколь угодно малого, ε >0, можно указать номер N, начиная с которого для всех N, справедливо неравенство α <ε Так для ε 0, номер N, для ε 0,0, номер N 0 и тд Значит, последовательность также является бесконечно малой 8

5 Основные свойства бесконечно малых последовательностей Сумма бесконечно малых последовательностей есть последовательность бесконечно малая { α } { β} { α β} γ Разность двух бесконечно малых последовательностей есть последовательность α β α β γ бесконечно малая { } { } { } Произведение любого конечного числа бесконечно малых последовательностей есть последовательность бесконечно малая { α } { β } { α β } γ } Если { } бесконечно большая последовательность, то, начиная с некоторого { номера, определена последовательность, которая является бесконечно малой { α } Если все члены бесконечно малой последовательности { α } не равны нулю, то последовательность α α бесконечно большая { } Сходящиеся последовательности Свойства сходящихся последовательностей Последовательность называется сходящейся, если существует такое число а, что последовательность { } пределом последовательности a является бесконечно малой При этом число а называется { } и обозначается a, или a при () Дадим эквивалентное определение Последовательность называется сходящейся, если существует такое число а, что для любого сколь угодно малого положительного ε, найдется номер N, такой, что при последовательности удовлетворяют неравенству N { } все элементы a < ε () Неравенство a < ε эквивалентно неравенству aε < < a ε Будем говорить, что попадает в ε - окрестности точки a (рис ) 8

6 Рис Проще говоря, число называется пределом последовательности, если в любой ε-окрестности точки лежат все члены последовательности, за исключением, может быть, конечного их числа Отсюда легко заметить, что изменение конечного числа членов последовательности не влияет ни на факт существования предела, ни на величину последнего Так как { } { a { } a { } a α }, то общий член a α, или a α Будем говорить, что любой элемент сходящейся последовательности может быть записан в виде a α, где α - элемент бесконечно малой последовательности Рассмотрим примеры сходящихся последовательностей Последовательность сходится и N Составим последовательность { a} Докажем, что последовательность бесконечно малая Если N, то, и поэтому по данному ε >0 достаточно выразить номер N из условия N < ε или N > ε 8

7 Последовательность,,,,,, сходится к числу а Действительно, бесконечно малая, тогда последовательность { a} Свойства сходящихся последовательностей Сходящаяся последовательность имеет только один предел (без доказательства) Сумма сходящихся последовательностей { } и { } сходящаяся, а её предел равен сумме пределов есть последовательность Доказательство Пусть a, тогда a α, α бесконечно малая последовательность, b, тогда последовательность Сумма { } { } { } b β, β бесконечно малая Общий член последовательности может быть записан ( a b) ( α β ) a α b β, тк β α есть сумма двух бесконечно малых последовательностей и является бесконечно малой последовательностью, то ( a b) γ, где γ α β, то ( ) a b Разность сходящихся последовательностей { } и { } есть последовательность сходящаяся, а её предел равен разности пределов Доказательство аналогично доказательству свойства Произведение сходящихся последовательностей есть последовательность сходящаяся, а её предел равен произведению пределов Доказательство Пусть a, b,тогда a α, β b, где α и β бесконечно малые последовательности Произведение { } { } { } ( a α )( b β ) ab ( bα aβ α β ) ( α aβ α β, а b ) является суммой бесконечно малых последовательностей и сама является бесконечно малой, например, предел ab γ Тогда Частное двух сходящихся последовательностей { } { } у ab γ и следовательно и при условии, что отличен от нуля, есть последовательность сходящаяся, а её предел равен частному пределов (без доказательства) { } 8

8 На основании перечисленных свойств можно находить пределы числовых последовательностей Число «е» Второй замечательный предел Рассмотрим последовательность { } с общим членом Докажем, что она сходится Для этого достаточно доказать, что последовательность { } - возрастающая и ограничена сверху Применив формулу бинома Ньютона, найдем ( ) ( )( ) ( )( )[ ( ) ]!! Представим это выражение в следующей форме:!!! () Аналогичным образом представим :!! Заметим теперь, что k k < при ( )!! 0 < k < Поэтому каждое слагаемое в выражении для больше соответствующего слагаемого в выражении для и, кроме того, у по сравнению с добавляется еще одно положительное слагаемое, следовательно,, те последовательность { } < возрастающая Для доказательства ограниченности сверху данной последовательности заметим, что каждое выражение в круглых скобках в соотношении () меньше единицы Учитывая также, что <!, для любого, получим где < <,!!! сумма бесконечно убывающей геометрической прогрессии S, S Получили, что < <, те последовательность { } возрастающая и ограничена сверху, следовательно, имеет предел Этот предел обозначается буквой «е» - 8

9 Число «е» определил Леонард Эйлер (0 8) великий математик, член Петербургской Академии наук, большую часть жизни проведший в России, по происхождению швейцарец Выпишем несколько первых членов этой последовательности:,,,,, Lohard Eulr швейцарский, немецкий и российский математик и механик (0 8) Итак по определению:,,, 88 и тд При помощи современных ЭВМ, это число вычислено с точностью до 90 знаков после запятой Отдавая дань Эйлеру, это число называют числом «е»: е,88 () 8

10 СЕМИНАР Числовые последовательности Бесконечно большие и бесконечно малые последовательности Основные свойства бесконечно малых последовательностей Пример Найти предел ( ) Решение При делении числителя и знаменателя дроби на одно и то же число, дробь не меняется Разделим числитель и знаменатель на и получим ; тк { } α, тк { } β Отношение двух сходящихся есть последовательность сходящаяся и поэтому ( ) Пример Найти предел Решение ( ) ( ) : : Пример Найти предел k Решение k k k k k Пример Найти предел Решение 8

11 Пример Найти предел Решение Пример Найти предел Решение [ ] [ ] [ ] [ ] [ ] 0 Пример Вычислить предел числовой последовательности ( ) ( ) Решение Дробь ( ) ( ) - есть отношение двух бесконечно больших величин В этом случае поступают так: числитель и знаменатель дроби делят на наивысшую степень, встречающуюся в членах дроби (в данном случае на ) ( ) ( ) ( ) ( ) Ответ: ( ) ( ) Пример 8 Вычислить предел числовой последовательности 88

12 8 ( ) Решение Разделим числитель и знаменатель дроби на наивысшую степень, встречающуюся в дроби, те на : ( ) Ответ: ( ) 8 Пример 9 Вычислить предел si Решение Разделим числитель и знаменатель дроби на si si Ответ: si Пример 0 Вычислить предел Решение ( ) ( ) ( ) Пример Найти предел ( ) ( ) Решение Преобразуем исходное выражение, выполнив действия в числителе и (( ) ( ) )(( ) ( ) ) ( )( ) знаменателе:

13 Разделив числитель и знаменатель на их старшую степень, получим Поскольку 0, α > 0, α ( ) предела получаем ( ) то по свойствам Пример Найти предел 8 ( ) Решение Разделим числитель и знаменатель исходного выражения на старшую степень числителя и знаменателя 8 Поскольку 0 α при α > 0, то 0,, 8, и по свойствам ( ) 8 предела получаем ( ) ( ) ( )( ) Пример Найти предел Решение Имеем неопределённость Умножим числитель и знаменатель дроби на выражение, сопряжённое к числителю; далее разделим числитель и знаменатель на : ( ( ( )( ) ) ( ), ) 90

14 Теперь воспользуемся арифметическими свойствами предела и тем, что 0 α при : > 0 α ) ( ) ( Пример Найти предел Решение Находим пределы основания и показателя степени исходного выражения и убеждаемся в том, что перед нами неопределённость вида Выделяем в исходном выражении формулу ( ), 0, и вычисляем предел ) ( ( ) ( ) ( ) ( )( ) 9

, а всю числовую последовательность - y

, а всю числовую последовательность - y Лекции Глава Числовые последовательности Основные понятия Числовую функцию y f N y R заданную на множестве N натуральных чисел называют числовой последовательностью Число f называют -м элементом последовательности

Подробнее

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь-

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь- Последовательности. Числовая последовательность. Виды последовательностей Предел числовой последовательности Предельный переход в неравенствах Предел монотонной ограниченной последовательности. Число e.

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

2 Предел функции. , определенная на множестве всех натуральных чисел N 1,2,3,..., n,... . Значения функции f1, f2,..., fn,...

2 Предел функции. , определенная на множестве всех натуральных чисел N 1,2,3,..., n,... . Значения функции f1, f2,..., fn,... Предел функции. Предел числовой последовательности Определение. Бесконечной числовой последовательностью (или просто числовой последовательностью называется функция f f (, определенная на множестве всех

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и

Подробнее

Глава 6 Числовые ряды

Глава 6 Числовые ряды Глава 6 Числовые ряды Определение числового ряда и основные теоремы Определение : Последовательностью действительных чисел называется функция f, определённая на множестве всех натуральных чисел Число f

Подробнее

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности Математический анализ (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности 1 Предварительные сведения о действительных (вещественных) числах Рациональное число m Q, m, -целые числа.

Подробнее

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения:

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения: МНОЖЕСТВА Множество В математике понятие множество используется для описания совокупности предметов или объектов При этом предполагается, что предметы (объекты) данной совокупности можно отличить друг

Подробнее

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m Тема Теория пределов Практическое занятие Числовые последовательности Определение числовой последовательности Ограниченные и неограниченные последовательности Монотонные последовательности Бесконечно малые

Подробнее

ограниченные последовательности сходящиеся последовательности ательнос

ограниченные последовательности сходящиеся последовательности ательнос ограниченные последовательности Вычисление пределов числовых последовательностей Рассмотренные нами вопросы о числовых последовательностях содержат основные понятия и некоторые сведения о структуре множества

Подробнее

x 4 ; x log 6 - логарифмические неравенства

x 4 ; x log 6 - логарифмические неравенства Вопрос. Неравенства, система линейных неравенств Рассмотрим выражения, которые содержат знак неравенства и переменную:. >, - +х -это линейные неравенств с одной переменной х.. 0 - квадратное неравенство.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Подробнее

Тема 3. ПРЕДЕЛЫ ФУНКЦИЙ

Тема 3. ПРЕДЕЛЫ ФУНКЦИЙ Тема ПРЕДЕЛЫ ФУНКЦИЙ Число А называется пределом функции у=f), при х стремящемся к бесконечности, если для любого, сколь угодно малого числа ε>, найдется такое положительное числоs, что при всех >S, выполняется

Подробнее

Московский государственный технический университет имени Н.Э.Баумана. Ф.Х.Ахметова, А.В.Косова, И.Н.Пелевина

Московский государственный технический университет имени Н.Э.Баумана. Ф.Х.Ахметова, А.В.Косова, И.Н.Пелевина Московский государственный технический университет имени Н.Э.Баумана Ф.Х.Ахметова, А.В.Косова, И.Н.Пелевина ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Часть Методические указания к выполнению домашнего задания

Подробнее

Последовательность. n n

Последовательность. n n Последовательность. Определение. Если каждому натуральному числу ( N ) по некоторому закону приведено в соответствие число { }, то этим определена числовая последовательность,,,... (или просто последовательность).

Подробнее

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

1. Понятие числовой последовательности

1. Понятие числовой последовательности Понятие числовой последовательности В курсе математического анализа изучаются переменные величины и зависимость между ними Простейшими переменными величинами являются числовые последовательности Определение

Подробнее

1. Числовой последовательностью называется бесконечное множество чисел

1. Числовой последовательностью называется бесконечное множество чисел 1. Числовой последовательностью называется бесконечное множество чисел (1) следующих одно за другим в определенном порядке и построенных по определенному закону, с помощью которого задается как функция

Подробнее

} сходятся и, начиная с некоторого номера выполняется неравенство x y. Тогда lim xn. lim yn

} сходятся и, начиная с некоторого номера выполняется неравенство x y. Тогда lim xn. lim yn ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 6 Предел числовой последовательности СОДЕРЖАНИЕ: Предельный переход в неравенствах Подпоследовательности Фундаментальные последовательности

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Пределы и непрерывность

Пределы и непрерывность Пределы и непрерывность. Предел функции Пусть функция = f ) определена в некоторой окрестности точки = a. При этом в самой точке a функция не обязательно определена. Определение. Число b называется пределом

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...}

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...} Тема Теория пределов Как мы понимаем слово «предел»? В повседневной жизни мы часто употребляем термин «предел», не углубляясь в его сущность В нашем представлении чаще всего предел отождествляется с понятием

Подробнее

Предел функции. 4 1 Понятие предела функции

Предел функции. 4 1 Понятие предела функции Глава 4 Предел функции 4 1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

Введение в математический анализ. Теория пределов

Введение в математический анализ. Теория пределов Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

Пределы. 6.1 Определение предела последовательности и

Пределы. 6.1 Определение предела последовательности и Студент должен знать: определение предела функции; свойства пределов; понятие бесконечно малых функций; понятие ограниченных и бесконечно больших функций; определение непрерывности функции в точке; сравнение

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

Основы алгебры. Числовые множества. Глава 1

Основы алгебры. Числовые множества. Глава 1 Глава 1 Основы алгебры Числовые множества Рассмотрим основные числовые множества. Множество натуральных чисел N включает числа вида 1, 2, 3 и т. д., которые используются для счета предметов. Множество

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

2. Предел функции. изменении аргумента. С помощью предела можно выяснить, имеет ли

2. Предел функции. изменении аргумента. С помощью предела можно выяснить, имеет ли . Предел функции. Актуальность изучения темы Теория пределов играет основополагающую роль в математическом анализе, позволяет определить характер поведения функции при заданном изменении аргумента. С помощью

Подробнее

ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Подробнее

3 1 Последовательности и их свойства

3 1 Последовательности и их свойства Глава 3 Предел 3 1 ПОНЯТИЕ ПОСЛЕДОВАТЕЛЬНОСТИ последовательности Последовательности представляют собой особый класс функций, для которых областью определения является множество натуральных чисел. В этой

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Коршикова Т. И., Калиниченко

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

Тема: Числовые последовательности

Тема: Числовые последовательности Математический анализ Раздел: Введение в анализ Тема: Числовые последовательности (основные определения, предел последовательности, свойства сходящихся последовательностей) Лектор Пахомова Е.Г. 2012 г.

Подробнее

Лабораторная работа 5 Предел последовательности: определение, свойства

Лабораторная работа 5 Предел последовательности: определение, свойства Лабораторная работа 5 Предел последовательности: определение, свойства Необходимые понятия и теоремы: определение числовой последовательности, ограниченные и неограниченные последовательности, монотонные

Подробнее

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 7 Предел функции СОДЕРЖАНИЕ: Предел функции в точке Предел функции на бесконечности Основные теоремы о пределах функций Бесконечно

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

{ } { } { } Глава 2. ПОСЛЕДОВАТЕЛЬНОСТИ 2.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

{ } { } { } Глава 2. ПОСЛЕДОВАТЕЛЬНОСТИ 2.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Глава ПОСЛЕДОВАТЕЛЬНОСТИ ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Функция, определенная на множестве натуральных чисел N и принимающая числовые значения, называется числовой последовательностью или просто последовательностью

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ Пределы Методические указания

Подробнее

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y)

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y) I Множества Основные понятия Отображение множеств Множество одно из основных понятий математики, которое не определяется Множество состоит из элементов Всякая совокупность элементов произвольного рода

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

Тест по алгебре Арифметический квадратный корень I вариант 8В класс, 24 октября 2007

Тест по алгебре Арифметический квадратный корень I вариант 8В класс, 24 октября 2007 I вариант 8В класс, 4 октября 007 1 Вставьте пропущенные слова: Определение 1 Арифметическим квадратным корнем из число, которого равен a из числа a (a 0) обозначается так: выражением Действие нахождения

Подробнее

1. Прогрессии. 2. Задание последовательности рекуррентным соотношением: а 1, а 2,, а n 1, a n = f(a n 1, a n 2,, a 1 ).

1. Прогрессии. 2. Задание последовательности рекуррентным соотношением: а 1, а 2,, а n 1, a n = f(a n 1, a n 2,, a 1 ). . Прогрессии Последовательность функция натурального аргумента.. Задание последовательности формулой общего члена: a n = f(n), n N, например, a n = n + n + 4, а = 43, а = 47, а 3 = 3,. Задание последовательности

Подробнее

ЗАНЯТИЕ 8 АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

ЗАНЯТИЕ 8 АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ ЗАНЯТИЕ 8 АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ Необходимые сведения из теории Арифметическая прогрессия Числовая последовательность a, a d,, a d,, каждый член которой, начиная со второго, равен предыдущему,

Подробнее

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ Министерство образования и науки Российской Федерации Ярославский государственный университет им ПГ Демидова Кафедра дискретного анализа СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

Подробнее

ПРЕДЕЛЫ Методическое пособие для студентов вузов

ПРЕДЕЛЫ Методическое пособие для студентов вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики и кибернетики Кафедра теории вероятностей и математической статистики ПРЕДЕЛЫ Методическое

Подробнее

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim Òåîðåìû î ïðåäåëàõ Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Основные теоремы о пределах. Предел числовой последовательности. Первый замечательный предел. Второй замечательный предел. Экспонента. Натуральный логарифм.

Подробнее

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. Геометрической прогрессией называется числовая последовательность b

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. Геометрической прогрессией называется числовая последовательность b ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ Геометрической прогрессией называется числовая последовательность b, первый член которой отличен от нуля, а каждый последующий член, начиная со второго,

Подробнее

n =1,2, K. Ряд называют

n =1,2, K. Ряд называют 2. Признаки сходимости знакоположительных рядов Ряд u называют знакоположительным, если все его члены неотрицательны, т.е. если u 0 для любого,2, K. Ряд называют знакоотрицательным, если все его члены

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики. Занятие. Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.. Вспомнить свойства степени с рациональным показателем. a a a a a для натурального раз

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ И БЕСКОНЕЧНЫЕ ЧИСЛОВЫЕ

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1 РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ Найти область определения D и множество значений Е функции y Р е ш е н и е Функция y определена если те если Поэтому областью определения функции является множество f ; D R Поскольку

Подробнее

Функции одной переменной Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Функции одной переменной Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Функции одной переменной Конспект лекций и практикум для

Подробнее

5. Еще о пределах; ряды

5. Еще о пределах; ряды 5. Еще о пределах; ряды Докажем сначала предложение, на которое нам не хватило времени на прошлой лекции. Предложение 5.. Для всякого b > 0 имеем lim n (ln n=n b ) = 0. (Переход к произвольному основанию

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Коршикова Т. И., Калиниченко

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

Лекция 1. Последовательности

Лекция 1. Последовательности С А Лавренченко wwwlwrecekoru Лекция 1 Последовательности 1 Понятие последовательности Мы будем рассматривать только бесконечные числовые последовательности Начнем с формального определения этого объекта

Подробнее

Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные

Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Q и действительные R числа Натуральные и целые числа

Подробнее

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики Л А Альсевич, С Г Красовский, А Ф Наумович, Н Ф Наумович ПРЕДЕЛЫ ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

Подробнее

Глава 1 ВВЕДЕНИЕ В АЛГЕБРУ

Глава 1 ВВЕДЕНИЕ В АЛГЕБРУ Глава ВВЕДЕНИЕ В АЛГЕБРУ.. КВАДРАТНЫЙ ТРЕХЧЛЕН... Вавилонская задача о нахождении двух чисел по их сумме и произведению. Одна из древнейших задач алгебры была предложена в Вавилоне, где была распространена

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

( ) ( ( ) ) ( ) 0. ( x) M. α. Тогда. α называется. ϕ ограничена в ( ) Лекция 7.БЕСКОНЕЧНО МАЛЫЕ И БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ

( ) ( ( ) ) ( ) 0. ( x) M. α. Тогда. α называется. ϕ ограничена в ( ) Лекция 7.БЕСКОНЕЧНО МАЛЫЕ И БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ Лекция 7БЕСКОНЕЧНО МАЛЫЕ И БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ Определение и свойства бесконечно малых функций Основные теоремы о пределах Замечательные пределы 4 Сравнение асимптотического поведения функций Определение

Подробнее

Лекция 1 (13 января 2017)

Лекция 1 (13 января 2017) КОНСПЕКТ ЛЕКТОРА математический анализ, курс, 2 семестр, 207, А.М. Красносельский Числовые ряды Лекция (3 января 207) Рассмотрим последовательность R и напишем «бесконечную сумму»: a k a + a 2 +... + a

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 9 класс СУММИРОВАНИЕ КОНЕЧНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ Министерство образования и науки Российской Федерации «ТАМБОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ФГБОУ ВПО «ТГТУ» ВАСИЛЬЕВ ВВ, ЛАНОВАЯ АВ, ЩЕРБАКОВА АВ ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

( 1) по крайней мере, с одной стороны: неубывающие снизу, невозрастающие. Лекция 3. МОНОТОННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

( 1) по крайней мере, с одной стороны: неубывающие снизу, невозрастающие. Лекция 3. МОНОТОННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ Лекция МОНОТОННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ Монотонные последовательности Теорема Вейерштрасса Число e Принцип выбора 4 Фундаментальные последовательности Критерий Коши Теорема о вложенных отрезках Определение

Подробнее

которая означает, что множество B состоит из элементов, удовлетворяющих указанному условию. Например, множество решений неравенства

которая означает, что множество B состоит из элементов, удовлетворяющих указанному условию. Например, множество решений неравенства Лекция Глава Множества и операции над ними Понятие множества Понятие множество относится к наиболее первичным понятиям математики не определяемым через более простые Под множеством понимают совокупность

Подробнее

Предлагаемое пособие предназначено для студентов первого курса по направлению подготовки "Прикладная математика и информатика".

Предлагаемое пособие предназначено для студентов первого курса по направлению подготовки Прикладная математика и информатика. Родина ТВ, Трифанова ЕС, Бойцев АА Типовой расчет по математическому анализу для направления "Прикладная математика и информатика" 1 модуль Учебно-методическое пособие СПб: Университет ИТМО, 015 4 с Предлагаемое

Подробнее

Образовательный портал «Физ/Мат класс» МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ

Образовательный портал «Физ/Мат класс» МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ wwwfmclassru МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ Анализ величин, использование формул а) Сравните числа 6 6 и 5 7 5 4 8 6 б) Сравните числа ( + )( + )( + )( + )( + ) и 999 999 999 в) Сравните числа si0 cos0 и si 40

Подробнее

Математический анализ

Математический анализ Математический анализ 09.03.2013 Предел функции Математический анализ (лекция 4) 09.03.2013 2 / 49 Предел функции Определение Число A называется пределом функции y = f (x) при x, стремящемся к бесконечности,

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

сгупс Методические указания к выполнению типового расчета «Ряды».

сгупс Методические указания к выполнению типового расчета «Ряды». сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Подробнее

1.Последовательности комплексных чисел. Предел.

1.Последовательности комплексных чисел. Предел. ЛЕКЦИЯ N33. Функции комплексного переменного. Пределы. Непрерывность. Элементарные функции. Дифференцирование ФКП. Свойства производных. 1.Последовательности комплексных чисел. Предел.... 1.Ограниченные

Подробнее

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики ФУНКЦИЯ И ЕЕ

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция. Определение ряда, свойства, критерий Коши сходимости ряда. Сравнение положительных рядов. Достаточные признаки сходимости Даламбера, Коши, Коши-Адамара, Раабе,

Подробнее

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами:

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами: Вариант 7 Найти область определения функции : y Область определения данной функции определяется двумя неравенствами: и > Второе неравенство выполняется при всех значениях Корнями уравнения являются числа

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА ГОУВПО КЫРГЫЗСКО-РОССИЙСКИЙ СЛАВЯНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Л.Г. Лелевкина, И.В. Гончарова, Н.М. Комарцов ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА Учебно-методическое

Подробнее

, то Т.к. S 10 = 1 +

, то Т.к. S 10 = 1 + 96. a) а 0; d ; a 99. Т.к. a a + ( )d, то 99 0 +. Тогда 90; a + a 90 0 + 99 S90 90 90 09 90. б) а 00; d ; a 999. Т.к. a a + ( )d, то 999 00 +. Т.е. 900; a + a 900 00 + 999 S900 900 900 099 0 90. 97. )

Подробнее

Р. М. ГАВРИЛОВА, Г. С. КОСТЕЦКАЯ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Р. М. ГАВРИЛОВА, Г. С. КОСТЕЦКАЯ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Р. М. ГАВРИЛОВА, Г. С. КОСТЕЦКАЯ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ У ч е б н о е п о

Подробнее

КОМПЛЕКСНЫЕ ЧИСЛА. Определение 3. Комплексное число. называются равными ( ) тогда и только тогда, когда равны их действительные и мнимые части: и.

КОМПЛЕКСНЫЕ ЧИСЛА. Определение 3. Комплексное число. называются равными ( ) тогда и только тогда, когда равны их действительные и мнимые части: и. 1 КОМПЛЕКСНЫЕ ЧИСЛА Комплексные числа в алгебраической форме 1Основные понятия Определение 1 Комплексным числом в алгебраической форме называется выражение вида, где и действительные числа, а так называемая

Подробнее

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f( x ) слева при стремлении x к a, если для любого числа существует такое число

Подробнее

Домашняя работа по алгебре за 10 класс

Домашняя работа по алгебре за 10 класс Домашняя работа по алгебре за 0 класс к учебнику «Алгебра и начала анализа 0- класс» Алимов ША и др, М: «Просвещение», 00 г учебно-практическое пособие Содержание Глава I Действительные числа Глава II

Подробнее

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,,

Подробнее

Глава 2. Пределы функций одной переменной.

Глава 2. Пределы функций одной переменной. Глава Пределы функций одной переменной Предел переменной величины Определение Постоянное число а называется пределом переменной величины х, если для каждого наперед заданного числа ε > можно указать такое

Подробнее

Домашняя работа по алгебре за 10 класс к учебнику «Алгебра и начала анализа класс» Алимов Ш.А. и др., -М.: «Просвещение», 2001г.

Домашняя работа по алгебре за 10 класс к учебнику «Алгебра и начала анализа класс» Алимов Ш.А. и др., -М.: «Просвещение», 2001г. Домашняя работа по алгебре за 0 класс к учебнику «Алгебра и начала анализа 0- класс» Алимов Ш.А. и др., -М.: «Просвещение», 00г. www.balls.ru Содержание Глава I. Действительные числа.. Глава II. Степенная

Подробнее

Математический анализ в вопросах и задачах

Математический анализ в вопросах и задачах ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет Математический

Подробнее

Л.Д. Лаппо, А.В. Морозов Домашняя работа по алгебре за 10 класс

Л.Д. Лаппо, А.В. Морозов Домашняя работа по алгебре за 10 класс ЛД Лаппо, АВ Морозов Домашняя работа по алгебре за 0 класс к учебнику «Алгебра и начала анализа: Учеб для 0- кл общеобразоват учреждений / ША Алимов и др -е изд М: Просвещение, 00» Глава I Действительные

Подробнее