Лекция 1 4. ФAЗОВЫЕ РАВНОВЕСИЯ В ОДНОКОМПОНЕНТНЫХ СИСТЕМАХ Условие равновесного распределения компонента между фазами.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Лекция 1 4. ФAЗОВЫЕ РАВНОВЕСИЯ В ОДНОКОМПОНЕНТНЫХ СИСТЕМАХ Условие равновесного распределения компонента между фазами."

Транскрипт

1 г. Лекция 1 4. ФAЗОВЫЕ РАВНОВЕСИЯ В ОДНОКОМПОНЕНТНЫХ СИСТЕМАХ Условие равновесного распределения компонента между фазами Правило фаз Гиббса Фазовые переходы в однокомпонентной системе. Уравнение Клапейрона Клаузиуса.

2 4. ФAЗОВЫЕ РАВНОВЕСИЯ В ОДНОКОМПОНЕНТНЫХ СИСТЕМАХ Равновесие, для достижения которого необходимо изменение лишь межмолекулярных взаимодействий в системе, называется физическим равновесием. К числу таких можно отнести равновесия в гетерогенных системах: пар жидкость, пар твёрдое тело, жидкость твёрдое тело, две кристаллические модификации. Если такая система содержит только одно вещество, то речь идёт о фазовых равновесиях в однокомпонентной системе. Физическая адсорбция, распределение растворённого вещества между несмешивающимися жидкостями, растворение газа, жидкости, твёрдого тела в другой жидкости тоже приводят к достижению физического равновесия в термодинамической системе, содержащей два и более веществ Условие равновесного распределения компонента между фазами Напомним из прошлого семестра введение химического потенциала: дu дh дf дg µ = = = = i дn i дn n i дn n i дn n i,,,,,,,, n SV j SP j TV j PT j где n j условие постоянства количества молей всех веществ "j" в системе кроме вещества "i". Величина µ i получила название химического потенциала. Все определения химического потенциала в написанной формуле эквивалентны. Однако в химической термодинамике обычно используют определение, дg µ i = дn i PT,, n j, поскольку процессы, связанные с изменением состава изучаются чаще всего при Р и Т = const. При бесконечно малом изменении состава системы в случае Р и Т = const имеем dg T,P = µ 1 dn 1 + µ 2 dn µ i dn i.

3 Если состав системы не меняется, то µ i = const и интегральная форма уравнения принимает вид G T,P = µ 1 n 1 + µ 2 n 2 + +µ i n i. Константа интегрирования в последней формуле равна нулю, так как при n 1, n 2, n 3, n i = 0 величина G Т,Р = 0. Из этого уравнения следует, что величина µ i n i характеризует вклад, который вносит каждое из веществ в суммарный термодинамический потенциал системы. В случае смесей идеальных газов или чистого вещества химический потенциал индивидуального вещества равен мольному значению свободной энергии Гиббса G i,m этого вещества: µ i = G i,m, Учитывая принятые условия для начала отсчёта величины G i,m значение химического потенциала индивидуального вещества в стандартных условиях (Р = 1 атм, Т = 298,15 К) равно 0 0 ѓ = К. G 298 f 298 Величины G 0 f 298 можно найти в справочных изданиях. Следует отметить, что в общем случае µ i G i,m, так как значение химического потенциала µ i зависит от состава системы, что связано с существованием взаимодействия между молекулами веществ, образующих систему. Теперь перейдём к основному вопросу этого параграфа. Рассмотрим систему, состоящую из нескольких фаз, содержащих различные вещества. Система находится в равновесии при Р = const и Т = const. Предположим, что в этих условиях небольшое количество dn i вещества "i" переходит из фазы Ф 1 в фазу Ф 2, причём равновесие в системе сохраняется. Условие равновесия при Р и Т = const, это постоянство термодинамического потенциала системы, т.е. или откуда dg Ф1 + dg Ф2 = 0, µ i,ф1 dn i + µ i,ф2 dn i = 0, µ i,ф1 = µ i,ф2. (4.1) Таким образом, условие равновесия двух фаз Ф 1 и Ф 2 по отношению к веществу "i" равенство химических потенциалов

4 вещества "i" в обеих фазах. Если химический потенциал вещества "i" в фазе Ф 1 не равен химическому потенциалу того же вещества в фазе Ф 2, то вещество будет переходить из одной фазы в другую. Такой процесс будет самопроизвольным. Он приближает систему к равновесию. При Р и Т = const в самопроизвольном процессе потенциал Гиббса системы должен уменьшаться, т. е. dg = dg Ф1 + dg Ф2 < 0. Если малое количество dn i вещества "i" переходит из фазы Ф 2 в фазу Ф 1, то µ i,ф1 dn i µ i,ф2 dn i < 0, что соответствует неравенству µ i,ф2 > µ i,ф1. Следовательно, вещество "i" самопроизвольно переходит из фазы с более высоким значением химического потенциала в фазу, где его химический потенциал ниже. Этот процесс продолжается до выравнивания химических потенциалов вещества "i" в обеих фазах.

5 4.2. Правило фаз Гиббса Если система, состоящая из нескольких фаз, содержит более одного компонента, то условие равновесия это равенство химических потенциалов каждого компонента во всех фазах. Рассмотрим закрытую систему, которая состоит из "Ф" фаз, обозначаемых а, в,, Ф, и содержит "К" компонент, обозначаемых 1, 2,, К. Система находится в равновесии при Р, Т = const, причём температура и давление равны во всех фазах. Введём некоторые ограничения на систему: 1) в системе нет химических реакций; 2) поверхности раздела фаз представляют собой математические поверхности. Понятия "фаза" и "компонент" определим несколько позже. Подсчитаем полное число переменных, которые нужно задать (знать) для однозначного определения состояния системы. Состав одной фазы определяется (К 1) концентрациями. Одна концентрация (например, мольная доля N очевидного соотношения K N = 1 i i = 1 n i i =. ni ) определяется из для каждой фазы. Следовательно, Ф (К 1) значений чтобы задать состав "Ф" фаз нужно задать концентраций. Кроме состава нужно задать Р и Т, чтобы иметь полную информацию о состоянии системы. Если на равновесие не влияют другие факторы (электрические, поверхностные и т. д.), то Полное число переменных = Ф (К 1) + 2. Теперь определим количество уравнений, которые можно составить для нахождения этих переменных. В равновесии это уравнения равенства химических потенциалов компонент вида (4.1) в различных фазах: µ 1,а = µ 1,в = = µ 1,Ф, µ 2,а = µ 2,в = = µ 2,Ф, µ К,а = µ К,в = = µ К.Ф. Здесь в каждой строке (Ф 1) независимых уравнений, а всего строчек К. Следовательно, имеется К (Ф 1) уравнений, которые делают зависимыми (закрепляют, связывают) К (Ф 1) переменных. Число переменных, которые остались независимыми равно:

6 [Ф (К 1) + 2] К (Ф 1) = К + 2 Ф. Таким образом, можно произвольно задавать значения К + 2 Ф переменных не разрушая систему, т.е. не изменяя числа фаз. Число степеней свободы многофазной системы "f" равно f = К + 2 Ф. (4.2) Равенство (4.2) называется правилом фаз Гиббса. «f» это число обобщённых сил (Р, Т, µ i ), которые можно произвольно менять не изменяя числа фаз. Число степеней свободы многофазной системы может быть равно 0 или быть положительным. Тогда из (4.2) имеем К + 2 Ф 0, Ф К + 2. Последнее равенство означает, что в равновесной системе число фаз может превышать число компонент Нужно более точно определить понятия "компонент" и "фаза". Если в системе не идут реакции, то количество компонент равно числу веществ в системе. Если идут реакции, то число компонент это минимальное число веществ К мин, из которых можно построить систему. Поясним это подробнее. Рассматривая многофазную систему, в которой происходят химические превращения, необходимо учитывать также число уравнений, описывающих химические равновесия. Это уравнения связи концентраций реагирующих веществ через константу равновесия и возможные уравнения материального баланса. Эти дополнительные уравнения надо вычесть из правой части уравнения (4.2). Но, чтобы не изменять способа записи правила фаз для многофазных систем без реакций и с реакциями, число компонентов определяют уравнением К мин = К m, где m число химических реакций и уравнений материального баланса, К мин минимальное число веществ, необходимых для построения системы. Тогда правило фаз в виде (4.2) может быть переписано в виде f = К мин + 2 Ф. (4.3) Уравнение (4.3) можно использовать для многофазных систем, как без реакций, так и при их наличии. В данном случае число компонентов может не совпадать с числом сортов молекул, составляющих систему.

7 Приведём простой пример. 1) Система задаётся напуском произвольных количеств Н 2,(г) и I 2(г). Идёт реакция Н 2,(г) + I 2(г) 2HI (г), дополнительное уравнение в равновесии К с = [HI] 2 / [H 2 ][I 2 ]. Тогда К мин = 3 1 = 2 2) Система задаётся напуском произвольного количества НI (г). Идёт реакция 2НI (г) Н 2,(г) + I 2,(г). В этом случае появляется два дополнительных уравнения: К с = [H 2 ][I 2 ] / [HI] 2 и уравнение материального баланса [H 2 ] = [I 2 ] т.е. m = 2.Тогда К мин = 3 2 = 1. Фаза сумма гомогенных частей гетерогенной системы, которые обладают одинаковыми термодинамическими характеристиками и химическим составом и отделёны поверхностью раздела от других фаз. Максимальное число фаз в равновесной системе реализуется при величине f = 0. В однокомпонентной системе Ф макс = 3, если К = 2, то Ф макс = 4. Если допустить, что один из компонентов отсутствует в одной из фаз, то это не отразится на числе степеней свободы. Исчезнет одно из уравнений µ i,a = µ i,x, но одновременно необходимо ввести условие отсутствия "i" в фазе Х, т.е. N i,x = 0. Общее число уравнений при этом останется неизменным, и правило фаз сохранит свою форму. Например, газовая фаза не содержит солевых компонент. В случае, если рассматривается система только из конденсированных фаз (ж. или ж. + т.), давление столь слабо влияет на объёмы фаз и распределение компонент по фазам, что это не влияет на превращения в системе. В этом случае правило фаз Гиббса записывается так f = К мин + 1 Ф. (4.4) Правило фаз неприменимо в критической точке однокомпонентной системы. В критической точке состояние системы характеризуется единственными значениями Т кр и Р кр и система не имеет степеней свободы, т. е. f = 0. Но при К = 1 из (4.2) следует, что Ф = 3. Для критического состояния очень существенными становятся поверхностные эффекты (σ мф 0 при подходе к критической точке) и не соблюдается второе ограничение на систему, введённое при выводе правила фаз.

8 4.3. Фазовые переходы в однокомпонентной системе. Уравнение Клапейрона Клаузиуса. Если система содержит две фазы Ф 1 и Ф 2, состоящие из одного вещества, то такая система при заданных Т и Р будет находиться в равновесии при условии (4.1) µ Ф1 = µ Ф2. Индекс, обозначающий вещество, опущен, так как фазы состоят из одного вещества. В этом частном случае µ i = G i,m, т.е. химический потенциал равен термодинамическому потенциалу одного моля чистого вещества. Условие равновесия можно записать и так G Ф1,m = G Ф2,m. Изменим на бесконечно малую величину температуру и давление, сохранив состояние равновесия. Тогда суммарное изменение потенциала Гиббса будет равно нулю, т.е. dg Ф1,m = dg Ф2,m. При фазовых переходах в однокомпонентной системе, т. е. при переходе вещества из одной фазы в другую, состав фазы не меняется, поэтому dg Ф1,m = V Ф1 dp S Ф1 dt, dg Ф2,m = V Ф2 dp S ф2 dt. Приравняв правые части в этих равенствах, получим dp dt S S Ф2 S 1 ф.п. = Ф =. (4.5) V V V Ф2 Ф1 ф.п. В уравнении (4.5) S ф.п. прирост энтропии системы в результате равновесного перехода одного моля вещества из фазы Ф 1 в фазу Ф 2 при Р и Т = const. В этих условиях G ф.п. = Η ф.п. T S ф.п. = 0 и, следовательно S ф.п. H = Ф2 H Т Ф1 H = Т ф.п.,

9 где Η ф.п. - молярная скрытая теплота фазового перехода проходящего при температуре Т. Тогда окончательно получим dp dt H ф.п. =. (4.6) T V ф.п. Уравнение (4.6) даёт зависимость давления фазового перехода от температуры для любых двух фаз, образуемых одним веществом. Соотношение (4.6) известно как уравнение Клапейрона - Клаузиуса. Оно применимо к любому фазовому переходу Ι-го рода в однокомпонентной системе. Фазовые переходы Ι-го рода сопровождаются скачкообразным изменением удельного объёма и энтропии. Скачок энтропии связан с поглощением или выделением тепла. Фазовые переходы Ι-го рода характеризуются теплотой (энтальпией) перехода. Фазовые переходы ΙΙ-го рода сопровождаются непрерывным изменением удельного объёма и энтропии и для них не существует теплоты перехода. Фазовые диаграммы Р = f(т) и Р = f(v) однокомпонентных систем изображены на рис. 4.1 и 4.2. Р Р кр Кр. т. Тв. тело жидкость Изобара 1 атм тройная точка газ Т нтк Т кр Т Рис 4.1. Р Т диаграмма фазового равновесия нормального вещества.

10 Р Р кр Кр. т. Пар Жидк. Т = Т кр Тв. Тв. Т. т.+ Пар жид Пар + жидкость Т = const. А А А Пар + тв. тело V 0 V кр V Рис Р V диаграмма фазового равновесия однокомпонентной системы. Линия ААА соответствует тройной точке в Р Т диаграмме.

4. ФАЗОВЫЕ РАВНОВЕСИЯ В ОДНОКОМПОНЕНТНЫХ СИСТЕМАХ.

4. ФАЗОВЫЕ РАВНОВЕСИЯ В ОДНОКОМПОНЕНТНЫХ СИСТЕМАХ. 4. ФАЗОВЫЕ РАВНОВЕСИЯ В ОДНОКОМПОНЕНТНЫХ СИСТЕМАХ. Равновесие, для достижения которого необходимо изменение лишь межмолекулярных взаимодействий в системе, называется физическим равновесием. К числу таких

Подробнее

5. ФИЗИЧЕСКИЕ РАВНОВЕСИЯ В РАСТВОРАХ. 5.1 Парциальные мольные величины компонентов смеси.

5. ФИЗИЧЕСКИЕ РАВНОВЕСИЯ В РАСТВОРАХ. 5.1 Парциальные мольные величины компонентов смеси. 5 ФИЗИЧЕСКИЕ РАВНОВЕСИЯ В РАСТВОРАХ 5 Парциальные мольные величины компонентов смеси Рассмотрение термодинамических свойств смеси идеальных газов приводит к соотношению Ф = Σ Ф, (5) n где Ф любое экстенсивное

Подробнее

Лекция 2 Поверхностные свойства однокомпонентных двухфазных систем

Лекция 2 Поверхностные свойства однокомпонентных двухфазных систем Лекция 2 Поверхностные свойства однокомпонентных двухфазных систем 1 Термодинамика равновесия Термодинамическое равновесие состояние системы, при котором остаются неизменными по времени макроскопические

Подробнее

Лекция 4. Термодинамика фазовых равновесий. Однокомпонентные системы

Лекция 4. Термодинамика фазовых равновесий. Однокомпонентные системы Лекция 4 Термодинамика фазовых равновесий. Однокомпонентные системы Основные понятия и определения Системы бывают гомогенными (однородными) и гетерогенными (неоднородными). Гомогенная система состоит из

Подробнее

Лекция 3 5. ФИЗИЧЕСКИЕ РАВНОВЕСИЯ В РАСТВОРАХ Парциальные мольные величины компонентов смеси. Уравнения Гиббса-Дюгема

Лекция 3 5. ФИЗИЧЕСКИЕ РАВНОВЕСИЯ В РАСТВОРАХ Парциальные мольные величины компонентов смеси. Уравнения Гиббса-Дюгема Лекция 3. 03. 006 г. 5. ФИЗИЧЕСКИЕ РАВНОВЕСИЯ В РАСТВОРАХ 5.. Парциальные мольные величины компонентов смеси. Уравнения Гиббса-Дюгема 5.. Идеальные растворы. Закон Рауля. 5.3. Растворимость газов. 5.4.

Подробнее

Лекция 7. Фазовые равновесия

Лекция 7. Фазовые равновесия Лекция 7 Фазовые равновесия План лекции 1. Фазовые диаграммы однокомпонентной системы.. Линии равновесия двух фаз. Тройная и критическая точки. 3. Фазовые переходы 1-го рода. 4. Формула Клапейрона - Клаузиуса.

Подробнее

P dx в уравнении du = TdS + i i

P dx в уравнении du = TdS + i i Лекция 5 План 1) Правило фаз Гиббса ) Фазовые равновесия в однокомпонентных системах 3) Фазовые переходы 1-го и -го рода 4) Теплоемкости сосуществующих фаз и теплоты фазовых превращений На предыдущих лекциях

Подробнее

Фазовые равновесия в смесях (растворах).

Фазовые равновесия в смесях (растворах). Лекция. Общая тема: Определения: Фазовые равновесия в смесях (растворах). свойства системы подразделяются на экстенсивные и интенсивные. Первые (экстенсивные) зависят от количества вещества в системе.

Подробнее

Лекция 7 7. ХИМИЧЕСКОЕ РАВНОВЕСИЕ Химическое равновесие между идеальными газами Равновесие в гетерогенных системах с участием газов.

Лекция 7 7. ХИМИЧЕСКОЕ РАВНОВЕСИЕ Химическое равновесие между идеальными газами Равновесие в гетерогенных системах с участием газов. 30 03 2006 г Лекция 7 7 ХИМИЧЕСКОЕ РАВНОВЕСИЕ 71 Условие химического равновесия в гомогенной системе 72 Химическое равновесие между идеальными газами 73 Равновесие в гетерогенных системах с участием газов

Подробнее

Третье начало термодинамики. Фазовые переходы

Третье начало термодинамики. Фазовые переходы http://lectoriy.mipt.ru 1 из 5 ЛЕКЦИЯ 4 Третье начало термодинамики. Фазовые переходы КПД цикла Карно: η = 1 Q x Q H = 1 x H, η = 1, если x = 0. Но тогда Q x = 0, следовательно, получится вечный двигатель

Подробнее

Лекции по физической химии, доц. Олег Александрович Козадёров, Воронежский госуниверситет

Лекции по физической химии, доц. Олег Александрович Козадёров, Воронежский госуниверситет Лекция 0. ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ ФАЗОВЫХ РАВНОВЕСИЙ Фаза, составляющая и компонент системы Фазой называется совокупность гомогенных частей системы, одинаковых по составу, химическим и физическим

Подробнее

Если в воду бросить кусочки льда, то эта система станет трехфазной, в которой лед является твердой фазой.

Если в воду бросить кусочки льда, то эта система станет трехфазной, в которой лед является твердой фазой. Фазовые переходы 1. Фазы и агрегатные состояния 2. Фазовые переходы I-го и II-го рода 3. Правило фаз Гиббса 4. Диаграмма состояния. Тройная точка 5. Уравнение Клапейрона-Клаузиуса 6. Исследование фазовых

Подробнее

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА План лекции:. Условия устойчивости и равновесия в изолированной однородной системе. Условия фазового равновесия 3. Фазовые переходы Лекция. УСЛОВИЯ УСТОЙЧИВОСТИ И РАВНОВЕСИЯ В

Подробнее

Лекция Фазовый переход твёрдое тело жидкость.

Лекция Фазовый переход твёрдое тело жидкость. 16. 02. 2006 г. Лекция 2 4.4. Стабильность фаз 4.5 Фазовый переход твёрдое тело жидкость. 4.6 Фазовый переход твёрдое тело газ. 4.7 Фазовый переход жидкость газ. 4.8. Примеры фазовых диаграмм. 4.4 Стабильность

Подробнее

T T T 298 = 1+ где H 298 определяют по стандартным теплотам образования. Изменение энтропии реакции T

T T T 298 = 1+ где H 298 определяют по стандартным теплотам образования. Изменение энтропии реакции T ОСНОВНЫЕ ПРИЗНАКИ И СВОЙСТВА ХИМИЧЕСКОГО РАВНОВЕСИЯ При наступлении химического равновесия число молекул веществ составляющих химическую систему при неизменных внешних условиях перестает изменяться прекращаются

Подробнее

Лекция Растворимость твёрдых веществ. Криоскопия Интегральная и дифференциальная теплоты растворения.

Лекция Растворимость твёрдых веществ. Криоскопия Интегральная и дифференциальная теплоты растворения. Лекция 4 9 03 006 г 55 Растворимость твёрдых веществ Криоскопия 56 Интегральная и дифференциальная теплоты растворения 57 Реальные растворы Активности компонентов 1 55 Растворимость твёрдых веществ Расплавим

Подробнее

G T. не зависят от давления в системе. Следовательно, константа равновесия также не зависит то давления:

G T. не зависят от давления в системе. Следовательно, константа равновесия также не зависит то давления: Лекция 7. Зависимость константы равновесия химической реакции, К, от температуры. Уравнение изобары химической реакции. Величина К определяется стандартной энергией Гиббса химической реакции: G R G Rln

Подробнее

КАЛОРИМЕТРИЯ РАСТВОРЕНИЯ «Определение теплоты растворения соли» «Определение теплоты гидратообразования CuSO4» «Определение теплоты ионизации воды»

КАЛОРИМЕТРИЯ РАСТВОРЕНИЯ «Определение теплоты растворения соли» «Определение теплоты гидратообразования CuSO4» «Определение теплоты ионизации воды» КАЛОРИМЕТРИЯ РАСТВОРЕНИЯ «Определение теплоты растворения соли» «Определение теплоты гидратообразования CuSO4» «Определение теплоты ионизации воды» 1. Объясните, чем определяется знак теплоты растворения

Подробнее

- количество мембран. Каждая мембрана отменяет одно равенство в условиях фазового равновесия. Появляется новая свободная переменная!

- количество мембран. Каждая мембрана отменяет одно равенство в условиях фазового равновесия. Появляется новая свободная переменная! Лекция 8. Обсуждение результатов, полученных на предыдущей лекции. Правило фаз для случая фазового равновесия: f c2 p Правило фаз для случая мембранного равновесия f c2 pm M - количество мембран. Каждая

Подробнее

Лекция 2. Второй и третий законы термодинамики. Термодинамические потенциалы

Лекция 2. Второй и третий законы термодинамики. Термодинамические потенциалы Лекция 2 Второй и третий законы термодинамики. Термодинамические потенциалы Второй закон термодинамики Второй закон термодинамики устанавливает критерии самопроизвольного протекания процессов и равновесного

Подробнее

5.1. Фазовые переходы Рис. 5.1

5.1. Фазовые переходы Рис. 5.1 5.1. Фазовые переходы Во многих агрегатах теплоэнергетических и других промышленных установок применяемые в качестве теплоносителей и рабочих тел вещества находятся в таких состояниях, что свойства их

Подробнее

1. Химическое равновесие в однородной (гомогенной) системе.

1. Химическое равновесие в однородной (гомогенной) системе. Лекция 5. Общая тема «Термодинамика химически реагирующих систем». 1. Химическое равновесие в однородной (гомогенной) системе. Пусть в однородной термодинамической системе протекает химическая реакция,

Подробнее

Вывод условия химического равновесия заключительное обсуждение. Рис.1. Движение системы к фазовому равновесию и фазовое равновесие.

Вывод условия химического равновесия заключительное обсуждение. Рис.1. Движение системы к фазовому равновесию и фазовое равновесие. Лекция 7. Вывод условия химического равновесия заключительное обсуждение. Фазовое равновесие. Рис.1. Движение системы к фазовому равновесию и фазовое равновесие. Пусть система, состоит из p фаз и c компонентов.

Подробнее

Необязательные вопросы.

Необязательные вопросы. Необязательные вопросы. Попробуйте начать готовиться к экзамену с этого упражнения! Прокомментируйте приведенные ниже утверждения. В каждой пятерке одна формулировка верная, остальные нет. Найдите правильные

Подробнее

- количество мембран. Каждая мембрана отменяет одно равенство в условиях фазового равновесия. Появляется новая свободная переменная!

- количество мембран. Каждая мембрана отменяет одно равенство в условиях фазового равновесия. Появляется новая свободная переменная! Лекция 8. Обсуждение результатов, полученных на предыдущей лекции. Правило фаз для случая фазового равновесия: f = c+ 2 p Правило фаз для случая мембранного равновесия f = c+ 2 p+ M M - количество мембран.

Подробнее

Константа химического равновесия. Закон действующих масс. Изменение энергии Гиббса химической системы для рассматриваемой реакции

Константа химического равновесия. Закон действующих масс. Изменение энергии Гиббса химической системы для рассматриваемой реакции Лекции по физической химии доц Олег Александрович Козадёров Воронежский госуниверситет Лекции 8-9 ХИМИЧЕСКОЕ РАВНОВЕСИЕ При протекании химической реакции через некоторое время устанавливается состояние

Подробнее

Лекция 2. ОСНОВЫ ТЕРМОДИНАМИКИ Основные понятия

Лекция 2. ОСНОВЫ ТЕРМОДИНАМИКИ Основные понятия Лекция 2. ОСНОВЫ ТЕРМОДИНАМИКИ Основные понятия Термодинамика является феноменологической теорией макроскопических систем, поэтому вcе её основные понятия берутся непосредственно из эксперимента. Термодинамическая

Подробнее

Лекция 2 Равновесное состояние химических систем

Лекция 2 Равновесное состояние химических систем Лекция 2 Равновесное состояние химических систем 2.1 Основные теоретические положения Различают обратимые и необратимые физические процессы и химические реакции. Для обратимых процессов существует состояние

Подробнее

Попробуйте посмотреть эти вопросы за пару дней до экзамена

Попробуйте посмотреть эти вопросы за пару дней до экзамена Попробуйте посмотреть эти вопросы за пару дней до экзамена Прокомментируйте приведенные ниже утверждения. В каждой пятерке одна формулировка верная, остальные нет. Найдите правильные утверждения. Объясните,

Подробнее

+ β G 1. x A G x ( p, T const)

+ β G 1. x A G x ( p, T const) Лекция 1. Т-х диаграммы в двухкомпонентных системах и Второй закон. В двухкомпонентной системе при постоянном общем числе молей (nn1n const) ( T,, ) состояние системы можно определить тремя переменными.

Подробнее

Лекция р N фазовая диаграмма равновесия жидкость пар в бинарных растворах 6. АДСОРБЦИЯ

Лекция р N фазовая диаграмма равновесия жидкость пар в бинарных растворах 6. АДСОРБЦИЯ 6. 03. 2006 г. Лекция 5 5.8. р N фазовая диаграмма равновесия жидкость пар в бинарных растворах 6. АДСОРБЦИЯ 6. Физическая и химическая адсорбция. 6.2 Изотерма адсорбции Лэнгмюра. 5.8. р N фазовая диаграмма

Подробнее

c независимых параметров, ( c -число

c независимых параметров, ( c -число Лекция 9. Двухкомпонентные системы. Растворы. Количество переменных. c независимых параметров, ( c -число Для описания состояния системы достаточно 2 компонентов). В двухкомпонентной системе нужны четыре

Подробнее

2.ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ И ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ Обратимые, необратимые и самопроизвольные процессы.

2.ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ И ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ Обратимые, необратимые и самопроизвольные процессы. 2ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ И ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ 2 Обратимые, необратимые и самопроизвольные процессы Дадим ещё одно определение обратимого процесса, хотя оно и не является общим Обратимым

Подробнее

Т (2) =Т (1) (1) р (2) р (1) (р (2),T ) + RT ln x A (2) (T, р (1) ) + ( µ A 0 / p) T dp + RT ln x A (3)

Т (2) =Т (1) (1) р (2) р (1) (р (2),T ) + RT ln x A (2) (T, р (1) ) + ( µ A 0 / p) T dp + RT ln x A (3) Вывод именных уравнений. Уравнение Вант-Гоффа для осмотического давления. Осмотическое давление возникает при мембранном равновесии в двухкомпонентной системе А-В. Система состоит из двух фаз. Одна из

Подробнее

Лекция г Влияние температуры на константу равновесия. 7.7.Равновесие в растворах. Коэффициенты активности электролитов.

Лекция г Влияние температуры на константу равновесия. 7.7.Равновесие в растворах. Коэффициенты активности электролитов. Лекция 8 6 4 6 г 75 Уравнение изотермы химической реакции 76 Влияние температуры на константу равновесия 77Равновесие в растворах Коэффициенты активности электролитов 75 Уравнение изотермы химической реакции

Подробнее

Количество теплоты, которое необходимо передать единице массы жидкости для изотермического перевода ее в пар при внешнем давлении равном давлению

Количество теплоты, которое необходимо передать единице массы жидкости для изотермического перевода ее в пар при внешнем давлении равном давлению ЛЕКЦИЯ 18 Фазовые переходы I рода. Равновесие жидкости и пара. Свойства насыщенного пара. Уравнение Клапейрона-Клаузиуса. Понятие о фазовых переходах II рода. Влажность воздуха. Особенности фазовых переходов

Подробнее

i j i j i j i j Частные производные берутся при постоянных естественных переменных.

i j i j i j i j Частные производные берутся при постоянных естественных переменных. Лекция 6 Определение химического потенциала. Различные выражения для химического потенциала. Е. стр. 137-11, 158-16 Химический потенциал компонента j в многокомпонентной системе - это U H G F n n n n j

Подробнее

Лекция 4. Фазовые равновесия и фазовые диаграммы

Лекция 4. Фазовые равновесия и фазовые диаграммы Лекция 4 Фазовые равновесия и фазовые диаграммы План лекции 1. Правило фаз Гиббса. 2. Фазовые переходы 1-го рода. Уравнения Клапейрона и Клаузиуса-Клапейрона. 3. Диаграммы состояния однокомпонентных систем.

Подробнее

Лекция 2. Второй и третий законы термодинамики. Энтропия

Лекция 2. Второй и третий законы термодинамики. Энтропия Лекция 2 Второй и третий законы термодинамики. Энтропия Обратимые и необратимые в термодинамическом смысле процессы Термодинамическиобратимыми называют процессы, которые можно провести как в прямом, так

Подробнее

Разница температур плавления (затвердевания) растворa и чистой жидкости (криоскопический эффект).

Разница температур плавления (затвердевания) растворa и чистой жидкости (криоскопический эффект). Лекция. Разница температур ления (затвердевания) растворa и чистой жидкости (криоскопический эффект). Нужно проинтегрировать уравнение, полученное на предыдущей лекции ln H R л p 2 H dln d () 2 R л Левую

Подробнее

Волкова Е.И. Лекции по общей химии Лекция 6-7 Основы химической термодинамики Основные понятия и определения Химическая термодинамика - это наука,

Волкова Е.И. Лекции по общей химии Лекция 6-7 Основы химической термодинамики Основные понятия и определения Химическая термодинамика - это наука, Лекция 6-7 Основы химической термодинамики Основные понятия и определения Химическая термодинамика - это наука, изучающая превращения различных форм энергии при химических реакциях и устанавливающая законы

Подробнее

(С) Успенская И.А. Конспект лекций по физической химии. (для студентов биоинженерии и биоинформатики) Москва, 2005 год

(С) Успенская И.А. Конспект лекций по физической химии. (для студентов биоинженерии и биоинформатики) Москва, 2005 год Московский государственный университет им.м.в.ломоносова Химический факультет Успенская И.А. Конспект лекций по физической химии (для студентов биоинженерии и биоинформатики) www.chem.msu.ru/teaching/uspenskaja/

Подробнее

Фазовые переходы. Модель реального газа

Фазовые переходы. Модель реального газа http://lectoriy.mipt.ru 1 из 6 ЛЕКЦИЯ 5 Фазовые переходы. Модель реального газа Рис. 5.1. Так как v п v ж при конденсации исчезает огромный объем, процесс становится не только изотермическим, но и изобарическим,

Подробнее

пв a При послойной адсорбции можно говорить о степени заполнения слоя

пв a При послойной адсорбции можно говорить о степени заполнения слоя Лекция 4 Адсорбция. П. стр. 56-65, стр.7-76. Определение. Адсорбция (явление) - это изменение концентрации вещества в поверхностном слое по сравнению с концентрацией в объемной фазе. Адсорбцией (величиной),

Подробнее

Назовем эту работу полезной работой. Ясно, что она включает все виды работ, за исключением работы расширения: электрические, химические, магнитные

Назовем эту работу полезной работой. Ясно, что она включает все виды работ, за исключением работы расширения: электрические, химические, магнитные Лекции 5-6. ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ Основой математического аппарата термодинамики служит объединенное уравнение первого и второго законов термодинамики или фундаментальное уравнение Гиббса. Для обратимых

Подробнее

1therm Л е к ц и я 1. Термодинамика. Коротко перечислим основные положения термодинамики.

1therm Л е к ц и я 1. Термодинамика. Коротко перечислим основные положения термодинамики. 1therm Л е к ц и я 1. Термодинамика. Коротко перечислим основные положения термодинамики. Термодинамика - наука феноменологическая. Она опирается на аксиомы, которые выражают обобщение экспериментально

Подробнее

Теплоёмкость и внутренняя энергия газа Ван дер Ваальса

Теплоёмкость и внутренняя энергия газа Ван дер Ваальса Теплоёмкость и внутренняя энергия газа Ван дер Ваальса Булыгин В.С. 6 марта 01 г. Модель газа Ван дер Ваальса одна из простейших моделей реальных газов и широко используется в учебном процессе.по сравнению

Подробнее

Фазовые превращения в твердых телах

Фазовые превращения в твердых телах Фазовые превращения в твердых телах Лекция 2 2. ТЕРМОДИНАМИКА ФАЗОВЫХ ПРЕВРАЩЕНИЙ Фазовые превращения в твердых телах Лекция 2 2. ТЕРМОДИНАМИКА ФАЗОВЫХ ПРЕВРАЩЕНИЙ Данный раздел должен быть изучен самостоятельно

Подробнее

dg = f(t,p) du =TdS pdv df = f(t,v) Рис. 4.1 Преобразования Лежандра Выполним эти преобразования для двух наборов переменных: V, T и p, T.

dg = f(t,p) du =TdS pdv df = f(t,v) Рис. 4.1 Преобразования Лежандра Выполним эти преобразования для двух наборов переменных: V, T и p, T. Лекция 4 План 1) Метод характеристических функций Массье-Гиббса. Энергии Гиббса и Гельмгольца. Полный потенциал. ) Термодинамические потенциалы как критерии равновесия. 3) Изменение энергии Гиббса и Гельмгольца

Подробнее

Лекция 7. Фазовые переходы и фазовые равновесия

Лекция 7. Фазовые переходы и фазовые равновесия Лекция 7 Фазовые переходы и фазовые равновесия Физики. 3 курс. Весна 2017 1 План лекции 1. Правило фаз Гиббса. 2. Фазовые переходы 1-го рода. Уравнения Клапейрона и Клаузиуса-Клапейрона. 3. Диаграммы состояния

Подробнее

Компоненты и составляющие вещества

Компоненты и составляющие вещества Лекция 6 Растворы План лекции. Понятие компонента. Уравнение Гиббса-Дюгема 3. Парциальные мольные величины 4. Тепловой эффект растворения 5. Идеальные растворы. Закон Рауля. 6. Химические потенциалы компонентов

Подробнее

1.2. Коэффициент поверхностного натяжения. Работа, которую нужно затратить в изотермическом квазистатическом процессе для

1.2. Коэффициент поверхностного натяжения. Работа, которую нужно затратить в изотермическом квазистатическом процессе для Лекция 7. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ 1. Поверхностное натяжение 1.1. Поверхностная энергия. До сих пор мы не учитывали существования границы раздела различных сред*. Однако ее наличие может оказаться весьма

Подробнее

ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ

ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ 1. Основные понятия химической термодинамики. Система, равновесное состояние и термодинамический процесс. Экстенсивные и интенсивные свойства. Функции состояния и функции

Подробнее

Выражение для энергии Гиббса двухкомпонентной системы имеет вид: *

Выражение для энергии Гиббса двухкомпонентной системы имеет вид: * Лекция 9. П. стр.97-3, Э. стр. 294-297, стр.3-35 Термодинамика двухкомпонентных систем. Растворы. Выражение для энергии Гиббса двухкомпонентной системы имеет вид: G = n + n () 2 2 Разделим на сумму молей

Подробнее

1. ТЕРМОДИНАМИКА (ОСНОВНЫЕ ПОЛОЖЕНИЯ И ОПРЕДЕЛЕНИЯ)

1. ТЕРМОДИНАМИКА (ОСНОВНЫЕ ПОЛОЖЕНИЯ И ОПРЕДЕЛЕНИЯ) ТЕПЛОФИЗИКА План лекции: 1. Термодинамика (основные положения и определения) 2. Внутренние параметры состояния (давление, температура, плотность). Уравнение состояния идеального газа 4. Понятие о термодинамическом

Подробнее

1. ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ Превращение вещества. Взаимосвязь термодинамики и кинетики.

1. ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ Превращение вещества. Взаимосвязь термодинамики и кинетики. 1. ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ 1.1. Превращение вещества. Взаимосвязь термодинамики и кинетики. В связи с химическими и физическими преобразованиями материи возникает два вопроса: 1) Могут ли эти преобразования

Подробнее

Вариант Стандартный тепловой эффект реакции по стандартным теплотам образования рассчитывается по формуле. Вариант 2

Вариант Стандартный тепловой эффект реакции по стандартным теплотам образования рассчитывается по формуле. Вариант 2 «I закон термодинамики. Расчет тепловых эффектов процессов» 1. Математическое выражение I закона термодинамики для изобарного процесса имеет вид. 2. Тепловой эффект при постоянном давлении определяется

Подробнее

- количество мембран. Каждая мембрана отменяет одно равенство в условиях фазового равновесия. Появляется новая свободная переменная!

- количество мембран. Каждая мембрана отменяет одно равенство в условиях фазового равновесия. Появляется новая свободная переменная! Лекция 8. Обсуждение результатов, полученных на предыдущей лекции. Правило фаз для случая фазового равновесия: f c2 Правило фаз для случая мембранного равновесия f c2 M M - количество мембран. Каждая мембрана

Подробнее

Билет 2 1. Теплота и работы различного рода. Работа расширения для различных процессов. 2. Изменение температуры затвердевания различных растворов. Кр

Билет 2 1. Теплота и работы различного рода. Работа расширения для различных процессов. 2. Изменение температуры затвердевания различных растворов. Кр Билет 1 1. Уравнения состояния идеального и реальных газов. Уравнение Вандер-Ваальса. Уравнение состояния в вириальной форме. 2. Давление насыщенного пара жидких растворов. Закон Рауля и его термодинамический

Подробнее

7. ХИМИЧЕСКОЕ РАВНОВЕСИЕ Условие химического равновесия в гомогенной системе. Предположим, что в системе возможна химическая реакция

7. ХИМИЧЕСКОЕ РАВНОВЕСИЕ Условие химического равновесия в гомогенной системе. Предположим, что в системе возможна химическая реакция 7 ХИМИЧЕСКОЕ АВНОВЕСИЕ 71 Условие химического равновесия в гомогенной системе Предположим что в системе возможна химическая реакция А + bв сс + где а b с стехиометрические коэффициенты А В С символы веществ

Подробнее

В. Н. Простов ОСНОВЫ ХИМИЧЕСКОЙ ФИЗИКИ

В. Н. Простов ОСНОВЫ ХИМИЧЕСКОЙ ФИЗИКИ Министерство образования Российской Федерации Московский физико-технический институт (Государственный университет) ФАКУЛЬТЕТ МОЛЕКУЛЯРНОЙ И БИОЛОГИЧЕСКОЙ ФИЗИКИ КАФЕДРА МОЛЕКУЛЯРНОЙ ФИЗИКИ В. Н. Простов

Подробнее

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ. Крисюк Борис Эдуардович

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ. Крисюк Борис Эдуардович ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ Крисюк Борис Эдуардович Основы химической термодинамики. Системой будем называть тело или группу тел, отделенных от окружающей среды реальной или мысленной границей. Система

Подробнее

Лекция ВВЕДЕНИЕ В ТЕРМОДИНАМИКУ РЕАЛЬНЫХ СИСТЕМ. 8.1 Статистика реальных газов

Лекция ВВЕДЕНИЕ В ТЕРМОДИНАМИКУ РЕАЛЬНЫХ СИСТЕМ. 8.1 Статистика реальных газов 0 04 006 г Лекция 0 70 Принцип детального равновесия 8 ВВЕДЕНИЕ В ТЕРМОДИНАМИУ РЕАЛЬНЫХ СИСТЕМ 8 Статистика реальных газов 8 Вычисление термодинамических функций реальных систем через уравнение состояние

Подробнее

Липецкий государственный технический университет Кафедра химии Дисциплина «Физическая химия» Экзаменационный билет 1

Липецкий государственный технический университет Кафедра химии Дисциплина «Физическая химия» Экзаменационный билет 1 Экзаменационный билет 1 1. Уравнения состояния идеального и реальных газов. Уравнение Вандер-Ваальса. 2. Давление насыщенного пара жидких растворов. Закон Рауля и его термодинамический вывод. Неидеальные

Подробнее

x x до температуры плавления чистой жидкости T 0.Получаем:

x x до температуры плавления чистой жидкости T 0.Получаем: Лекция. Разница температур плавления (затвердевания) растворa и чистой жидкости (криоскопический эффект). Нужно проинтегрировать уравнение, полученное на предыдущей лекции ln H T RT Tплавл p плав 2 H dln

Подробнее

КИНЕТИКА И ТЕРМОДИНАМИКА ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ. СПИСОК ТЕРМИНОВ-2 (дополнение)

КИНЕТИКА И ТЕРМОДИНАМИКА ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ. СПИСОК ТЕРМИНОВ-2 (дополнение) КИНЕТИКА И ТЕРМОДИНАМИКА ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ СПИСОК ТЕРМИНОВ-2 (дополнение) Градиент (от лат gradiens род падеж gradientis шагающий) вектор показывающий направление наискорейшего изменения некоторой

Подробнее

dt dt RT dt dt dt RT RT RT n - разность между числом молей продуктов и реагентов. Вспомним, что

dt dt RT dt dt dt RT RT RT n - разность между числом молей продуктов и реагентов. Вспомним, что Лекция 13 Реакции в растворах. (Продолжение) Практические константы равновесия. Для идеальных газов вводят размерную константу AB ( AB) ( ) ( ) (1) A B A B (размерность - {бар (Δn) }, если хотите сохранить

Подробнее

Лекция Адсорбция на жидких поверхностях. Изотерма Гиббса.

Лекция Адсорбция на жидких поверхностях. Изотерма Гиббса. 3. 03. 006 г. Лекция 6 6.3 Адсорбция из смеси газов. 6.4 Полимолекулярная адсорбция. 6.5 Адсорбция на жидких поверхностях. Изотерма иббса. 6.3 Адсорбция из смеси газов Над твёрдой поверхностью имеется

Подробнее

На третьей лекции было показано, что для изолированной системы (U, V, n = const) в случае обратимого протекания химической реакции 1

На третьей лекции было показано, что для изолированной системы (U, V, n = const) в случае обратимого протекания химической реакции 1 Лекция 8 План Условие химического овесия Константа химического овесия 3 Зависимость константы овесия от температуры Правило Ле Шателье- Брауна 4 Зависимость константы овесия от давления На третьей лекции

Подробнее

Л15. замкнутая система внутренняя энергия U энтропия S( U) температура T ds

Л15. замкнутая система внутренняя энергия U энтропия S( U) температура T ds Л15 Закон сохранения энергии в открытых системах замкнутая система внутренняя энергия U энтропия S( U) k lnw ( U) температура ds 1 du Из-за отсутствия контактов с внешней средой внутренняя энергия в этом

Подробнее

Для двухфазных бинарных смесей, отмеченных индексами и, условие фазового равновесия записывается в виде:, B

Для двухфазных бинарных смесей, отмеченных индексами и, условие фазового равновесия записывается в виде:, B Лекция 7. План ) Уравнение Ван-дер-Ваальса. ) Коллигативные свойства. 3) Осмос. Эффект Гиббса-Доннана 4) Равновесие ость-. Законы Коновалова Обобщенное уравнение Ван-дер-Ваальса Растворы издавна являлись

Подробнее

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ. Крисюк Борис Эдуардович

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ. Крисюк Борис Эдуардович ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ Крисюк Борис Эдуардович Химическая кинетика. Формальная кинетика. Для реакции A + B C ее скорость v есть: v = - d[a]/dt = - d[b]/dt = d[c]/dt В общем случае для реакции aa

Подробнее

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА Термодинамика это единственная физическая теория, относительно которой я уверен, что она никогда не будет опровергнута. А.Эйнштейн Термодинамика (ТД) - это наука, изучающая законы

Подробнее

Термодинамика поверхности. Лекция-6

Термодинамика поверхности. Лекция-6 Термодинамика поверхности Основные понятия термодинамики Фаза: совокупность всех гомогенных частей термодинамической системы, которые в отсутствие внешнего силового воздействия являются физически однородными;

Подробнее

ЛЕКЦИЯ 3 ФАЗОВЫЕ ПЕРЕХОДЫ ВТОРОГО РОДА В ФЕРРОМАГНЕТИКАХ

ЛЕКЦИЯ 3 ФАЗОВЫЕ ПЕРЕХОДЫ ВТОРОГО РОДА В ФЕРРОМАГНЕТИКАХ ЛЕКЦИЯ 3 ФАЗОВЫЕ ПЕРЕХОДЫ ВТОРОГО РОДА В ФЕРРОМАГНЕТИКАХ Теперь, когда идеальные газы уже рассмотрены, перейдём к конденсированным средам. Наиболее простой пример конденсированных сред это магнитные среды,

Подробнее

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ И ОПРЕДЕЛЕНИЯ ТЕРМОДИНАМИКИ (ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА, ТЕРМОДИНАМИЧЕСКИЙ ПРОЦЕСС, ПАРАМЕТРЫ СОСТОЯНИЯ)

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ И ОПРЕДЕЛЕНИЯ ТЕРМОДИНАМИКИ (ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА, ТЕРМОДИНАМИЧЕСКИЙ ПРОЦЕСС, ПАРАМЕТРЫ СОСТОЯНИЯ) ТЕРМОДИНАМИКА Лекция План лекции:. Основные положения и определения термодинамики (термодинамическая система, термодинамический процесс, параметры состояния) 2. Внутренние параметры состояния (давление,

Подробнее

В. Н. Простов ОСНОВЫ ХИМИЧЕСКОЙ ФИЗИКИ

В. Н. Простов ОСНОВЫ ХИМИЧЕСКОЙ ФИЗИКИ Министерство образования Российской Федерации Московский физико-технический институт (Государственный университет) ФАКУЛЬТЕТ МОЛЕКУЛЯРНОЙ И БИОЛОГИЧЕСКОЙ ФИЗИКИ КАФЕДРА МОЛЕКУЛЯРНОЙ ФИЗИКИ В Н Простов

Подробнее

6. АДСОРБЦИЯ. 6.1 Физическая и химическая адсорбция.

6. АДСОРБЦИЯ. 6.1 Физическая и химическая адсорбция. 6. АДСОРБЦИЯ 6.1 Физическая и химическая адсорбция. Адсорбция как явление сопровождает двухфазные многокомпонентные системы. Адсорбция (ad на, sorbeo поглощаю, лат.). Абсорбция (ab в, " " " ). Адсорбция

Подробнее

Фазовые равновесия. Правила фаз. Фазовые диаграммы.

Фазовые равновесия. Правила фаз. Фазовые диаграммы. Фазовые равновесия Правила фаз. Фазовые диаграммы. В лекции использованы материалы проф. В.В.Еремина, химический ф-т МГУ, учебного пособия Н.В.Карякина «Основы химической термодинамики», т.1 «Неорганической

Подробнее

ВВЕДЕНИЕ Строение вещества Химическая термодинамика Химическая кинетика Учение о растворах Электрохимия Коллоидная химия

ВВЕДЕНИЕ Строение вещества Химическая термодинамика Химическая кинетика Учение о растворах Электрохимия Коллоидная химия ВВЕДЕНИЕ Предметом физической химии является объяснение химических явлений на основе более общих законов физики. Физическая химия рассматривает две основные группы вопросов: 1. Изучение строения и свойств

Подробнее

Лекция 8. Химическое равновесие

Лекция 8. Химическое равновесие Лекция 8 Химическое равновесие 1 План лекции 1. Химическая переменная. Условие химического равновесия. 2. Закон действующих масс. Константа равновесия. 3. Изотерма химической реакции. 4. Связь константы

Подробнее

Урок 15 ( ) Теплоёмкость.

Урок 15 ( ) Теплоёмкость. Урок 15 (0903011) Теплоёмкость 0 Повторение Температура, теплота и внутренняя энергия Различие между температурой, теплотой и внутренней энергией можно понять с помощью молекулярно-кинетической теории

Подробнее

ФАЗОВОЕ РАВНОВЕСИЕ "ЖИДКОСТЬ-ПАР" В ОДНОКОМПОНЕНТНЫХ СИСТЕМАХ

ФАЗОВОЕ РАВНОВЕСИЕ ЖИДКОСТЬ-ПАР В ОДНОКОМПОНЕНТНЫХ СИСТЕМАХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БУДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Лекция 4. Классификация диаграмм cостояния двойных cистем Построение диаграмм состояния двойных систем методом термодинамического потенциала

Лекция 4. Классификация диаграмм cостояния двойных cистем Построение диаграмм состояния двойных систем методом термодинамического потенциала Лекция 4. Классификация диаграмм cостояния двойных cистем Построение диаграмм состояния двойных систем методом термодинамического потенциала 4.1. Классификация диаграмм состояния двойных систем. В зависимости

Подробнее

(С) Успенская И.А. Конспект лекций по физической химии. (для студентов биоинженерии и биоинформатики) Москва, 2005 год

(С) Успенская И.А. Конспект лекций по физической химии. (для студентов биоинженерии и биоинформатики) Москва, 2005 год Московский государственный университет иммвломоносова Химический факультет Успенская ИА Конспект лекций по физической химии (для студентов биоинженерии и биоинформатики) wwwchemmsuru/teachg/useskaa/ Москва

Подробнее

V Массовая доля w i (g i количество i- го вещества в г) wi

V Массовая доля w i (g i количество i- го вещества в г) wi Лекция 6. План 1) Термодинамические свойства растворов. Парциальные мольные величины, методы их определения. ) Летучесть и активность. На предыдущей лекции мы познакомились с однокомпонентными системами.

Подробнее

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА План лекции: 1. Техническая термодинамика (основные положения и определения) 2. Внутренние параметры состояния (давление, температура, плотность). Понятие о термодинамическом

Подробнее

6 Лекция 12 КОЛЛИГАТИВНЫЕ СВОЙСТВА РАСТВОРОВ

6 Лекция 12 КОЛЛИГАТИВНЫЕ СВОЙСТВА РАСТВОРОВ 6 Лекция 1 КОЛЛИГАТИВНЫЕ СВОЙСТВА РАСТВОРОВ Основные понятия: идеальный раствор; снижение давления пара растворителя над раствором р; снижение температуры кристаллизации (замерзания) t з и повышение t

Подробнее

Наименование дисциплины: физическая химия. Наименование дисциплины: физическая химия. экз. билета 4. Наименование дисциплины: физическая химия

Наименование дисциплины: физическая химия. Наименование дисциплины: физическая химия. экз. билета 4. Наименование дисциплины: физическая химия экз. билета 1 1. Ковалентная связь. Правило октета. Структуры Льюиса. 2. Давление пара над идеальным раствором. Закон Рауля. Предельно разбавленные растворы. Закон Генри. 3. Гетерогенный катализ: основные

Подробнее

Лекция 4. Первый закон термодинамики и его применение в химии. Термохимия

Лекция 4. Первый закон термодинамики и его применение в химии. Термохимия Лекция 4 Первый закон термодинамики и его применение в химии. Термохимия 1 План лекции 1. Химическая термодинамика и ее структура (два постулата и три закона). 2. Системы, параметры, состояния, функции,

Подробнее

Лекция 1. Основные понятия химической термодинамики. Система, окружающая среда.

Лекция 1. Основные понятия химической термодинамики. Система, окружающая среда. Лекция 1. Основные понятия химической термодинамики. Система, окружающая среда. В термодинамике система это интересующая нас часть пространства, отделенная от остальной Вселенной (окружающей среды) воображаемой

Подробнее

MODULE: ФИЗИКА (ТЕРМОДИНАМИКА_МОДУЛЬ 2)

MODULE: ФИЗИКА (ТЕРМОДИНАМИКА_МОДУЛЬ 2) Education Quality Assurance Centre Институт Группа ФИО MODULE: ФИЗИКА (ТЕРМОДИНАМИКА_МОДУЛЬ 2) Ответ Вопрос Базовый билет Нас 1 2 Броуновское движение это движение 1) молекул жидкости 3) мельчайших частиц

Подробнее

часть в виде жидкости и часть в виде твердого тела (так называемая тройная точка).

часть в виде жидкости и часть в виде твердого тела (так называемая тройная точка). Глава 3. Фазовые переходы первого рода 15. Изотермы реального вещества. Понятие о фазах. Выше уже не раз употреблялось понятие об изотерме. Остановимся на нем подробнее. Под изотермой понимается геометрическое

Подробнее

Е. стр. стр.71-83, Э. стр , П. стр

Е. стр. стр.71-83, Э. стр , П. стр Лекция 4 Е. стр. стр.7-8, Э. стр. 7-8, П. стр. 5-4. Второй закон термодинамики. Самопроизвольные процессы внутри изолированной системы. В каком направлении они идут? Примеры самопроизвольных процессов.

Подробнее

Термодинамические потенциалы 1.Внутренняя энергия 2.Свободная энергия Гельмгольца. 3.Энтальпия 4.Потенциал Гиббса 5.Соотношения взаимности Максвелла

Термодинамические потенциалы 1.Внутренняя энергия 2.Свободная энергия Гельмгольца. 3.Энтальпия 4.Потенциал Гиббса 5.Соотношения взаимности Максвелла Термодинамические потенциалы 1.Внутренняя энергия.свободная энергия Гельмгольца. 3.Энтальпия 4.Потенциал Гиббса 5.Соотношения взаимности Максвелла 6.Критерии устойчивости систем. Принцип Ле-Шателье-Брауна

Подробнее

Лекция 6 «Термодинамика фазовых равновесий в бинарных системах»

Лекция 6 «Термодинамика фазовых равновесий в бинарных системах» Лекция 6 «Термодинамика фазовых равновесий в бинарных системах» Гетерогенное равновесие «жидкость-пар» для неограниченно и ограниченно растворимых друг в друге жидкостей Гетерогенное равновесие жидкость

Подробнее

Лекция 4 Фазовые равновесия. Фазовые диаграммы.. 1. Вещество и его превращение. Вещество. Свойства

Лекция 4 Фазовые равновесия. Фазовые диаграммы.. 1. Вещество и его превращение. Вещество. Свойства ФХФ-011 Лекция 4 Лекция 4 Фазовые равновесия. Фазовые диаграммы.. 1. Вещество и его превращение Химия рассматривает превращение веществ. Что такое вещество и его превращение? Вещество это совокупность

Подробнее

Лекция 5. Второй закон термодинамики и его применение в химии. Энтропия. Термодинамические потенциалы

Лекция 5. Второй закон термодинамики и его применение в химии. Энтропия. Термодинамические потенциалы Лекция 5 Второй закон термодинамики и его применение в химии. Энтропия. Термодинамические потенциалы 1 План лекции 1. Второй закон термодинамики. Энтропия как внутренняя переменная. 2. Энтропия и информация.

Подробнее

T 2 Q Q W Q 1 Q 2. pv const RTV T T T V. П. стр , Э. стр , Е. стр (1) Лекция 5

T 2 Q Q W Q 1 Q 2. pv const RTV T T T V. П. стр , Э. стр , Е. стр (1) Лекция 5 Лекция 5 П. стр. 41-47, Э. стр.165-17, Е. стр. 67-7 Историческая формулировка Второго закона. Цикл Карно. Цикл Карно это циклический процесс, состоящий из двух изотерм и двух адиабат (Рис.1). Пусть этот

Подробнее

Фазовые равновесия. Правила фаз. Фазовые диаграммы.

Фазовые равновесия. Правила фаз. Фазовые диаграммы. Фазовые равновесия Правила фаз. Фазовые диаграммы. В лекции использованы материалы проф. В.В.Еремина, химический ф-т МГУ, учебного пособия Н.В.Карякина «Основы химической термодинамики», т.1 «Неорганической

Подробнее