17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика"

Транскрипт

1 Лекция Разложение оценок коэффициентов на неслучайную и случайную компоненты Регрессионный анализ позволяет определять оценки коэффициентов регрессии Чтобы сделать выводы по полученной модели необходимы дополнительные исследования Свойства оценок коэффициентов регрессии а следовательно и качество построенной модели существенно зависят от свойств случайной составляющей Действительно покажем что и СВ зависящие от случайного члена в уравнении регрессии Рассмотрим модель парной линейной регрессии Пусть на основе выборки из наблюдений оценено следующее уравнение При этом как было показано ov что означает что коэффициент также является случайным В самом деле значение выборочной ковариации зависит от того какие значения принимали и Если значения можно считать известными детерминированными то значения зависят от случайной составляющей Разложим коэффициент на неслучайную и случайную составляющие: так как ov os ov ov ov ov ov ov ov Тогда ov 6 ov где случайная компонента Итак выборочный коэффициент регрессии представлен в виде суммы истинного значения и случайной составляющей зависящей от ov Аналогично коэффициент можно разложить на сумму истинного коэффициента и случайной составляющей получим ov 7 Упражнение Разложить коэффициент на сумму истинного коэффициента и случайной составляющей Отметим что на практике такие разложения получить невозможно так как неизвестны истинные значения

2 8 7 Предпосылки МНК Условия Гаусса Маркова МНК предполагает ряд ограничений на поведение случайного слагаемого которые называют предпосылками МНК Только при их выполнение оценки параметров будут «наилучшими» Математическое ожидание случайного отклонения равно нулю: M То есть случайное отклонение в среднем не оказывает влияния на зависимую переменную Дисперсия случайных отклонений постоянна: j j Выполнимость данной предпосылки называется гомоскедастичностью постоянством дисперсий отклонений невыполнимость гетероскедастичностью Поскольку M M M то данную предпосылку можно переписать в форме M j : 3 Случайные отклонения и j являются независимыми друг от друга для j ov j M j j При выполнении этого условия говорят об отсутствии автокорреляции 4 Случайное отклонение должно быть независимо от объясняющей переменной: ov M Обычно это условие выполняется автоматически если объясняющие переменные не являются случайными в данной модели Невыполнимость не столь критична для эконометрических моделей 5 Модель является линейной относительно параметров 6* Случайные отклонения распределены по нормальному закону: N; В этом случае модель называется нормальной регрессионной моделью Теорема Гаусса Маркова Если предпосылки 5 выполнены то оценки полученные по МНК обладают следующими свойствами: Оценки несмещенные то есть M M Это вытекает из того что M и говорит об отсутствии систематической ошибки в определении положения линии регрессии: ov ov M M M ov ov M M M M M Оценки состоятельны так как ; M M M M M M ; ср кв ср кв P P Другими словами при увеличении объема выборки надежность оценок увеличивается Состоятельность стремление дисперсий оценок коэффициентов к нулю будет обоснована в следующем параграфе

3 9 3 Оценки эффективны то есть они имеют наименьшую дисперсию по сравнению с любыми другими оценки данных параметров линейными по Эффективность будет доказана для случая множественной регрессии Если предпосылки 3 не выполнены то не сохраняется свойство эффективности Перейдем к вопросу о том как отличить «хорошие» МНК оценки от «плохих» Перечислим способы которые помогают решить вопрос о достоинствах рассчитанной линии регрессии 8 Анализ точности определения оценок коэффициентов регрессии Учитывая что M / получим / M следовательно Предполагаем что все измерения равноточные Будем считать что все дисперсии случайных отклонений равны между собой: Получим формулы связи дисперсий коэффициентов эмпирического уравнения регрессии с дисперсией Для этого представим формулы определения коэффициентов в виде линейных функций относительно значений переменой : ov так как Обозначив имеем Аналогично Обозначив d получаем что d Так как предполагается что дисперсия постоянна и не зависит от значений то и d можно рассматривать как некоторые постоянные Следовательно 8 d d

4 9 Из соотношений 8 9 очевидны следующие выводы: - Дисперсии оценок коэффициентов прямо пропорциональны дисперсии случайных отклонений Следовательно чем больше фактор случайности тем менее точными будут оценки - Чем больше число наблюдений тем меньше дисперсии ошибок коэффициентов Это вполне логично чем большим числом наблюдений мы располагаем тем вероятнее получение точных оценок - Чем больше дисперсия объясняющей переменной разброс значений тем меньше дисперсия оценок коэффициентов Другими словами чем шире область изменения объясняющей переменной тем точнее будут оценки - С ростом числа наблюдений до бесконечности дисперсии коэффициентов стремятся к нулю что вместе с несмещенностью оценок свидетельствует о состоятельности МНК-коэффициентов регрессии В силу того что случайные отклонения по выборке определены быть не могут при анализе оценок коэффициентов регрессии они заменяются отклонениями e Дисперсия случайных отклонений заменяется еѐ несмещенной оценкой e Тогда можно заменить их несмещенными оценками: где e несмещенная оценка дисперсии переменной вокруг линии регрессии e стандартная ошибка регрессии мера разброса зависимой стандартные ошибки коэффициентов регрессии 9 Интервальные оценки коэффициентов регрессии Оценка статистической значимости коэффициентов регрессии Одной из предпосылок МНК является N; Естественность этого положения обосновывается центральной предельной теоремой Это предположение позволяет утверждать что оценки имеют нормальное распределение Ранее было доказано что d где d постоянные величины То есть являются линейными комбинациями а они в свою очередь

5 являются линейными комбинациями Таким образом есть линейные функции независимых нормально распределенных случайных величин Следовательно они также имеют нормальный закон распределения Учитывая несмещенность МНК-оценок M M и формулу 8 9 для дисперсий оценок получим N ; N ; 3 Отсюда следует что Z N; С другой стороны статистика Z ; N e имеет -распределение с степенями свободы так как две степени свободы теряются при определении двух параметров уравнения регрессии наблюдений e связаны двумя уравнениями для нахождения N; Замечание Число степеней свободы равно разности m между числом наблюдений независимых СВ и числом связей m ограничивающих свободу их измерения то есть m число уравнений связывающих эти наблюдения Отсюда следует что то есть по определению статистики Стьюдента имеем / / / / и так как получаем Итак мы показали что в случае нормально распределенных ошибок величины распределены по закону Стьюдента с степенями свободы Заметим что при 3 распределение Стьюдента практически не отличается от нормального распределения С учетом сказанного можно построить доверительные интервалы для коэффициентов 9 Доверительные интервалы для коэффициентов регрессии Для определения % -го доверительного интервала с помощью таблиц критических точек распределения Стьюдента по доверительной вероятности уровень значимости или вероятность ошибки и числу степеней свободы определяют критическое значение ; удовлетворяющее условию

6 Далее получим P ; P ; ; P ; ; После преобразований имеем P ; ; P ; ; Или учитывая формулы : P ; ; P ; ; Последние соотношения определяют доверительные интервалы 4 ; ; ; ; ; ; которые с надежностью покрывают определяемые параметры и Фактически доверительный интервал определяет значения теоретических коэффициентов регрессии и которые будут приемлемы с надежностью вероятностью % при найденных точечных оценках и 9 Оценка статистической значимости коэффициентов регрессии Величина стандартной ошибки совместно с -распределением Стьюдента при степенях свободы применяется также для проверки существенности коэффициентов регрессии Гипотезой о статистической значимости коэффициента регрессии называют гипотезу в следующей постановке: H : при альтернативной гипотезе H : Гипотеза H проверяется при заданном уровне значимости вероятности ошибки или доверительной вероятности % Если H принимается то говорят что коэффициент статистически незначим он слишком близок к нулю и есть основание считать что величина не зависит от При отклонении H коэффициент считается статистически значимым что указывает на наличие определенной линейной связи между и : M / Для уравнения парной линейной регрессии тестирование статистической значимости коэффициента эквивалентно тестированию значимости построенного линейного уравнения регрессии так как именно в коэффициенте скрыто влияние фактора на

7 3 результативную переменную Для тестирования гипотезы H используется -критерий и значение статистики критерия 5 сравнивают с критическим значением ; найденным по таблице распределения Стьюдента при заданном и Гипотеза H : отвергается с вероятностью ошибки при выполнении неравенства ; и уравнение регрессии считается статистически значимым В противном случае то есть если ; гипотеза H : не отвергается и уравнение регрессии считают статистически незначимым и на этом регрессионный анализ заканчивается Для значимого уравнения регрессии представляет интерес построение интервальной оценки коэффициента свободного члена и дальнейший регрессионный анализ Гипотеза о статистической значимости коэффициента H : проверяется по аналогичной схеме с помощью статистики 6 Замечание Вывод о статистической значимости коэффициентов регрессии может быть сделан на основе доверительных интервалов Если окажется что в доверительный интервал попадает то соответствующий коэффициент регрессии объявляется незначимым При проверке статистической значимости «на глаз» рассчитанные сравнивают с двойкой так как для больших если например то статистически значим ; Замечание При расчете уравнения регрессии на компьютере вычисляют наблюдаемые значения критерия Стьюдента и вероятности P P P -level P - значения того что случайная величина распределенная по закону Стьюдента превысит по абсолютной величине наблюдаемые значения Если эти вероятности малы меньше выбранного уровня значимости например 5 то коэффициенты считаются значимыми В противном случае незначимыми Вообще если проверяется гипотеза H при уровне значимости то H "принимается" если P ; H "отклоняется" если P Замечание 3 P -значение это величина применяемая при статистической проверке гипотез Представляет собой вероятность того что значение проверочной статистики используемого критерия -статистики Стьюдента F-статистики Фишера и тд вычисленное по выборке превысит установленное P -значение Решение о принятии или отклонении нулевой гипотезы принимается в результате сравнения P -значения с выбранным уровнем значимости Если оно превышает указанный уровень значимости то для отклонения нулевой гипотезы принятия альтернативной нет достаточных оснований

8 4 Иначе говоря P -значение это наименьшее значение уровня значимости те вероятности отказа от справедливой гипотезы для которого вычисленная проверочная статистика ведет к отказу от нулевой гипотезы Обычно P -значение сравнивают с общепринятыми стандартными уровнями значимости 5 или Например если вычисленное по выборке значение проверочной статистики соответствует P = 7 это указывает на вероятность справедливости гипотезы 7% Таким образом чем P -значение меньше тем лучше поскольку при этом увеличивается "сила" отклонения нулевой гипотезы и увеличивается ожидаемая значимость результата Пример 3 По результатам примеров оценить статистическую значимость коэффициентов регрессии определить для них доверительные интервалы при уровне значимости 5 Решение Воспользуемся расчетной таблицей которую справа дополним столбцом значений : ŷ e e Таблица Сумма E Среднее Тогда стандартная ошибка регрессии равна e Стандартные ошибки коэффициентов регрессии Рассчитаем значения -статистик для коэффициентов уравнения регрессии По таблице критических точек распределения Стьюдента определим 36 ; 5;8 Тогда так как ; то коэффициент статистически значим при уровне значимости 5 и так как ; то коэффициент также статистически значим при уровне значимости 5 Как правило в уравнении регрессии значения

9 5 стандартных ошибок записывают в скобках под соответствующими коэффициентами иногда под ними указывают значения -статистик: или Определим доверительные интервалы ; ; ; ; Доверительный интервал для коэффициента ; для коэффициента 64777; 4743


ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов.

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов. Лекция 5 ЭКОНОМЕТРИКА 5 Проверка качества уравнения регрессии Предпосылки метода наименьших квадратов Рассмотрим модель парной линейной регрессии X 5 Пусть на основе выборки из n наблюдений оценивается

Подробнее

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Регрессионный анализ Функциональная статистическая и корреляционная зависимости Во многих прикладных (в том числе экономических) задачах

Подробнее

Модель парной регрессии

Модель парной регрессии Модель парной регрессии 30 25 20 15 10 В статистических данных редко встречаются точные линейные соотношения: y x 1 2 Обычно они бывают приближенными: y x 1 2 5 0 2 4 6 8 10 12 14 16 18 20

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа 7 Анализ остатков. Автокорреляция Оглавление Свойства остатков... 3 1-е условие Гаусса-Маркова: Е(ε i ) = 0 для всех наблюдений... 3 2-е условие Гаусса-Маркова:

Подробнее

ЭКОНОМЕТРИКА. 7. Анализ качества эмпирического уравнения множественной линейной регрессии. t, (7.1) a j j a j. распределения Стьюдента.

ЭКОНОМЕТРИКА. 7. Анализ качества эмпирического уравнения множественной линейной регрессии. t, (7.1) a j j a j. распределения Стьюдента. Лекция 7 ЭКОНОМЕТРИКА 7 Анализ качества эмпирического уравнения множественной линейной регрессии Построение эмпирического уравнения регрессии является начальным этапом эконометрического анализа Построенное

Подробнее

ЛЕКЦИЯ 14 НАРУШЕНИЯ ПРЕДПОСЫЛОК ТЕОРЕМЫ ГАУССА-МАРКОВА: Ч. II. ГЕТЕРОСКЕДАСТИЧНОСТЬ: ТЕСТИРОВАНИЕ И УСТРАНЕНИЕ

ЛЕКЦИЯ 14 НАРУШЕНИЯ ПРЕДПОСЫЛОК ТЕОРЕМЫ ГАУССА-МАРКОВА: Ч. II. ГЕТЕРОСКЕДАСТИЧНОСТЬ: ТЕСТИРОВАНИЕ И УСТРАНЕНИЕ ЛЕКЦИЯ 4 НАРУШЕНИЯ ПРЕДПОСЫЛОК ТЕОРЕМЫ ГАУССА-МАРКОВА: Ч. II. ГЕТЕРОСКЕДАСТИЧНОСТЬ: ТЕСТИРОВАНИЕ И УСТРАНЕНИЕ. Тестирование гипотез на наличие (отсутствие) гетероскедастичности: тесы Уайта, Глейзера, Бройша-

Подробнее

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние,

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние, Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

Подробнее

анализа входит не только построение самой модели, но и исследование случайных отклонений , т.е. остаточных величин.

анализа входит не только построение самой модели, но и исследование случайных отклонений , т.е. остаточных величин. Финансовый университет при Правительстве РФ Fnancal unversty under the Government of the Russan Federaton Гапаева Марима Абдул-Рахмановна Gapaeva Marma Линейная модель множественной регрессии с гетероскедастичными

Подробнее

Математическая статистика. Тема: «Статистическое оценивание параметров распределения»

Математическая статистика. Тема: «Статистическое оценивание параметров распределения» Математическая статистика Тема: «Статистическое оценивание параметров распределения» Введение Математическая статистика наука, занимающаяся методами обработки экспериментальных данных, полученных в результате

Подробнее

ПРОВЕРКА ВЫПОЛНИМОСТИ ПРЕДПОСЫЛОК МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ. i 2 M ( ) 0, i j. (3) i i i. i i i

ПРОВЕРКА ВЫПОЛНИМОСТИ ПРЕДПОСЫЛОК МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ. i 2 M ( ) 0, i j. (3) i i i. i i i ПРОВЕРКА ВЫПОЛНИМОСТИ ПРЕДПОСЫЛОК МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ Напомним, что условия Гаусса-Маркова требуют выполнения следующих условий на ошибки : M ( ) 0, 1,, ; (1) D( ), 1,,, () M ( ) 0, j (3) Часто

Подробнее

Вариант 5.5. Ожидаемая продолжительность жизни при рождении 2005 г., лет, Х 1. человеческого развития, Y. Х 1 прогн = 73, Х 2 прогн =3300, = 0,05.

Вариант 5.5. Ожидаемая продолжительность жизни при рождении 2005 г., лет, Х 1. человеческого развития, Y. Х 1 прогн = 73, Х 2 прогн =3300, = 0,05. Задача 5. Имеются данные по странам за 005 год. Построить регрессионную модель: Y= 0 + Х + Х +. Задание.. По МНК оценить коэффициенты линейной регрессии i, i= 0,,.. Оценить статистическую значимость найденных

Подробнее

Интервальные оценки.

Интервальные оценки. Лекция 1. Интервальные оценки. Точечные оценки параметров генеральной совокупности могут быть приняты в качестве ориентировочных, первоначальных результатов обработки выборочных данных. Их недостаток заключается

Подробнее

1. Общий анализ временного ряда. Доходы населения

1. Общий анализ временного ряда. Доходы населения 1. Общий анализ временного ряда. 1.1. Проверка гипотезы о случайности временного ряда. График временного ряда изучаемого показателя «Среднедушевые денежные доходы» изображен на рис. «Доходы населения».

Подробнее

Оценка эконометрических моделей в условиях нарушения основных предпосылок МНК: алгоритмы тестирования

Оценка эконометрических моделей в условиях нарушения основных предпосылок МНК: алгоритмы тестирования Оценка эконометрических моделей в условиях нарушения основных предпосылок МНК: алгоритмы тестирования Основные предпосылки МНК ассоциируются с теоремой Гаусса-Маркова и представляют собой перечень условий

Подробнее

Кафедра «Теория рынка» Тимофеев В.С. ОСНОВЫ ЭКОНОМЕТРИКИ (Раздел 3. парная регрессия) теоретические материалы для студентов ОФиП

Кафедра «Теория рынка» Тимофеев В.С. ОСНОВЫ ЭКОНОМЕТРИКИ (Раздел 3. парная регрессия) теоретические материалы для студентов ОФиП МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

Подробнее

Методические указания для выполнения лабораторной работы 2. Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы.

Методические указания для выполнения лабораторной работы 2. Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы. Методические указания для выполнения лабораторной работы Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы. Методические указания Регрессией Y на X или условным математическим

Подробнее

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна Тема: Математическая статистика Дисциплина: Математика Авторы: Нефедова Г.А.. Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка:. (0;0). (5;5) 3. (0;5) 4. (5;5) 5. (0;0).

Подробнее

Коррекция гетероскедастичности. Метод взвешенных наименьших квадратов

Коррекция гетероскедастичности. Метод взвешенных наименьших квадратов РГУ нефти и газа имени И.М. Губкина Коррекция гетероскедастичности. Метод взвешенных наименьших квадратов Иткина Анна Яковлевна, ст. преподаватель кафедры ЭНиГП Список лекций Метод наименьших квадратов

Подробнее

ЗНАЧИМОСТЬ УРАВНЕНИЯ РЕГРЕССИИ И КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ

ЗНАЧИМОСТЬ УРАВНЕНИЯ РЕГРЕССИИ И КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ ЗНАЧИМОСТЬ УРАВНЕНИЯ РЕГРЕССИИ И КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ Проверить значимость уравнения регрессии значит установить, соответствует ли построенное уравнение регрессии экспериментальным данным и достаточно

Подробнее

Рассмотрим некоторые методы проверки выполнения предпосылок Гаусса-Маркова и приемы исследования в случаях, когда они нарушаются.

Рассмотрим некоторые методы проверки выполнения предпосылок Гаусса-Маркова и приемы исследования в случаях, когда они нарушаются. Рассмотрим некоторые методы проверки выполнения предпосылок Гаусса-Маркова и приемы исследования в случаях, когда они нарушаются. Способ проверки остатков на случайный характер Для проверки остатков на

Подробнее

7 Корреляционный и регрессионный анализ

7 Корреляционный и регрессионный анализ 7 Корреляционный и регрессионный анализ. Корреляционный анализ статистических данных.. Регрессионный анализ статистических данных. Статистические связи между переменными можно изучать методами дисперсионного,

Подробнее

26 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

26 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика 6 ГрГУ им Я Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика Лекция 4 Точечный и интервальный огнозы по уравнению регрессии Одной из центральных задач эконометрического моделирования

Подробнее

ТЕМА 1. ПРОСТАЯ ЛИНЕЙНАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ Оценивание параметров эконометрической модели методом наименьших квадратов

ТЕМА 1. ПРОСТАЯ ЛИНЕЙНАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ Оценивание параметров эконометрической модели методом наименьших квадратов 8 ТЕМА ПРОСТАЯ ЛИНЕЙНАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ Оценивание параметров эконометрической модели методом наименьших квадратов Простая линейная регрессионная модель устанавливает линейную зависимость между

Подробнее

6.7. Статистические испытания

6.7. Статистические испытания Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Подробнее

Лекция 9. Тема Введение в теорию оценок.

Лекция 9. Тема Введение в теорию оценок. Лекция 9 Тема Введение в теорию оценок. Содержание темы Предмет, цель и метод задачи оценивания Точечные выборочные оценки, свойства оценок Теоремы об оценках Интервальные оценки и интеграл Лапласа Основные

Подробнее

Лекция 15 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Лекция 15 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Лекция 5 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ ЦЕЛЬ ЛЕКЦИИ: ввести понятие оценки неизвестного параметра распределения и дать классификацию таких оценок; получить точечные оценки математического

Подробнее

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов 7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Линейная регрессия Метод наименьших квадратов ( ) Линейная корреляция ( ) ( ) 1 Практическое занятие 7 КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Для решения практических

Подробнее

Генеральная совокупность и выборка. Центральная предельная теорема

Генеральная совокупность и выборка. Центральная предельная теорема Генеральная совокупность и выборка Точечные оценки и их свойства Центральная предельная теорема Выборочное среднее, выборочная дисперсия Генеральная совокупность Генеральная совокупность множество всех

Подробнее

Лекция 9. Множественная линейная регрессия

Лекция 9. Множественная линейная регрессия Лекция 9. Множественная линейная регрессия Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Множественная регрессия... Санкт-Петербург, 2013 1 / 39 Cодержание Содержание 1

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Лекция 14

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Лекция 14 ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Лекция 14 Проверка статистических гипотез Статистическая гипотеза предположение о некоторой закономерности, относящейся к одной или нескольким случайным

Подробнее

МГУ имени М.В. Ломоносова

МГУ имени М.В. Ломоносова МГУ имени М.В. Ломоносова Шестая международная универсиада по эконометрике Задание (5 баллов) Рассматривается модель парной регрессии y β + β x + ε, cov(x ; ε ),,,. Пусть z - бинарная инструментальная

Подробнее

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии.

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Пусть имеется нормально распределенная случайная величина N,, определенная на множестве объектов

Подробнее

Корреляция. u n. Методические указания

Корреляция. u n. Методические указания Методические указания Корреляция Регрессией Y на X или условным математическим ожиданием случайной величины Y относительно случайной величины X называется функция вида М (Y/ x)=f(x). Регрессией X на Y

Подробнее

12. Интервальные оценки параметров распределения

12. Интервальные оценки параметров распределения МВДубатовская Теория вероятностей и математическая статистика Лекция 7 Интервальные оценки параметров распределения Для выборок малого объема точечные оценки могут значительно отличаться от оцениваемых

Подробнее

Лекция 16 ИНТЕРВАЛЬНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Лекция 16 ИНТЕРВАЛЬНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Лекция 6 ИНТЕРВАЛЬНЫЕ ОЦЕНКИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ ЦЕЛЬ ЛЕКЦИИ: ввести понятие доверительной вероятности и доверительного интервала, получить интервальные оценки математического ожидания и дисперсии.

Подробнее

Правительство Российской Федерации

Правительство Российской Федерации Правительство Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "Высшая школа экономики"

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа 6 Анализ остатков. Гетероскедастичность Оглавление Свойства остатков... 3 1-е условие Гаусса-Маркова: Е(ε i ) = 0 для всех наблюдений... 3 Задание 1.

Подробнее

Контрольная работа по дисциплине Эконометрика

Контрольная работа по дисциплине Эконометрика Министерство образования Российской Федерации Новосибирский государственный технический университет Кафедра прикладной математики Контрольная работа по дисциплине Эконометрика Выполнил: Студент группы

Подробнее

Теория вероятностей и математическая статистика Конспект лекций

Теория вероятностей и математическая статистика Конспект лекций Министерство образования и науки РФ ФБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Теория вероятностей и математическая статистика

Подробнее

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия.

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия. Квантили Выборочная квантиль x p порядка p (0 < p < 1) определяется как элемент вариационного ряда выборки x (1),, x () с номером [p]+1, где [a] целая часть числа а В статистической практике используется

Подробнее

ЛЕКЦИЯ 3 ЛИНЕЙНАЯ РЕГРЕССИЯ: СЛУЧАЙ ОДНОЙ ОБЪЯСНЯЮЩЕЙ ПЕРЕМЕННОЙ (ПРОДОЛЖЕНИЕ)

ЛЕКЦИЯ 3 ЛИНЕЙНАЯ РЕГРЕССИЯ: СЛУЧАЙ ОДНОЙ ОБЪЯСНЯЮЩЕЙ ПЕРЕМЕННОЙ (ПРОДОЛЖЕНИЕ) ЛЕКЦИЯ 3 ЛИНЕЙНАЯ РЕГРЕССИЯ: СЛУЧАЙ ОДНОЙ ОБЪЯСНЯЮЩЕЙ ПЕРЕМЕННОЙ (ПРОДОЛЖЕНИЕ. Несколько результатов относительно регрессий оцениваемых МНК.. Дисперсионный анализ. 3. Оценка качества регрессии. Интерпретация

Подробнее

1. Общий анализ временного ряда. Доходы населения

1. Общий анализ временного ряда. Доходы населения 1. Общий анализ временного ряда. 1.1. Проверка гипотезы о случайности временного ряда. График временного ряда изучаемого показателя «Среднедушевые денежные доходы» изображен на рис. «Доходы населения».

Подробнее

Курсовая работа. Институт экономики и финансов кафедра «Математика»

Курсовая работа. Институт экономики и финансов кафедра «Математика» ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА НИКОЛАЯ II» Институт экономики и финансов кафедра «Математика»

Подробнее

Тема: Статистические оценки параметров распределения

Тема: Статистические оценки параметров распределения Раздел: Теория вероятностей и математическая статистика Тема: Статистические оценки параметров распределения Лектор Пахомова Е.Г. 05 г. 5. Точечные статистические оценки параметров распределения Статистическое

Подробнее

REGRESSION ANALYSIS OLS: GAUSS-MARKOV ASSUMPTIONS ПРЕДПОСЫЛКИ МНК. ТЕОРЕМА ГАУССА-МАРКОВА

REGRESSION ANALYSIS OLS: GAUSS-MARKOV ASSUMPTIONS ПРЕДПОСЫЛКИ МНК. ТЕОРЕМА ГАУССА-МАРКОВА REGRESSION ANALSIS OLS: GAUSS-MARKOV ASSUMPTIONS ПРЕДПОСЫЛКИ МНК. ТЕОРЕМА ГАУССА-МАРКОВА OLS: GAUSS-MARKOV ASSUMPTIONS - Основные предпосылки МНК ассоциируются с теоремой Гаусса-Маркова и представляют

Подробнее

Полный список контрольных вопросов к экзамену по эконометрике

Полный список контрольных вопросов к экзамену по эконометрике Полный список контрольных вопросов к экзамену по эконометрике МЕТОД НАИМЕНЬШИХ КВАДРАТОВ. СВОЙСТВА КОЭФФИЦИЕНТОВ РЕГРЕССИИ. 1. Что такое ковариация?. Что выражает ковариация переменных в регрессионной

Подробнее

Проверка статистических гипотез

Проверка статистических гипотез Проверка статистических гипотез 1. Статистические гипотезы; 2. Критерии проверки гипотез; 3. Проверка параметрических гипотез; 4. Критерий Пирсона Завершить показ Статистические гипотезы. Статистические

Подробнее

Лекция 20. Проверка статистических гипотез

Лекция 20. Проверка статистических гипотез Лекция. Проверка статистических гипотез Понятие о статистических гипотезах и методах их проверки При решении многих задач возникает необходимость оценки того, подчиняется ли распределение генеральной совокупности

Подробнее

Перечень вопросов для подготовки к промежуточной аттестации по дисциплине «Эконометрика»

Перечень вопросов для подготовки к промежуточной аттестации по дисциплине «Эконометрика» Перечень вопросов для подготовки к промежуточной аттестации по дисциплине «Эконометрика» 1. Ковариация 2. Ковариация переменных в регрессионной модели 3. Описать основные этапы построения и анализа регрессионной

Подробнее

Лекция 2. Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента

Лекция 2. Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента Лекция 2 Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента Доверительный интервал Задача на практике - при ограниченной выборке оценить точность и надежность вычисления

Подробнее

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров . СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ.. Понятие о статистической оценке параметров Методы математической статистики используются при анализе явлений, обладающих свойством статистической устойчивости.

Подробнее

ГЕТЕРОСКЕДАСТИЧНОСТЬ РЕГРЕССИОННОЙ МОДЕЛИ И МЕТОД ВЗВЕШЕННЫХ НАИМЕНЬШИХ КВАДРАТОВ

ГЕТЕРОСКЕДАСТИЧНОСТЬ РЕГРЕССИОННОЙ МОДЕЛИ И МЕТОД ВЗВЕШЕННЫХ НАИМЕНЬШИХ КВАДРАТОВ ГЕТЕРОСКЕДАСТИЧНОСТЬ РЕГРЕССИОННОЙ МОДЕЛИ И МЕТОД ВЗВЕШЕННЫХ НАИМЕНЬШИХ КВАДРАТОВ Предположим, что была принята гипотеза о гетероскедакстичности модели, т.е. каждое возмущение имеет свою дисперсию. В этом

Подробнее

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии Камчатский государственный технический университет Кафедра высшей математики ЭКОНОМЕТРИКА Модель парной регрессии Задания и методические указания для студентов специальностей ФК, БУ, ПИ дневного и заочного

Подробнее

Регрессияшпаргалка. Кафедра Автоматизации технологических процессов Доц. Южанин В.В.

Регрессияшпаргалка. Кафедра Автоматизации технологических процессов Доц. Южанин В.В. Регрессияшпаргалка Кафедра Автоматизации технологических процессов Доц. Южанин В.В. Об использовании регрессионной модели для описания реальных процессов Ошибка (шум) моделирует неучтенные факторы. Невозможность

Подробнее

ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe :

ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe : 1 ЗАДАНИЕ ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe : 0.30-1.4 0.59-1.79 0.4 0.7 1.73 0.45 0.34-0.09 1.09 -.04

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ О.Ю.Пелевин МЕТОДИЧЕСКАЯ РАЗРАБОТКА по курсу «Теория вероятностей и математическая статистика» для студентов физического

Подробнее

11. Тесты по математической статистике. Тест Дана выборка ( 3,1,2,3,1,4, 5). Составьте вариационный ряд.

11. Тесты по математической статистике. Тест Дана выборка ( 3,1,2,3,1,4, 5). Составьте вариационный ряд. 11 Тесты по математической статистике Тест 1 P 1 Для любого x имеет место соотношение F x правую часть Заполните Дана выборка ( 3,1,,3,1,4, 5) Составьте вариационный ряд 3 Что оценивают x и выборочная

Подробнее

4 Проверка параметрических гипотез

4 Проверка параметрических гипотез 4 Проверка параметрических гипотез Статистическая гипотеза Параметрическая гипотеза 3 Критерии проверки статистических гипотез Статистической называют гипотезу о виде неизвестного распределения или о параметрах

Подробнее

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость.

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость. Поиск оценки может быть рассмотрен как измерение параметра (предполагается, что он имеет некоторое фиксированное, но неизвестное значение), основанное на ограниченном числе экспериментальных наблюдений.

Подробнее

Эконометрика. Модель линейной регрессии. Шишкин Владимир Андреевич. Пермский государственный национальный исследовательский университет

Эконометрика. Модель линейной регрессии. Шишкин Владимир Андреевич. Пермский государственный национальный исследовательский университет Эконометрика Модель линейной регрессии Шишкин Владимир Андреевич Пермский государственный национальный исследовательский университет Вероятностью P(A) события A называется численная мера степени объективной

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа 3 Парная регрессия Оглавление Парная регрессия... 3 Метод наименьших квадратов (МНК)... 3 Интерпретация уравнения регрессии... 4 Оценка качества построенной

Подробнее

Условия Гаусса-Маркова Теорема Гаусса-Маркова Свойства МНК-оценок. Лекция 8

Условия Гаусса-Маркова Теорема Гаусса-Маркова Свойства МНК-оценок. Лекция 8 Условия Гаусса-Маркова Теорема Гаусса-Маркова Свойства МНК-оценок Лекция 8 CВОЙСТВА ОЦЕНОК КОЭФФИЦИЕНТОВ РЕГРЕССИИ Для того чтобы полученные по МНК оценки обладали некоторым полезными статистическими свойствами

Подробнее

Доверительные интервалы: примеры решения задач

Доверительные интервалы: примеры решения задач Доверительные интервалы: примеры решения задач Л. В. Калиновская Кафедра высшей математики, Университет "Дубна" date Доверительные интервалы для оценки математического ожидания нормального распределения

Подробнее

Кафедра «Теория рынка» Тимофеев В.С. ОСНОВЫ ЭКОНОМЕТРИКИ (Раздел 2. корреляционный анализ) теоретические материалы для студентов ОФиП

Кафедра «Теория рынка» Тимофеев В.С. ОСНОВЫ ЭКОНОМЕТРИКИ (Раздел 2. корреляционный анализ) теоретические материалы для студентов ОФиП МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Исходные данные

ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Исходные данные ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ Исходные данные Задана большая выборка, объем которой п 00..49 3.548 4.409 5.08 0.39.096 5.4 4.586 4.49.678 4.08 3.993 4.3 6.9 -.48 5.8 5.07 3.889.3 5.59 9.377.644

Подробнее

σ которого известен, σ = σ и проверим, можно ли считать

σ которого известен, σ = σ и проверим, можно ли считать .8. Постановка задачи проверки статистических гипотез Пример _кз Задачу проверки статистических гипотез рассмотрим на примере. Пример _кз (двусторонний критерий). В результате многократных измерений некоторого

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

По таблице приложения 4 по γ = 0,99 и n = 15 найдем q = 0,73. Искомый доверительный интервал

По таблице приложения 4 по γ = 0,99 и n = 15 найдем q = 0,73. Искомый доверительный интервал Лекция 9. Оценка точности измерений. Оценка вероятности (биномиального распределения) по относительной частоте. 1. Оценка точности измерений. В теории ошибок принято точность измерений (точность прибора)

Подробнее

REGRESSION ANALYSIS OLS: GAUSS-MARKOV ASSUMPTIONS ПРЕДПОСЫЛКИ МНК. ТЕОРЕМА ГАУССА-МАРКОВА

REGRESSION ANALYSIS OLS: GAUSS-MARKOV ASSUMPTIONS ПРЕДПОСЫЛКИ МНК. ТЕОРЕМА ГАУССА-МАРКОВА REGRESSION ANALYSIS OLS: GAUSS-MARKOV ASSUMPTIONS ПРЕДПОСЫЛКИ МНК. ТЕОРЕМА ГАУССА-МАРКОВА OLS: GAUSS-MARKOV ASSUMPTIONS - Основные предпосылки МНК ассоциируются с теоремой Гаусса-Маркова и представляют

Подробнее

, при уровнях значимости = 0, 05

, при уровнях значимости = 0, 05 Задача скачана с сайта wwwqacademru Задача Имеется информация за лет относительно среднего дохода X и среднего потребления Y (млн руб): Годы 9 9 9 93 94 95 96 97 98 99 X,5,6,3 3,7 4,5 6, 7,3 8,7,,8 Y 8,5,3

Подробнее

СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ НА ИЗНАШИВАНИЕ

СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ НА ИЗНАШИВАНИЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ НА ИЗНАШИВАНИЕ Методические

Подробнее

Статистические оценки параметров распределения

Статистические оценки параметров распределения Статистические оценки параметров распределения Рудько Александр Владимирович студент ФГОУ ВО Курский государственный университет, колледж коммерции, технологий и сервиса, Россия, г. Курск Ефимцева Ирина

Подробнее

3. Какие из указанные моделей НЕЛЬЗЯ представить в линейном виде?

3. Какие из указанные моделей НЕЛЬЗЯ представить в линейном виде? ФИО: 1. Набор данных содержит 10 переменных по 500 случайно отобранным домохозяйствам за 5 лет. Этот тип данных называется: (a) Временной ряд (b) Панельные данные (c) Пространственная выборка (d) Генеральная

Подробнее

2 Статистические оценки неизвестных параметров распределения

2 Статистические оценки неизвестных параметров распределения Статистические оценки неизвестных параметров распределения Статистическая оценка неизвестного параметра теоретического распределения Виды статистических оценок 3 Нахождение оценок неизвестных параметров

Подробнее

Тема 1. Основные понятия теории вероятностей и статистики (Теоретические вопросы)

Тема 1. Основные понятия теории вероятностей и статистики (Теоретические вопросы) Эконометрика_0-03 уч.год_типовые ЗАДАЧИ Тема. Основные понятия теории вероятностей и статистики (Теоретические вопросы) Эконометрика- это: наука, которая дает количественное выражение взаимосвязей в экономике

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

Для проверки H 0 извлекается выборка объема n: x 1, x 2,..., x n и в качестве критерия строится статистика =, (3.13) где

Для проверки H 0 извлекается выборка объема n: x 1, x 2,..., x n и в качестве критерия строится статистика =, (3.13) где 3.5. Примеры проверки гипотез Рассмотрим применение общей схемы проверки гипотез к конкретным задачам проверки гипотез о математическом ожидании, дисперсии, коэффициенте корреляции, часто встречающимся

Подробнее

Математическая статистика

Математическая статистика Математическая статистика 1 Выборка X x, x,, x Опр.1 Пусть одномерная с.в., а 1 значения с.в.,полученные в результате независимых испытаний. Будем называть полученные значения выборкой из генеральной совокупности

Подробнее

Линейная регрессионная модель и эмпирическое уравнение регрессии. Метод наименьших квадратов (МНК)

Линейная регрессионная модель и эмпирическое уравнение регрессии. Метод наименьших квадратов (МНК) Линейная регрессионная модель и эмпирическое уравнение регрессии Метод наименьших квадратов (МНК) Предпосылки МНК Анализ точности определения оценок коэффициентов регрессии Обе переменные равноценны нельзя

Подробнее

ЧАСТЬ ІІ ГИПЕРСЛУЧАЙНЫЕ МОДЕЛИ

ЧАСТЬ ІІ ГИПЕРСЛУЧАЙНЫЕ МОДЕЛИ ЧАСТЬ ІІ ГИПЕРСЛУЧАЙНЫЕ МОДЕЛИ ГЛАВА 6 ГИПЕРСЛУЧАЙНЫЕ ОЦЕНКИ ДЕТЕРМИНИРОВАННЫХ ВЕЛИЧИН Описаны точечный и интервальный методы оценки детерминированных величин основанные на представлении оценок гиперслучайными

Подробнее

Теория вероятностей и статистика

Теория вероятностей и статистика Теория вероятностей и статистика Тема 7. Статистические оценки параметров распределения Белов А.И. Уральский федеральный университет Екатеринбург, 2018 Содержание 1 Точечные оценки 2 Характеристики положения

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 МАТЕМАТИЧЕСКАЯ

Подробнее

Вариант 8. Номер семьи Число совместно проживающих членов семьи,

Вариант 8. Номер семьи Число совместно проживающих членов семьи, Задача.Имеются следующие данные: Вариант 8 Номер семьи 3 4 5 6 7 8 9 0 Число совместно проживающих членов семьи, 3 3 4 4 4 5 6 7 7 чел. Годовое потребление электроэнергии, тыс. кв.- час 5 8 0 4 6 9 3 8.

Подробнее

Контрольные тесты по дисциплине «Эконометрика»

Контрольные тесты по дисциплине «Эконометрика» Контрольные тесты по дисциплине «Эконометрика» Первая главная компонента A. Содержит максимальную долю изменчивости всей матрицы факторов. B. Отражает степень влияния первого фактора на результат. C. Отражает

Подробнее

Лекция 17 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ. Определение статистической гипотезы

Лекция 17 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ. Определение статистической гипотезы Лекция 7 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ ЦЕЛЬ ЛЕКЦИИ: определить понятие статистических гипотез и правила их проверки; провести проверку гипотез о равенстве средних значений и дисперсий нормально распределенной

Подробнее

Планирование полного двухфакторного эксперимента. Регрессионный анализ

Планирование полного двухфакторного эксперимента. Регрессионный анализ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технический университет

Подробнее

Выборочные оценки параметров распределения

Выборочные оценки параметров распределения Выборочные оценки параметров распределения 1 Выборочные оценки параметров распределения Резюмируя, важно подчеркнуть, что, с точки зрения экспериментатора, функции распределения и статистические характеристики

Подробнее

Лекция 26. Элементы дисперсионного анализа. Понятие о дисперсионном анализе

Лекция 26. Элементы дисперсионного анализа. Понятие о дисперсионном анализе Лекция 6. Элементы дисперсионного анализа Понятие о дисперсионном анализе Пусть генеральные совокупни X, X,..., X распределены нормально и имеют одинаковую, хотя и неизвестную дисперсию. Математические

Подробнее

МУЛЬТИКОЛЛИНЕАРНОСТЬ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. очень большими. В результате получаются большие дисперсии. X X b X y

МУЛЬТИКОЛЛИНЕАРНОСТЬ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. очень большими. В результате получаются большие дисперсии. X X b X y МУЛЬТИКОЛЛИНЕАРНОСТЬ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ Серьезной проблемой при построении моделей множественной регрессии на основе метода наименьших квадратов (МНК) является мультиколлинеарность Мультиколлинеарность

Подробнее

ЛЕКЦИЯ 1. Понятие эконометрики и эконометрических моделей

ЛЕКЦИЯ 1. Понятие эконометрики и эконометрических моделей ЛЕКЦИЯ Понятие эконометрики и эконометрических моделей Эконометрика это наука, которая на базе статистических данных дает количественную характеристику взаимозависимым экономическим явлениям и процессам

Подробнее

Методические указания к выполнению курсовой работы на тему «Комплексный анализ взаимосвязи финансово-экономических показателей деятельности

Методические указания к выполнению курсовой работы на тему «Комплексный анализ взаимосвязи финансово-экономических показателей деятельности Методические указания к выполнению курсовой работы на тему «Комплексный анализ взаимосвязи финансово-экономических показателей деятельности предприятий» Москва, 201 Введение Курсовая работа «Комплексный

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Математики и математических методов в экономике 2. Направление подготовки 01.03.02

Подробнее

Оцените математическое ожидание М x и моду Мо. Задача 3 По данным выборки объема 100 получены следующие данные:

Оцените математическое ожидание М x и моду Мо. Задача 3 По данным выборки объема 100 получены следующие данные: Билет Объем выборки равен 60. определить значение 5 и моду Мо. 5 6 8? Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка: a. (5; 0); б. (0; 5); в. (; 7); г. (; 0). Получены

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

4. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Задачи и проблемы корреляционного анализа

4. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Задачи и проблемы корреляционного анализа 4. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ 4.. Задачи и проблемы корреляционного анализа Главной задачей корреляционного анализа является оценка взаимосвязи между переменными величинами на основе выборочных данных. Различают

Подробнее

Глоссарий. Вариационный ряд группированный статистический ряд

Глоссарий. Вариационный ряд группированный статистический ряд Глоссарий Вариационный ряд группированный статистический ряд Вариация - колеблемость, многообразие, изменчивость значения признака у единиц совокупности. Вероятность численная мера объективной возможности

Подробнее

Математическая статистика

Математическая статистика Математическая статистика 1 Выборка X x, x,, x Опр.1 Пусть одномерная с.в., а 1 значения с.в.,полученные в результате испытания. Будем называть полученные значения выборкой из генеральной совокупности

Подробнее

Формулировка вопроса: Укажите этапы, относящиеся к задачам эконометрического моделирования Варианты ответа: Этап верификации Этап спецификации Этап

Формулировка вопроса: Укажите этапы, относящиеся к задачам эконометрического моделирования Варианты ответа: Этап верификации Этап спецификации Этап Формулировка вопроса: Укажите этапы, относящиеся к задачам эконометрического моделирования Этап верификации Этап спецификации Этап дислокации Этап деноминации Этап регрессиации Формулировка вопроса: Классическая

Подробнее

Лекция 2 дополнение. Распределение Стьюдента Доверительный интервал в программе «Описательная статистика»

Лекция 2 дополнение. Распределение Стьюдента Доверительный интервал в программе «Описательная статистика» Лекция 2 дополнение Распределение Стьюдента Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента Это распределение получило свое название от псевдонима Student, которым

Подробнее

5. РЕГРЕССИОННЫЙ АНАЛИЗ Задачи регрессионного анализа

5. РЕГРЕССИОННЫЙ АНАЛИЗ Задачи регрессионного анализа 5 РЕГРЕССИОННЫЙ АНАЛИЗ 5 Задачи регрессионного анализа Понятия регрессии и корреляции непосредственно связаны между собой, но при этом существует четкое различие между ними В корреляционном анализе оценивается

Подробнее