Введем понятие расстояния между точками этого пространства (метрику пространства R n ). Определение 2 Расстоянием ρ( PP, ) ρ PP,

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Введем понятие расстояния между точками этого пространства (метрику пространства R n ). Определение 2 Расстоянием ρ( PP, ) ρ PP,"

Транскрипт

1 5 Глава ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Пространство R n Понятие функции нескольких переменных Определение Множество всех упорядоченных наборов (,,, n ), где,,, n - действительные числа называется n-мерным арифметическим точным пространством и обозначается R n, а его элементы - точками пространства R n Числа,,, n называются координатами точки (,,, n ) Введем понятие расстояния между точками этого пространства (метрику пространства R n ) Определение Расстоянием ρ( PP, ) между двумя точками P (,,, n ) и P (,,, n ) n-мерного пространства называется число def n (, ) = ( ) + ( ) + + ( n n ) = ( i i ) ρ P P Если в формуле () положить n= или n=3, то получим известные ранее формулы для вычислении расстояния между точками на плоскости или в пространстве Арифметическое n- мерное пространство, на котором задано расстояние между двумя точками называется метрическим пространством R n При размерности пространства большем, чем n, можно рассматривать произвольные подмножества этого пространства Удовлетворяющие некоторым условиям, как некоторые "фигуры" Задавать их будем, по аналогии с двумерным или трехмерным пространствами, с помощью уравнений или неравенств n P R, расстояние от каждой Определение 3 Множество точек ( n ) из которых до фиксированной точки P ( n ) не превосходит некоторого положительного числа r : n (, ) ( ) ( ) ( n n) i= () { } ρ PP r P R r, называют n-мерным замкнутым шаром с центром в точке P При n= замкнутый шар - это отрезок длиной r с центром в точке При n= замкнутый шар определяется неравенством { } (, ) (, )( ) ( ) ρ PP r P + r те данное множество - это круг радиуса r и с центром в точке P При n=3 { } (, ) (,, )( ) ( ) ( ) ρ PP r P + + r, те получаем шар радиуса r и с центром в точке P Определение 4 Открытым шаром с центром в точке пространства P множество точек Р R n, расстояние от каждой из которых до точки P меньше : r ( ) ρ PP, < r Определение 5 Множество точек P R n, удовлетворяющих условию ρ PP, = rназывается n-мерной сферой радиуса и с центром в точке P ( ) r

2 6 Определение 6 Множество точек P ( ),,, n пространства R n, координаты которых удовлетворяют неравенствам d, d,, n n dn называется n-мерным параллепипедом с центром в точке P (,,, n ) Определение 7 Окрестностью радиуса δ (δ - окрестностью ) точки P называется отрытый шар с центром в точке и радиуса δ def Oδ P = Pρ P, P < δ Определение 8 Проколотой окрестностью точки P радиусом r, обозначае- &O P называется множество точек Р, удовлетворяющих неравенству мой P { } ( ) ( ) r ( ) ( ) < ρ PP, < r: { } def ( ) ( ) O & P = P < ρ P, P < r r Понятие функции нескольких переменных Пусть D R n - произвольное множество точек арифметического пространства P,,, D ставит в соответствие R n Если правило f (закон) каждой точке ( n ) единственное действительное число ( ) ( ) u= f p = f,,, n, то говорят, что на множестве D задана числовая функция (или отображение) f от n переменных и пишут: n f: R R или u= f (,,, n ) Множество D называется областью определения, а множество E = u Ru= f( P) P D u= f p {, } множеством значений функции ( ) В частном случае, при n= функцию двух переменных можно рассматривать как функцию точек плоскости Частное значение функции при = и будем (, ) ( ) обозначать f, f P, P Функция двух переменных может быть задана =

3 7 {( ) ( )} аналитически графическим способом табличным программным (алгоритм вычисления от и ) И другими способами Функция двух переменных изображается как множество точек Γ=,, R 3 = f,, которое представляет из себя поверхность Проекцией поверхности на плоскость ОХY является область D(f) Функцию трех переменных изобразить графически невозможно Примеры: ) = + D( f ) = R, E( f ) = [ ) ) = 4 D( f) : 4 E( f) = [ ] 3) u= ln( 5 ) = +

4 8 = 4 Функции нескольких переменных могут быть заданы явно или неявно, а также параметрически Понятие предела функции нескольких переменных Рассмотрим последовательность точек P( ) P( ) P( ) P(, ) ρ( P, P) = ( ) + ( ) стремится к нулю при : lim ( P, P ) = lim ( ) + ( ) =,,,,,,, плоскости ОХY Говорят, что эта последовательность сходится к точке, если расстояние ρ Другими словами, последовательность точек P R, =, сходится к точке P, если в любой её окрестности Or ( P ) лежат все точки последовательности, начиная с некоторого номера N Предел последовательности P, =, обозначают lim P = P или P P P ( ) Пример Последовательность точек P сходится к точке P + Дадим определение предела функции двух переменных ( в смысле Гейне) Определение Число называется пределом функции = f( ) в точке, если для любой сходящейся к P последовательности точек ( ) ( ) ( ), = P P, соответствующая последовательность ( P ) f ( P ),, f ( P ), f значений функции сходится к :, def = lim f( P) P ( ) : lim P ( ) = P ( ) lim f( P ) = f( P ) o P P

5 9 f(p ) f(p ) f(p n) lim = f ( P) P n P P P Pn Для записи предела функции используются обозначения: lim f( P) = lim f P P Pn или ( ) = Можно показать, что следующее определение (в смысле Коши) является эквивалентным Определение Число называется пределом функции = f( ) при,, те в точке P( ), если для любого ε> существует число r>, такое, что для любой точки P() O & r ( P ) выполняется неравенство f( ) < ε : drf ( ) ε ( ) ( ) ( ) = lim f, > r > : P O& P f P O r ε lim = f ( P) P P =f(,) o P

6 3 Замечание Определением предела функции по Гейне удобно пользоваться в случае, когда надо доказать, что предела функции в точке не существует Пример: Доказать, что не существует предела функции f(, ) = + в точке О(,) Область определения данной функции D( f) = R \ {(,) } Покажем что предел функции в точке О(,) не существует, для этого выберем две сходящиеся к началу координат последовательности точек: ( ) = P, и ( ) = P, Тогда соответственно получим: lim( P ) lim = = lim ( P ) = Таким образом, двум последовательностям, сходящимся к началу координат ( следовательно, имеющим один и тот же предел), соответствуют две последовательности функций имеющие разные пределы Понятие предела можно обобщить на случай нескольких переменных: Пусть функция u= f(,,, n ) определена в & ( ), (, O P P,, r n) Тогда число u называется пределом функции f (,,, n ) при P P u = lim f(,,, n если для любого ) ε > существует r( ε ) >, такое что для лю- P P бой точки ( ) P O & r P выполняется неравенство (,,, ) < ( ) ( ) f u ε f P Oε u n Пользуясь понятием предела функции нескольких переменных можно построить теорию пределов, аналогичную теории пределов функции одного переменного

7 3 3 Непрерывность функции нескольких переменных Определение Функция ( ) u= f,,, n называется непрерывной в точке P (,,, n ) если выполнены следующие три условия: ) f( P ) определена в точке P и некоторой ее окрестности ) существует lim f( P) P P 3) lim ( ) = ( ) P P f P f P Если в точке P одно из указанных условий не выполняется, то она является точкой разрыва функции u= f( P) Для функции двух переменных f( ) = точки разрыва могут быть изолированными или образовывать линию разрыва Для функции трех переменных u= f( ) точки разрыва могут быть изолированными, образовывать линию или поверхность разрыва Пример Найти точки разрыва функций ) = ) = 3) u = ( ) Определение Функция u= f( P) называется непрерывной на множестве D, если она непрерывна в каждой точке этого множества Сформулируем несколько теорем о свойствах непрерывных функций Теорема Если функция = f( P) непрерывна на замкнутом, ограниченном множестве D R n, то она ограничена на нем и достигает в некоторых точках P и этого множества своих точных верхней и нижней граней: P ( ) ( ) ( ) ( ) f P = sup f P, f P = inf f P 9 sup f(p) f(p ) inf f(p) f(p ) (D)

8 3 Введем понятие связного множества Множество называется связным, если две любые точки этого множества можно соединить линией, принадлежащей данному множеству Теорема Если функция = f( P) непрерывна на замкнутом связном, ограниченном множестве D, то она принимает на нем все промежуточные значения Другими словами если inf f( P) μ sup f( P), то существует такая точка P D что ( ) = μ f P P D P D, sup f(p) inf f(p) (D) Теорема 3 Если функция = f( P) непрерывна на замкнутом ограниченном множестве D, то она равномерно-непрерывна на этом множестве, те для любого ε > существует r( ε ) >, такое r> что для любых двух точек P и P множества D, находящихся на расстоянии, меньшем r, выполняется неравенство f P f P <ε ( ) ( ) 4 Дифференцирование функций нескольких переменных = ( ) ( ) ( ) ( ) Частные и полные приращения функции Пусть f функция двух независимых переменных и D f - область определения функции Выберем фиксированную точку P D f и дадим первой переменной приращение Δ, а значение второй переменной оставим неизменным При этом функция f( ) получит приращение Δ = Δ f( ) = f( + Δ ) f( ) которое назовем частным приращение функции f( ) P ( ), = по переменной х в точке

9 33 (P) (P ) P, Аналогично получается частным приращение функции = f( ) по переменной у в точке ( ) P : P + Δ, ( ) ( ) ( ) Δ = Δ f = f + Δ f, (P) (P ) P, называется разность Полным приращением функции = f( ) в точке P ( ) ( ) ( ) ( ) Δ = Δf = f + Δ + Δ f,

10 34 (P) (P ) P(,) Пример: Найти частные и полные приращения функции = в точке P ( ), если Δ =, Δ =, Имеем Δ = ( +,) ( +,) = =, 4,84 4 = = 4,4 4 =,4, Если u= f( ) - функция трех независимых переменных, то для нее рассматривают следующие приращения: = ( + Δ ) ( ), = ( + Δ ) ( ), = ( + Δ ) ( ), ( ) ( ) Δ f f Δ f f Δ f f Δu= f + Δ + Δ + Δ f Аналогично определяются частные и полные приращения функции n независимых переменных Частные производные Производная функции одной переменной = f( ) характеризует скорость изменения функции в точке х В случае функции двух и более переменных можно говорить только о скорости изменения функции в данном направлении Отношение Δ f( Δ + ) f( ) = Δ Δ P в направлении определяет среднюю скорость изменения функции в точке ( ) изменения независимой переменной х ( от точки P ( ) до точки P( +Δ )

11 35 Определение Частной производной функции f( ) P ( = по переменной х в точке ) называется предел отношения частного приращения функции Δ к соответствующему приращению аргумента Δ, когда последнее произвольным образом стремится к нулю: f ( + Δ ) f ( ) lim Δ Δ Обозначается такая производная :, f(, ),, f ( ) Таким образом def Δ f( ) f( + Δ ) = lim = lim Δ Δ Δ Δ P Определение Частной производной функции f( ) P ( = по переменной в точке ) называется предел отношения частного приращения функции Δ к соответствующему приращению аргумента Δ, когда последнее произвольным образом стремится к нулю: f ( + Δ) f ( ) lim Δ Δ Обозначается такая производная :, f(, ),, f ( ) Таким образом def Δ f( ) f( + Δ ) = lim = lim Δ Δ Δ Δ P Частные производные функции n независимых переменных определяются аналогично u Δ u f( ) f( + Δ ) = lim = lim Δ P Δ Δ Δ Таким образом, частная производная функции нескольких переменных определяется как производная функции одной переменной, но при условии, что остальные переменные являются постоянными Примеры ) Найти частные производные функции = + sin ( + ) ) Найти частные производные функции u= + ln ( ) 3) Найти частные производные функции u= + sin ( t) Имеем: = + sin ( + ) = + cos( + ) = + cos( + )

12 36 ( ) u= + ln = + = + ( ) = + ( ) u= + sin ( t) = + sin( t) cos( t) ( t) = + = + sin( t) cos( t) = + sin( t) cos( t) ( ) Геометрический смысл частных производных двух переменных Выясним геометрический смысл частной производной функции = f( ) Графиком этой функции является некоторая поверхность Q Возьмем точку P( ) D( f) на этой поверхности ей соответствует точка M(,, ) Пересечем график функции плоскостью = В сечении получаем кривую = f(, ), которую можно рассматривать как график функции одной переменной = f(, ) в плоскости = Тогда по геометрическому смыслу производной функции одной значение частной производной функции = f( ) в точке P ( ) равно тангенсу угла α, образованного положительным направлением оси ОХ и касательной, проведенной в точке M к линии пересечения поверхности = f и плоскости (, ) ( ) =f(,) = f(p ) = P(,) tgα f P =

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП Функции нескольких переменных 11. Определение функции нескольких переменных. Предел и непрерывность ФНП 1. Определение функции нескольких переменных ОПРЕДЕЛЕНИЕ. Пусть X = { 1 n i X i R } U R. Функция

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

[ определение геометрическое представление для функции двух переменных способы задания функций классификация множеств R (n) предел функции -

[ определение геометрическое представление для функции двух переменных способы задания функций классификация множеств R (n) предел функции - [ определение геометрическое представление для функции двух переменных способы задания функций классификация множеств R (n) предел функции - непрерывность теоремы о непрерывных функциях - примеры ] Функция

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

ЛЕКЦИЯ N19. Функции нескольких переменных. Предел. Непрерывность.

ЛЕКЦИЯ N19. Функции нескольких переменных. Предел. Непрерывность. ЛЕКЦИЯ N9. Функции нескольких переменных. Предел. Непрерывность..Основные определения и обозначения.....понятие функции нескольких переменных.... 3.Предел функции нескольких переменных.... 3 4.Непрерывность

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1 РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ Найти область определения D и множество значений Е функции y Р е ш е н и е Функция y определена если те если Поэтому областью определения функции является множество f ; D R Поскольку

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

Глава 3. Функция нескольких переменных. 1. Основные понятия

Глава 3. Функция нескольких переменных. 1. Основные понятия Глава 3 Функция нескольких переменных 1 Основные понятия Пусть имеется n+1 переменная 1,,, n,, которые связаны между собой так, что каждому набору числовых значений переменных 1,,, n соответствует единственное

Подробнее

СОДЕРЖАНИЕ. ВВЕДЕНИЕ.. 5 Тема 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 1. Пространство R..

СОДЕРЖАНИЕ. ВВЕДЕНИЕ.. 5 Тема 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 1. Пространство R.. СОДЕРЖАНИЕ ВВЕДЕНИЕ 5 Тема ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция Пространство R 6 Лекция Предел и непрерывность функции нескольких переменных 5 Лекция 3 Функции многих переменных

Подробнее

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 8.1. Функции нескольких переменных. Частные производные П л а н 1. Понятие функции двух и нескольких переменных.. Предел и непрерывность

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

2. Метрические пространства

2. Метрические пространства 2 2. Метрические пространства Одним из часто встречающихся в математике понятий является понятие расстояния. Оно используется в аналитической геометрии при изучении свойств геометрических объектов в евклидовых

Подробнее

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения.

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения. Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения Цель: сформировать умение находить производные функций, заданных в явном, логарифмическом и параметрическом

Подробнее

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Веб- страница кафедры http://kvm.gubkin.ru 1 Функции многих переменных 2 Определение

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Справедливо и обратное утверждение.

Справедливо и обратное утверждение. Понятие комплексного переменного Предел и непрерывность комплексного переменного Пусть дано два множества комплексных чисел D и Δ и каждому числу z D поставлено в соответствие число ω Δ которое обозначается

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m Тема Теория пределов Практическое занятие Числовые последовательности Определение числовой последовательности Ограниченные и неограниченные последовательности Монотонные последовательности Бесконечно малые

Подробнее

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f( x ) слева при стремлении x к a, если для любого числа существует такое число

Подробнее

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности. 5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

Подробнее

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y)

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y) I Множества Основные понятия Отображение множеств Множество одно из основных понятий математики, которое не определяется Множество состоит из элементов Всякая совокупность элементов произвольного рода

Подробнее

Замечание. Теорема дает второе определение предельной точки, теорема определение открытого множества, теорема определение замыкания.

Замечание. Теорема дает второе определение предельной точки, теорема определение открытого множества, теорема определение замыкания. ГЛАВА 3. Предел и непрерывность отображения 1. Предельные точки, открытые и замкнутые множества в метрических пространствах Опр. 3.1.1. Пусть (X, ) метрическое пространство, x X, >. Проколотой - окрестностью

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Элементарная поверхность. Гладкая поверхность. Кривые на поверхности. Касательная плоскость. поверхности

Элементарная поверхность. Гладкая поверхность. Кривые на поверхности. Касательная плоскость. поверхности МОДУЛЬ ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ ПОВЕРХНОСТЕЙ Структурно логическая схема модуля Явное задание Способы задания Элементарная поверхность Квадратичные формы Векторная параметризация Параметризация Регулярная

Подробнее

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ. 1. Основные понятия. Если каждой паре независимых друг от друга переменных

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ. 1. Основные понятия. Если каждой паре независимых друг от друга переменных ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ 1. Основные понятия. Если каждой паре независимых друг от друга переменных, из некоторого множества D ставится в соответствие переменная величина, то называется функцией двух

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

Боревич А.З. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Учебное пособие

Боревич А.З. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Учебное пособие Санкт-Петербургский политехнический университет Петра Великого Боревич АЗ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Учебное пособие Санкт-Петербург 5 Оглавление Глава Предел Непрерывность

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ. называется функцией двух переменных xy,, если каждой паре значений x, Область определения. D - замкнутая область

~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ. называется функцией двух переменных xy,, если каждой паре значений x, Область определения. D - замкнутая область ~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ 3 Функция двух переменных, область определения, способы задания и геометрический смысл. Определение: z f, называется функцией двух переменных,, если каждой паре значений,

Подробнее

1., 2., 3., где а, d постоянные числа.

1., 2., 3., где а, d постоянные числа. ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ ИНТЕГРАЛЬНЫЕ ИСЧИСЛЕНИЯ

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ ИНТЕГРАЛЬНЫЕ ИСЧИСЛЕНИЯ Министерство образования Республики Беларусь Учреждение образования «Полоцкий государственный университет» ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ ИНТЕГРАЛЬНЫЕ ИСЧИСЛЕНИЯ УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС для студентов

Подробнее

ЛЕКЦИЯ 7А Нормированные и банаховы пространства: элементарные сведения. Линейные функционалы. 1. Общие вопросы теории нормированных пространств

ЛЕКЦИЯ 7А Нормированные и банаховы пространства: элементарные сведения. Линейные функционалы. 1. Общие вопросы теории нормированных пространств ЛЕКЦИЯ 7А Нормированные и банаховы пространства: элементарные сведения. Линейные функционалы. Общие вопросы теории нормированных пространств. Пространство L(N, N 2 ) банахово, если пространство N 2 банахово.

Подробнее

Математический анализ (v2.0)

Математический анализ (v2.0) Математический анализ (v.) 1 Числовые ряды. 1.1 Понятие числового ряда. Сходимость числового ряда. Определение. Рассмотрим числовую последовательность {a n } и образуем выражение вида: a 1 + a +... + a

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы 1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. 1.1 Теорема о промежуточных значениях Теорема 1. (Больцано-Коши) Пусть функция f непрерывна на отрезке [a, b], причем f(a) f(b). Тогда для любого числа C, заключенного между f(a) и f(b) найдется точка γ (a, b), что f(γ) = C. Доказательство. Пусть, например, f(a) = A < B = f(b) и A < C < B. Функция g(x) = f(x) C, очевидно, непрерывна на [a, b]. Кроме того, g(a) < 0, g(b) > 0. Для доказательства теоремы достаточно показать, что существует такая точка γ (a, b), что g(γ) = 0. Разделим отрезок [a, b] точкой x 0 на два равных по длине отрезка, тогда либо g(x 0 ) = 0 и, значит, искомая точка γ = x 0 найдена, либо g(x 0 ) 0 и тогда на концах одного из полученных промежутков функция g принимает значения разных знаков, точнее, на левом конце значение меньше нуля, на правом - больше. Обозначим этот отрезок [a 1, b 1 ] и разделим его снова на два равных по длине отрезка и т.д. В результате, либо через конечное число шагов придем к искомой точке γ, в которой g(γ) = 0, либо получим последовательность вложенных отрезков [a n, b n ] по длине стремящихся к нулю и таких, что g(a n ) < 0 < g(b n ) (1) Пусть γ - общая точка всех отрезков [a n, b n ], n = 1, 2,... Тогда γ = lim a n = lim b n. Поэтому, в силу непрерывности функции g Из (1) находим, что g(γ) = lim g(a n ) = lim g(b n ) (2) Из (2) и (3) следует, что g(γ) = 0. lim g(a n ) 0 lim g(b n ) (3) Следствие 1. Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке есть хотя бы одна точка, в которой функция обращается в нуль. 1.2 Первая и вторая теоремы Вейерштрасса Будем говорить, что функция f, определенная на множестве E достигает на нем своей верхней (нижней) границы β = sup E f (α = inf E f), если существует такая точка x 0 E, что f(x 0 ) = β (f(x 0 ) = α). 1

Подробнее

lim f x f x используя обозначения приращений. 0 (2).

lim f x f x используя обозначения приращений. 0 (2). Лекция подготовлена доц Мусиной МВ Непрерывность функции Пусть функция y = f(x) определена в точке x и в некоторой окрестности этой точки Функция y = f(x) называется непрерывной в точке x, если существует

Подробнее

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 7 Предел функции СОДЕРЖАНИЕ: Предел функции в точке Предел функции на бесконечности Основные теоремы о пределах функций Бесконечно

Подробнее

Введение в анализ функции нескольких переменных

Введение в анализ функции нескольких переменных Введение в анализ функции нескольких переменных Л.И. Терехина, И.И. Фикс Функции нескольких переменных Лекция 1 До сих пор подробно изучалась теория функций одного независимого переменного. В действительности

Подробнее

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Лекция 7. Несобственные интегралы, зависящие от параметра. Равномерная сходимость несобственного интеграла -го рода. Критерий Коши. Признаки

Подробнее

Дифференциальное исчисление и исследование функций многих переменных

Дифференциальное исчисление и исследование функций многих переменных САНКТ-ПЕТЕРБУРГСКИЙ ФИЛИАЛ НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО УНИВЕРСИТЕТА «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ» Департамент прикладной математики и бизнес-информатики И. Г. Михайлова Дифференциальное исчисление и исследование

Подробнее

Лекция 2.4. Непрерывность функции. Классификация точек разрыва

Лекция 2.4. Непрерывность функции. Классификация точек разрыва Лекция 4 Непрерывность функции Классификация точек разрыва Аннотация: Рассматриваются свойства функции, непрерывной на отрезке Приводится пример использования этих свойств при решении нелинейных уравнений

Подробнее

Производная функции. Ее геометрический и физический смысл. Техника дифференцирования.

Производная функции. Ее геометрический и физический смысл. Техника дифференцирования. Производная функции Ее геометрический и физический смысл Техника дифференцирования Основные определения Пусть f ( ) определена на (, ) a, b некоторая фиксированная точка, приращение аргумента в точке,

Подробнее

1.Последовательности комплексных чисел. Предел.

1.Последовательности комплексных чисел. Предел. ЛЕКЦИЯ N33. Функции комплексного переменного. Пределы. Непрерывность. Элементарные функции. Дифференцирование ФКП. Свойства производных. 1.Последовательности комплексных чисел. Предел.... 1.Ограниченные

Подробнее

Репозиторий БНТУ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Белорусский национальный технический университет

Репозиторий БНТУ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Белорусский национальный технический университет МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра «Высшая математика 1» Г. И. Лебедева Г. А. Романюк И. М. Мартыненко ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Методическое

Подробнее

и с боковой поверхностью, имеющей образующую, парал- лельную оси OZ т.е. ( )

и с боковой поверхностью, имеющей образующую, парал- лельную оси OZ т.е. ( ) 8 и с боковой поверхностью, имеющей образующую, парал- поверхностью z = f(, лельную оси OZ т.е. f(, s= v ц ( D) 4 Вычисление интеграла по фигуре от скалярной функции в декартовой системе координат Вычисление

Подробнее

Лекция 10. ВЕКТОРНЫЕ ФУНКЦИИ

Лекция 10. ВЕКТОРНЫЕ ФУНКЦИИ Лекция 1 ВЕКТОРНЫЕ ФУНКЦИИ 1 Понятие векторной функции Годограф Предел и непрерывность векторной функции Производная и дифференциал векторной функции 4 Геометрический и физический смысл производной векторфункции

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА А. Н. Мягкий Интегральные уравнения и вариационное исчисление Лекция Пусть задан функционал V = V [y(x)], y(x) M E. Зафиксируем функцию y (x) M. Тогда любую другую функцию

Подробнее

Определение двойного интеграла и его свойства. Как задача вычисления площади криволинейной трапеции. так аналогичная задача вычисления объема тела

Определение двойного интеграла и его свойства. Как задача вычисления площади криволинейной трапеции. так аналогичная задача вычисления объема тела Двойной интеграл Определение двойного интеграла и его свойства Как задача вычисления площади криволинейной трапеции приводит к определенному интегралу от функции одной переменной, так аналогичная задача

Подробнее

С.А. Лавренченко. Производная функции, фундаментальное понятие дифференциального исчисления, определяется как предел разностного отношения.

С.А. Лавренченко. Производная функции, фундаментальное понятие дифференциального исчисления, определяется как предел разностного отношения. Лекция 6 1 СА Лавренченко Производные 1 Определения производной Производная функции фундаментальное понятие дифференциального исчисления определяется как предел разностного отношения Определение 11 (производной

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

Дифференциальная геометрия и топология. Конспект лекций Осень, учебный год

Дифференциальная геометрия и топология. Конспект лекций Осень, учебный год Дифференциальная геометрия и топология. Конспект лекций Осень, 2009-2010 учебный год 26 августа 2009 г. 1 Теория многообразий 1.1 Метрические и топологические пространства 1.1.1 Метрические пространства

Подробнее

Семинар 3. Предел функции нескольких переменных

Семинар 3. Предел функции нескольких переменных Семинар 3 Предел функции нескольких переменных О. Пусть D некоторое множество точек пространства R m : D R m. Пусть каждой точке M(x, x,, x m ) D поставлено в соответствие некоторое число u R. Тогда говорят,

Подробнее

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Тема. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Элементы теории множеств. Основные понятия Одним из основных понятий современной математики является понятие множества.

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

6.1 Определения, предварительные сведения

6.1 Определения, предварительные сведения 6. Неявные функции 6.1 Определения, предварительные сведения Зависимость одной переменной от другой (или от других) не обязательно может быть выражена при помощи так называемого явного представления, когда

Подробнее

Общая топология II: Метрические пространства, полнота, компактность

Общая топология II: Метрические пространства, полнота, компактность Листок 9д сентябрь 013 Общая топология II: Метрические пространства, полнота, компактность Часть 1: Метрические пространства Определение 1. Метрическим пространством называется множество M вместе с функцией

Подробнее

Математический Анализ 1 семестр. Часть 1

Математический Анализ 1 семестр. Часть 1 МГУ имени М.В. Ломоносова Экономический факультет Математический Анализ семестр. Часть Учебно-методическое пособие подготовлено Тесленко М.А. на основе лекций, прочитанных Черемных Ю.Н. г. Москва Математический

Подробнее

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения. Э. Е. Поповский П. П.

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения. Э. Е. Поповский П. П. Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Э Е Поповский П П Скачков ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Типовой расчет Екатеринбург 1 Федеральное

Подробнее

Теория функций нескольких переменных (аргументов)

Теория функций нескольких переменных (аргументов) Тема 6. Пределы последовательностей и функций, их свойства и приложения 1 Теория функций нескольких переменных (аргументов) Дифференциальное исчисление функций нескольких переменных Определение функции

Подробнее

И.Л. Фаустова, Е.Г. Пахомова ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Учебное пособие

И.Л. Фаустова, Е.Г. Пахомова ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Учебное пособие М И Н И С Т Е Р С Т В О О Б Р А З О В А Н И Я И Н А У К И Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл Задачи, приводящие к понятию производной Определение Касательной S к линии y f (x) в точке A x ; f (

Подробнее

Лекция 1. Функциональные ряды

Лекция 1. Функциональные ряды С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Подробнее

3. Непрерывность функции многих переменных

3. Непрерывность функции многих переменных 3 Непрерывность функции многих переменных 31 Непрерывность в точке Локальные свойства Определение 31 Пусть y = f(x), x X R n, f(x) R m, x 0 X Функция f(x) называется непрерывной в точке x 0, если или O(f(x

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Введение в математический анализ Предел последовательности и функции. Раскрытие неопределенностей в пределах. Производная функции. Правила дифференцирования. Применение производной

Подробнее

Глава 8. Введение в анализ функций нескольких переменных

Глава 8. Введение в анализ функций нескольких переменных Глава 8 Введение в анализ функций нескольких переменных 8 Область определения, линии и поверхности уровня Расстоянием между двумя точками (,, ) и (,, ) в пространстве называется число (, ) ( ) ( ) Пусть

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

МОДУЛЬ 2. ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ

МОДУЛЬ 2. ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ МОДУЛЬ ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Микроцели изучения модуля В результате изучения данного раздела студенты должны знать понятие линии, гладких и плоских линий, естественной параметризации понятие

Подробнее

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ В СРЕДЕ MATHCAD

ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ В СРЕДЕ MATHCAD РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВ Богатова, КВ Бухенский, ИП Карасев, ГС Лукьянова ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ В СРЕДЕ MATHCAD Практикум Рязань Предисловие Общий

Подробнее

1 Кривизна кривой. k = lim. s (x) ( x) (x) = lim 1 + = 1 + (f. (x)) 2 = 1 + y 2. = lim. 1 + (f (x)) 2 = y

1 Кривизна кривой. k = lim. s (x) ( x) (x) = lim 1 + = 1 + (f. (x)) 2 = 1 + y 2. = lim. 1 + (f (x)) 2 = y 1 Кривизна кривой Пусть кривая дана как график функции y f(x). Двигаясь вдоль кривой, в каждой точке скорость движения направлена по касательной. Касательная прямая зависит от рассматриваемой точки. При

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

ЛЕКЦИЯ 4Б Метрические пространства 2

ЛЕКЦИЯ 4Б Метрические пространства 2 ЛЕКЦИЯ 4Б Метрические пространства 2. Простейшие (и важнейшие) свойства метрических пространств. Непрерывность расстояния. Легко видеть, что функция «расстояние» ρ(x, y) непрерывна по совокупности аргументов.

Подробнее

x называется равномерно непрерывной на множестве x X x x <δ f x f x <ε.3

x называется равномерно непрерывной на множестве x X x x <δ f x f x <ε.3 Глава 7. РАВНОМЕРНАЯ НЕПРЕРЫВНОСТЬ ФУНКЦИЙ Функция f ( ) x называется равномерно непрерывной на множестве X если > δδ ( ) > ( ) ( ) x x X x x

Подробнее

Комплексные числа на плоскости.

Комплексные числа на плоскости. 1 Расположение точек на комплексной плоскости Определим для функций двух действительных переменных основные геометрические понятия, связанные с расположением точек на плоскости. Определения будем давать

Подробнее

ГЛАВА 7 ВЕКТОРНЫЕ И КОПЛЕКСНЫЕ ФУНКЦИИ ДЕЙСТВИТЕЛЬНОГО АРГУМЕНТА 1 ВЕКТОРНАЯ ФУНКЦИЯ СКАЛЯРНОГО АРГУМЕНТА. ГОДОГРАФ

ГЛАВА 7 ВЕКТОРНЫЕ И КОПЛЕКСНЫЕ ФУНКЦИИ ДЕЙСТВИТЕЛЬНОГО АРГУМЕНТА 1 ВЕКТОРНАЯ ФУНКЦИЯ СКАЛЯРНОГО АРГУМЕНТА. ГОДОГРАФ 16 ГЛАВА 7 ВЕКТРНЫЕ И КПЛЕКСНЫЕ ФУНКЦИИ ДЕЙСТВИТЕЛЬНГ АРГУМЕНТА 1 ВЕКТРНАЯ ФУНКЦИЯ СКАЛЯРНГ АРГУМЕНТА ГДГРАФ В математике и ее приложениях часто приходится иметь дело не только с числовыми функциями, но

Подробнее

2. Предел функции многих (нескольких) переменных

2. Предел функции многих (нескольких) переменных . Предел функции многих (нескольких) переменных Предел функции это основа многих построений математического анализа. В рамках этого параграфа будем считать, что X R n, Y R m и f : X Y ; точка, в которой

Подробнее

Производная и дифференциал. Лекция 4-5

Производная и дифференциал. Лекция 4-5 Производная и дифференциал Лекция 4-5 Приращения функции и аргумента Пусть функция y f ( x) определена в некоторой окрестности U( x) точки x и x U( x) произвольная точка из этой окрестности. Разность x

Подробнее

МАТЕМАТИКА. Часть 4. Функции нескольких переменных

МАТЕМАТИКА. Часть 4. Функции нескольких переменных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» ОГ Павловская ЕС Плюснина МАТЕМАТИКА Часть Функции нескольких переменных Методические указания

Подробнее

Практическое занятие 2 Аналитические функции. Условия Коши-Римана. z получаем dz z, т. е. дифферен-

Практическое занятие 2 Аналитические функции. Условия Коши-Римана. z получаем dz z, т. е. дифферен- Практическое занятие Аналитические функции Условия Коши-Римана Производная и дифференциал функции комплексной переменной Условия Коши-Римана 3 Геометрический смысл модуля и аргумента производной 4 Конформное

Подробнее

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной РАЗДЕЛ 5 Интегральное исчисление функций одной переменной Материалы подготовлены преподавателями математики кафедры общеобразовательных дисциплин для системы электронного дистанционного обучения Содержание

Подробнее

Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ. 1. Простейшие свойства метрических пространств

Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ. 1. Простейшие свойства метрических пространств Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ 1. Простейшие свойства метрических пространств Свойство 1. Непрерывность расстояния. Легко видеть, что функция «расстояние» ρ(x, y) непрерывна

Подробнее

Определение 1. Степенным рядом называется функциональный ряд вида

Определение 1. Степенным рядом называется функциональный ряд вида . Радиус сходимости Определение. Степенным рядом называется функциональный ряд вида c 0 + c (t a) + c 2 (t a) 2 + + c (t a) + = c (t a), () где c 0, c, c 2,..., c,... C называются коэффициентами степенного

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера.

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера. Билет.. Определение матрицы (с примерами квадратной и прямоугольной матриц).. Геометрический смысл многочлена Тейлора первого порядка (формулировка, пример, рисунок). ( x) ctg(x). 4. Метод хорд графического

Подробнее

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО.

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО. ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО Понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пример: А множество натуральных чисел а В множество квадратов натуральных чисел

Подробнее

Глава 5. Тройной интеграл.

Глава 5. Тройной интеграл. Глава 5. Тройной интеграл. 5.1. Определение тройного интеграла. После введения в предыдущей главе понятия двойного интеграла естественно было бы провести его дальнейшее обобщение на трехмерное пространство

Подробнее

1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте.

1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте.. Теорема о промежуточных значениях Теорема. (Больцано-Коши) Пусть функция f непрерывна

Подробнее

Лекция 5. Замена переменных и интегрирование по частям. Геометрические приложения.

Лекция 5. Замена переменных и интегрирование по частям. Геометрические приложения. Лекция 5 Замена переменных и интегрирование по частям. Геометрические приложения. 1 Замена переменной в определённом интеграле Теорема. Пусть функция непрерывна на отрезке, а функция непрерывно дифференцируема

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл Δ = i i

Интегрируемость функции (по Риману) и определенный интеграл Δ = i i Интегрируемость функции (по Риману) и определенный интеграл Основные понятия и теоремы 1. Интегральные суммы и определенный интеграл. Пусть функция f(x) определена на промежутке [a, b] (где a < b). Произвольное

Подробнее