, а всю числовую последовательность - y

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download ", а всю числовую последовательность - y"

Транскрипт

1 Лекции Глава Числовые последовательности Основные понятия Числовую функцию y f N y R заданную на множестве N натуральных чисел называют числовой последовательностью Число f называют -м элементом последовательности а число - его номером Элементы числовой последовательности обозначают: y а всю числовую последовательность - y y y или y Если задана формула общего элемента числовой последовательности то по его номеру можно вычислить любой элемент последовательности Например равенство y ( )( ) задает числовую последовательность 5 ( )( ) Числовую последовательность иногда задают при помощи рекуррентного соотношения В этом случае -й элемент последовательности определяется равенством через предыдущие элементы Например формула общего элемента арифметической прогрессии a a d задает числовую последовательность a a a Пусть дана числовая последовательность Очевидно что элементы этой последовательности с неограниченным увеличением приближаются к значению 0 Говорят что числовая последовательность сходится к числу 0 Уточним значение слов «последовательность сходится» Число а называется пределом числовой последовательности если для любого 0 найдется такой номер N N что для всех N выполняется неравенство: a Этот факт записывается следующим образом: a Последовательность имеющая предел называется сходящейся; последовательность не имеющая предел называется расходящейся

2 Докажем что 0 используя определение предела числовой последовательности Возьмем произвольное относительно получим натуральное то положим N 0 Решая неравенство 0 или Так как число не всегда где целая часть х Пусть теперь N и для всех элементов справедливо неравенство 0 Поясним определение предела числовой последовательности Если -й элемент последовательности удовлетворяет неравенству a то это означает что принадлежит промежутку a ; a ( -окрестности точки а) Если же неравенство a выполняется для всех N то это означает что промежутку a ; a принадлежит бесконечное число членов последовательности Вне этого промежутка находится конечное число членов этой последовательности Чем меньше тем больше номер N ( ) но всегда в -окрестности точки а находится бесконечное число элементов последовательности а вне еѐ может быть лишь конечное их число Следовательно определение предела числовой последовательности можно сформулировать и так: число а называется пределом числовой последовательности если для любой -окрестности найдется такой номер N что все элементы с номерами N принадлежат - окрестности точки a Числовая последовательность называется постоянной если все элементы равны одному и тому же числу Предел постоянной последовательности равен этому числу Числовая последовательность называется ограниченной сверху если существует такое число что для всех Числовая последовательность называется ограниченной снизу если существует такое число B что для всех Последовательность ограниченная снизу и сверху называется просто ограниченной если найдется такое положительное число A что для всех натуральных выполняется неравенство Например последовательность ограничена сверху числом а снизу 0; si неограниченная последовательность

3 Числовая последовательность называется возрастающей (убывающей) если для всех элементов выполняется строгое неравенство ( ) Возрастающие и убывающие последовательности называются строго монотонными Числовая последовательность называется неубывающей (невозрастающей) если для всех элементов выполняется строгое неравенство ( ) Неубывающие и невозрастающие последовательности называются монотонными Действия над числовыми последовательностями Суммой разностью произведением и частным двух числовых последовательностей и y называются последовательности элементы которых равны суммам разностям произведениям и частным соответствующих элементам исходных последовательностей y y y / y y 0 Пример Пусть заданы две последовательности и y Тогда сумма разность произведение и частное этих последовательностей соответственно равны: y y y / y : 8 7 Основные теоремы Теорема Сходящаяся последовательность имеет единственный предел Теорема Сходящаяся последовательность ограничена Обратное утверждение неверно Ограниченная последовательность может быть расходящейся Например ограниченная последовательность ( ) не имеет предела Теорема Монотонная ограниченная последовательность сходится Теорема Если a и a то y a b y a b a b 0 y b y a b Теорема 5 Если a и начиная с некоторого номера b то

4 Теорема 6 Если начиная с некоторого номера справедливо неравенство пределы удовлетворяют неравенству y Теорема 7 Если для трѐх последовательностей и y сходящиеся последовательности и y y z тогда и их начиная с некоторого номера справедливо неравенство а последовательности и z сходятся к одному числу a ( a и a ) то и последовательность y сходится к этому же числу z ( a ) y 0 6 Пример Вычислить 5 7 Выражение стоящее под знаком предела преобразуем поделив числитель и знаменатель на старшую степень те на : ( ) ( ) Затем последовательно применяя свойства пределов последовательностей получим ( ) ( ) y z Число e Рассмотрим задачу о начислении процентов Пусть первоначальный вклад в банк составляет A денежных единиц Банк выплачивает ежегодно % годовых Необходимо найти величину вклада S t через t лет Если применяется схема простых процентов то вклад ежегодно увеличивается на величину A и через t лет будет равным 00 t S t A 00

5 При расчете по долгосрочным кредитам охватывающим несколько полных лет используют схему сложных процентов Она состоит в том что если за - й год сумма A возрастает в раз и становится равной S A то за второй год сумма S A возрастает в раз значит S A Далее нетрудно получить S A Теперь можно получить общую формулу для вычисления величины вклада за t лет при расчете по схеме сложных процентов: S t A 00 В финансовых расчетах применяются схемы когда начисление сложных процентов производится несколько раз в году При этом устанавливается годовая ставка и количество начислений за год Как правило начисления производятся через равные промежутки времени то есть длина каждого промежутка t составляет часть года (квартал месяц неделя день) Тогда при годовой ставке процент начисления за -ю часть года составит % и размер вклада за t лет составит St A 00 В финансовом анализе часто встречается понятие «непрерывно начисляемый процент» Чтобы перейти к непрерывно начисляемому проценту необходимо в последней формуле неограниченно увеличивать и вычислить: t t S t t A A t Из этого равенства можно выделить последовательность еѐ предел вычислим Докажем что эта последовательность возрастающая и ограниченная Применив формулу бинома Ньютона a b a a b a b b запишем формулу общего элемента последовательности

6 ( )!!! Так как!!! то следующий элемент последовательности!!! Теперь учитывая что все слагаемые в формулах положительны и неравенства можно сделать вывод что следовательно последовательность возрастающая Далее очевидно что значит последовательность ограничена снизу Для оценки последовательности сверху учтем что! То что при значения! растут быстрее чем покажем при помощи таблицы:! Следовательно для справедливо неравенство!!! Значит для всех членов последовательности доказаны неравенства

7 Последовательность возрастает и ограниченна а поэтому сходится Еѐ пределом является иррациональное число служащее основанием натуральных логарифмов Таким образом e e Полученную формулу можно применять для вычисления пределов вида b a где a b при Пример Вычислить Решение При вычислении данного предела применим формулу e Для этого выражение находящееся под знаком предела преобразуем: Далее получим ( ) e e Задачи для самостоятельного решения В задачах -0 записать первые три или следующие три элемента последовательности ( ) ( )

8 ( ) ( ) 5 ( ) В задачах -0 записать формулу общего элемента последовательности В задачах -0 определить является ли последовательность ограниченной монотонной строго монотонной? ( ) ( ) l( ) 8 9 si 0 cos

9 В задачах -0 доказать равенство a по определению предела последовательности Указать начиная с какого номера все элементы последовательности находятся в - окрестности точки a 0; 0 0 0; 0 00 ( ) 0 00; ; ; ; ; ; ; ; 0 00 В задачах -50 вычислить предел последовательности при помощи теорем суммы разности произведения и частного пределов последовательностей ( ) ; 0 00 В задачах 5-60 вычислить предел последовательности предварительно преобразовав формулу общего элемента последовательности 5 ( 5 ) 5 ( )( ) 5 5 ( 5 )

10 55 5 ( ) 6 56 ( ) ( ) В задачах 6-70 вычислить предел последовательности l( ) l 66 l( ) l( ) ( )!! ( )! ( )! ( ( )! )! 69 si! 70 cos!

11 Решение задачи Необходимо записать первые три элемента последовательности Для этого последовательно подставим значения в формулу общего элемента и найдем 7 Решение задачи Необходимо записать общую формулу элемента последовательности 8 Знаменатель каждого элемента последовательности содержит степень числа поэтому Решение задачи Необходимо определить свойства последовательности Исследуем сначала последовательность на монотонность Для этого рассмотрим разность ( )( Полученная дробь положительна при любых натуральных значит 0 Следовательно последовательность строго монотонная возрастающая Формулу элемента последовательности преобразуем следующим образом: Так как дробь до 0 то [ ;) Решение задачи при всех натуральных может принимать значения от Необходимо доказать равенство последовательности значит последовательность ограничена ) по определению предела

12 Пусть 0 найдем номер N ( ) такой что для N( ) выполняется неравенство ( ) Решая это неравенство получаем: ( ) Отсюда N ( ) и следовательно равенство доказано Если 0 то N ( ) значит для все элементы последовательности принадлежат интервалу ( 0;06 ) а при 0 0 N ( ) и все элементы последовательности с номерами принадлежат интервалу ( 09;05) Решение задачи Вычислить Данный предел находим по аналогии с решением примера : Решение задачи 5 Вычислить ( ) При вычислении этого предела нельзя применять теорему о пределе суммы последовательностей так как в этом случае количество слагаемых под знаком предела зависит от а данная теорема применима только для конечного числа слагаемых Преобразуем выражение стоящее под знаком предела разложив каждую дробь на простейшие дроби и приведя подобные: ( ) Теперь вычисление предела выполняется обычным образом: Решение задачи 6 Вычислить Так как 0 ( ) то применим формулу e : e

13 Ответы ( ) 6 ( ) ( ) ( ) ( ) 0 Ограниченная [ ;) строго монотонная возрастающая Ограниченная (; ] строго монотонная убывающая Ограниченная [ ; ) не монотонная Ограниченная [ ; ] 5 [5; не монотонная 5 Ограниченная снизу ) строго монотонная возрастающая 6 Ограниченная сверху ( ; 8] строго монотонная убывающая 7 Ограниченная снизу [l ; ] строго монотонная возрастающая 8 ; Ограниченная [ ;0) строго монотонная убывающая 9 Ограниченная не монотонная 0 Ограниченная [ ; ] не монотонная 0 ; ; ; ; 0 ; ; ; ; ; ; ; e 6 e 6 e 6 e

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь-

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь- Последовательности. Числовая последовательность. Виды последовательностей Предел числовой последовательности Предельный переход в неравенствах Предел монотонной ограниченной последовательности. Число e.

Подробнее

2 Предел функции. , определенная на множестве всех натуральных чисел N 1,2,3,..., n,... . Значения функции f1, f2,..., fn,...

2 Предел функции. , определенная на множестве всех натуральных чисел N 1,2,3,..., n,... . Значения функции f1, f2,..., fn,... Предел функции. Предел числовой последовательности Определение. Бесконечной числовой последовательностью (или просто числовой последовательностью называется функция f f (, определенная на множестве всех

Подробнее

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии.

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии. ЛЕКЦИЯ Числовые последовательности Бесконечно большие и бесконечно малые последовательности Основные свойства бесконечно малых последовательностей Числовые последовательности Если каждому из множества

Подробнее

Лабораторная работа 5 Предел последовательности: определение, свойства

Лабораторная работа 5 Предел последовательности: определение, свойства Лабораторная работа 5 Предел последовательности: определение, свойства Необходимые понятия и теоремы: определение числовой последовательности, ограниченные и неограниченные последовательности, монотонные

Подробнее

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности Математический анализ (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности 1 Предварительные сведения о действительных (вещественных) числах Рациональное число m Q, m, -целые числа.

Подробнее

Функции одной переменной Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Функции одной переменной Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Функции одной переменной Конспект лекций и практикум для

Подробнее

1. Понятие числовой последовательности

1. Понятие числовой последовательности Понятие числовой последовательности В курсе математического анализа изучаются переменные величины и зависимость между ними Простейшими переменными величинами являются числовые последовательности Определение

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и

Подробнее

Последовательность. n n

Последовательность. n n Последовательность. Определение. Если каждому натуральному числу ( N ) по некоторому закону приведено в соответствие число { }, то этим определена числовая последовательность,,,... (или просто последовательность).

Подробнее

( 1) по крайней мере, с одной стороны: неубывающие снизу, невозрастающие. Лекция 3. МОНОТОННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

( 1) по крайней мере, с одной стороны: неубывающие снизу, невозрастающие. Лекция 3. МОНОТОННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ Лекция МОНОТОННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ Монотонные последовательности Теорема Вейерштрасса Число e Принцип выбора 4 Фундаментальные последовательности Критерий Коши Теорема о вложенных отрезках Определение

Подробнее

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия 35 Глава 2 Дифференциальное и интегральное исчисление функции одной переменной 1 Основные понятия Пусть D некоторое множество чисел Если задан закон, по которому каждому числу из множества D ставится в

Подробнее

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения:

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения: МНОЖЕСТВА Множество В математике понятие множество используется для описания совокупности предметов или объектов При этом предполагается, что предметы (объекты) данной совокупности можно отличить друг

Подробнее

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m Тема Теория пределов Практическое занятие Числовые последовательности Определение числовой последовательности Ограниченные и неограниченные последовательности Монотонные последовательности Бесконечно малые

Подробнее

Тема: Числовые последовательности

Тема: Числовые последовательности Математический анализ Раздел: Введение в анализ Тема: Числовые последовательности (основные определения, предел последовательности, свойства сходящихся последовательностей) Лектор Пахомова Е.Г. 2012 г.

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее

} сходятся и, начиная с некоторого номера выполняется неравенство x y. Тогда lim xn. lim yn

} сходятся и, начиная с некоторого номера выполняется неравенство x y. Тогда lim xn. lim yn ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 6 Предел числовой последовательности СОДЕРЖАНИЕ: Предельный переход в неравенствах Подпоследовательности Фундаментальные последовательности

Подробнее

{ } { } { } Глава 2. ПОСЛЕДОВАТЕЛЬНОСТИ 2.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

{ } { } { } Глава 2. ПОСЛЕДОВАТЕЛЬНОСТИ 2.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Глава ПОСЛЕДОВАТЕЛЬНОСТИ ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Функция, определенная на множестве натуральных чисел N и принимающая числовые значения, называется числовой последовательностью или просто последовательностью

Подробнее

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...}

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...} Тема Теория пределов Как мы понимаем слово «предел»? В повседневной жизни мы часто употребляем термин «предел», не углубляясь в его сущность В нашем представлении чаще всего предел отождествляется с понятием

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

Пределы и непрерывность

Пределы и непрерывность Пределы и непрерывность. Предел функции Пусть функция = f ) определена в некоторой окрестности точки = a. При этом в самой точке a функция не обязательно определена. Определение. Число b называется пределом

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Подробнее

ограниченные последовательности сходящиеся последовательности ательнос

ограниченные последовательности сходящиеся последовательности ательнос ограниченные последовательности Вычисление пределов числовых последовательностей Рассмотренные нами вопросы о числовых последовательностях содержат основные понятия и некоторые сведения о структуре множества

Подробнее

3 1 Последовательности и их свойства

3 1 Последовательности и их свойства Глава 3 Предел 3 1 ПОНЯТИЕ ПОСЛЕДОВАТЕЛЬНОСТИ последовательности Последовательности представляют собой особый класс функций, для которых областью определения является множество натуральных чисел. В этой

Подробнее

Сходимость знакопеременных числовых рядов

Сходимость знакопеременных числовых рядов ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Сходимость знакопеременных числовых рядов Числовой ряд u, в котором имеется бесконечно много как положительных, так = и отрицательных элементов, называется числовым рядом с произвольными

Подробнее

которая означает, что множество B состоит из элементов, удовлетворяющих указанному условию. Например, множество решений неравенства

которая означает, что множество B состоит из элементов, удовлетворяющих указанному условию. Например, множество решений неравенства Лекция Глава Множества и операции над ними Понятие множества Понятие множество относится к наиболее первичным понятиям математики не определяемым через более простые Под множеством понимают совокупность

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

Лекция 1. Последовательности

Лекция 1. Последовательности С А Лавренченко wwwlwrecekoru Лекция 1 Последовательности 1 Понятие последовательности Мы будем рассматривать только бесконечные числовые последовательности Начнем с формального определения этого объекта

Подробнее

Московский государственный технический университет имени Н.Э.Баумана. Ф.Х.Ахметова, А.В.Косова, И.Н.Пелевина

Московский государственный технический университет имени Н.Э.Баумана. Ф.Х.Ахметова, А.В.Косова, И.Н.Пелевина Московский государственный технический университет имени Н.Э.Баумана Ф.Х.Ахметова, А.В.Косова, И.Н.Пелевина ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Часть Методические указания к выполнению домашнего задания

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ Пределы Методические указания

Подробнее

Введение в математический анализ. Теория пределов

Введение в математический анализ. Теория пределов Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim Òåîðåìû î ïðåäåëàõ Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Основные теоремы о пределах. Предел числовой последовательности. Первый замечательный предел. Второй замечательный предел. Экспонента. Натуральный логарифм.

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

Предлагаемое пособие предназначено для студентов первого курса по направлению подготовки "Прикладная математика и информатика".

Предлагаемое пособие предназначено для студентов первого курса по направлению подготовки Прикладная математика и информатика. Родина ТВ, Трифанова ЕС, Бойцев АА Типовой расчет по математическому анализу для направления "Прикладная математика и информатика" 1 модуль Учебно-методическое пособие СПб: Университет ИТМО, 015 4 с Предлагаемое

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. Геометрической прогрессией называется числовая последовательность b

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. Геометрической прогрессией называется числовая последовательность b ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ Геометрической прогрессией называется числовая последовательность b, первый член которой отличен от нуля, а каждый последующий член, начиная со второго,

Подробнее

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1 Глава 3. Числовые ряды 3.. Занятие 0 3... Сумма ряда Рассмотрим числовую последовательность {a k } k=. ОПРЕДЕЛЕНИЕ 3... Рядом называется выражение вида a + a 2 +...+ a k +...= a k. k= Величина a k называется

Подробнее

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1 РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ Найти область определения D и множество значений Е функции y Р е ш е н и е Функция y определена если те если Поэтому областью определения функции является множество f ; D R Поскольку

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 1 Определения Сформулируйте определение: 2 ноября 2013 г. 1. ограниченного

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Коршикова Т. И., Калиниченко

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция. Определение ряда, свойства, критерий Коши сходимости ряда. Сравнение положительных рядов. Достаточные признаки сходимости Даламбера, Коши, Коши-Адамара, Раабе,

Подробнее

2. Предел функции. изменении аргумента. С помощью предела можно выяснить, имеет ли

2. Предел функции. изменении аргумента. С помощью предела можно выяснить, имеет ли . Предел функции. Актуальность изучения темы Теория пределов играет основополагающую роль в математическом анализе, позволяет определить характер поведения функции при заданном изменении аргумента. С помощью

Подробнее

Р. М. ГАВРИЛОВА, Г. С. КОСТЕЦКАЯ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Р. М. ГАВРИЛОВА, Г. С. КОСТЕЦКАЯ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Р. М. ГАВРИЛОВА, Г. С. КОСТЕЦКАЯ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ У ч е б н о е п о

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Вопросы к экзамену по курсу 1-2 модулей

Вопросы к экзамену по курсу 1-2 модулей На устном экзамене студент получает два вопроса и две задачи. Вопросы к экзамену по курсу 1- модулей 1. Расскажите о числах: натуральных, целых, рациональных и иррациональных. Расскажите о числовой прямой

Подробнее

Математический анализ в вопросах и задачах

Математический анализ в вопросах и задачах ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет Математический

Подробнее

5. Еще о пределах; ряды

5. Еще о пределах; ряды 5. Еще о пределах; ряды Докажем сначала предложение, на которое нам не хватило времени на прошлой лекции. Предложение 5.. Для всякого b > 0 имеем lim n (ln n=n b ) = 0. (Переход к произвольному основанию

Подробнее

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики. Занятие. Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.. Вспомнить свойства степени с рациональным показателем. a a a a a для натурального раз

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Демина ЕЛ, Демин СЕ РЯДЫ г Нижний Тагил 00 Предисловие В настоящем

Подробнее

Оглавление Асимптотическая формула x А.А.Быков boombook.narod.ru,

Оглавление Асимптотическая формула x А.А.Быков boombook.narod.ru, MA ksm-0-эталонные пределы А.А.Быков boombook.arod.ru, boombook@yade.ru Оглавление. Лекция. Первый и второй замечательные пределы... 5.. Формула, выражающая первый замечательный предел... 5... Напоминание

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Типовой расчёт 1 Пределы числовых последовательностей и функций.

Типовой расчёт 1 Пределы числовых последовательностей и функций. Типовой расчёт Пределы числовых последовательностей и функций Образец выполнения типового расчѐта Задание Найти пределы числовых последовательностей, или установить их ( ) ( a ) : ; ; ; ; ; ; 8 Данную

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр,

Вопросы и задачи к экзамену по математическому анализу I семестр, Вопросы и задачи к экзамену по математическому анализу I семестр, - Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр, г. Тема 1. Числовые множества и последовательности

Вопросы и задачи к экзамену по математическому анализу I семестр, г. Тема 1. Числовые множества и последовательности Вопросы и задачи к экзамену по математическому анализу I семестр, - г Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

МОДУЛЬ 7 «Показательная и логарифмическая функции»

МОДУЛЬ 7 «Показательная и логарифмическая функции» МОДУЛЬ 7 «Показательная и логарифмическая функции». Обобщение понятия степени. Корень й степени и его свойства.. Иррациональные уравнения.. Степень с рациональным показателем.. Показательная функция..

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры.

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры. Математический анализ, 27/28 Группы БПМ7 75 Промежуточный экзамен, модули 2 На устном экзамене студент получает два теоретических вопроса и две задачи ВОПРОСЫ К ЭКЗАМЕНУ Расскажите о числах: натуральных,

Подробнее

Математический анализ. Введение [1,3,4]

Математический анализ. Введение [1,3,4] I Краткие исторические сведения Математический анализ Введение [1,3,4] Математический анализ часть математики, в которой изучаются функции и их обобщения методами теории пределов Поскольку понятие предела

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

Глава 6 Числовые ряды

Глава 6 Числовые ряды Глава 6 Числовые ряды Определение числового ряда и основные теоремы Определение : Последовательностью действительных чисел называется функция f, определённая на множестве всех натуральных чисел Число f

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Коршикова Т. И., Калиниченко

Подробнее

( ) ( ( ) ) ( ) 0. ( x) M. α. Тогда. α называется. ϕ ограничена в ( ) Лекция 7.БЕСКОНЕЧНО МАЛЫЕ И БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ

( ) ( ( ) ) ( ) 0. ( x) M. α. Тогда. α называется. ϕ ограничена в ( ) Лекция 7.БЕСКОНЕЧНО МАЛЫЕ И БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ Лекция 7БЕСКОНЕЧНО МАЛЫЕ И БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ Определение и свойства бесконечно малых функций Основные теоремы о пределах Замечательные пределы 4 Сравнение асимптотического поведения функций Определение

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y)

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y) I Множества Основные понятия Отображение множеств Множество одно из основных понятий математики, которое не определяется Множество состоит из элементов Всякая совокупность элементов произвольного рода

Подробнее

0. В таком ряде знаки + и - чередуются и идут через один, откуда и название ряда. Достаточный признак сходимости знакочередующегося ряда:

0. В таком ряде знаки + и - чередуются и идут через один, откуда и название ряда. Достаточный признак сходимости знакочередующегося ряда: Сходимость произвольных рядов. Ниже будут рассматриваться ряды, в которых имеется бесконечное количество положительных членов и бесконечное количество отрицательных членов. Такие ряды называют знакопеременными.

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 7 Предел функции СОДЕРЖАНИЕ: Предел функции в точке Предел функции на бесконечности Основные теоремы о пределах функций Бесконечно

Подробнее

Вопросы и задачи к экзамену по математическому анализу ( )

Вопросы и задачи к экзамену по математическому анализу ( ) Вопросы и задачи к экзамену по математическому анализу (2013 2014) 29 августа 2013 г. Тема I. Вещественные числа 1. Определения 1.1. Сформулируйте правило сравнения вещественных чисел. Сформулируйте определение:

Подробнее

Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные

Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Q и действительные R числа Натуральные и целые числа

Подробнее

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ Министерство образования и науки Российской Федерации Ярославский государственный университет им ПГ Демидова Кафедра дискретного анализа СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

Подробнее

1. Прогрессии. 2. Задание последовательности рекуррентным соотношением: а 1, а 2,, а n 1, a n = f(a n 1, a n 2,, a 1 ).

1. Прогрессии. 2. Задание последовательности рекуррентным соотношением: а 1, а 2,, а n 1, a n = f(a n 1, a n 2,, a 1 ). . Прогрессии Последовательность функция натурального аргумента.. Задание последовательности формулой общего члена: a n = f(n), n N, например, a n = n + n + 4, а = 43, а = 47, а 3 = 3,. Задание последовательности

Подробнее

Сборник задач для самостоятельного решения по теме "Предел функции" Составители: А.Н. Максименко, А.Н. Морозов

Сборник задач для самостоятельного решения по теме Предел функции Составители: А.Н. Максименко, А.Н. Морозов ББК В 65я73-4 С 3 УДК 57 Учебное издание Сборник задач для самостоятельного решения по теме "Предел функции" Составители: АН Максименко, АН Морозов Сборник задач для самостоятельного решения по теме "Предел

Подробнее

9.1, 9.3 класс Модуль 5 «Последовательности. Степени и корни» В тесте проверяются теоретическая и практическая части.

9.1, 9.3 класс Модуль 5 «Последовательности. Степени и корни» В тесте проверяются теоретическая и практическая части. 9., 9. класс Модуль 5 «Последовательности. Степени и корни» В тесте проверяются теоретическая и практическая части. Последовательности Числовые последовательности. Способы задания числовых последовательностей:

Подробнее

В.Ф. Бутузов, М.В. Бутузова НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Учебное пособие

В.Ф. Бутузов, М.В. Бутузова НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Учебное пособие МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ В.Ф. Бутузов, М.В. Бутузова НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ Учебное пособие Москва 6 Предисловие Учебное пособие

Подробнее

сгупс Методические указания к выполнению типового расчета «Ряды».

сгупс Методические указания к выполнению типового расчета «Ряды». сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Подробнее

ЗАНЯТИЕ 8 АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

ЗАНЯТИЕ 8 АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ ЗАНЯТИЕ 8 АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ Необходимые сведения из теории Арифметическая прогрессия Числовая последовательность a, a d,, a d,, каждый член которой, начиная со второго, равен предыдущему,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ И БЕСКОНЕЧНЫЕ ЧИСЛОВЫЕ

Подробнее

2. Сформулируйте определение того, что предел (по Коши) функции f(x) не равен + 3. Вычислите предел, не используя правила Лопиталя: lim

2. Сформулируйте определение того, что предел (по Коши) функции f(x) не равен + 3. Вычислите предел, не используя правила Лопиталя: lim Билет 1 1 Сформулируйте определение того, что предел (по Коши) функции f(x) равен + при x + Сформулируйте и докажите теорему о пределе произведения двух функций 2 Сформулируйте определение того, что предел

Подробнее

ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Подробнее

Лекция 1 (13 января 2017)

Лекция 1 (13 января 2017) КОНСПЕКТ ЛЕКТОРА математический анализ, курс, 2 семестр, 207, А.М. Красносельский Числовые ряды Лекция (3 января 207) Рассмотрим последовательность R и напишем «бесконечную сумму»: a k a + a 2 +... + a

Подробнее

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки:

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: 4 Сходимость знакопеременных рядов Определение 4 Ряд a с членами произвольных знаков называют знакопеременным Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: a

Подробнее

КОНСПЕКТ ЛЕКЦИЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ

КОНСПЕКТ ЛЕКЦИЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ КОНСПЕКТ ЛЕКЦИЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ Е Б Боронина Эта книга написана для студентов технических вузов желающих подготовиться к экзамену по математическому анализу Содержание данной книги полностью соответствует

Подробнее

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ НОВОСИБИРСК 200 2 МИНОБРНАУКИ РОССИИ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Е.М. Рудой МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Подробнее

Тест по алгебре Арифметический квадратный корень I вариант 8В класс, 24 октября 2007

Тест по алгебре Арифметический квадратный корень I вариант 8В класс, 24 октября 2007 I вариант 8В класс, 4 октября 007 1 Вставьте пропущенные слова: Определение 1 Арифметическим квадратным корнем из число, которого равен a из числа a (a 0) обозначается так: выражением Действие нахождения

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее