Нелинейная задача динамического изгиба стержня после потери устойчивости

Save this PDF as:
Размер: px
Начинать показ со страницы:

Download "Нелинейная задача динамического изгиба стержня после потери устойчивости"

Транскрипт

1 Электронный журнал «Труды МАИ». Выпуск 7 УДК 9.:. Нелинейная задача динамического изгиба стержня после потери устойчивости И.Н. Воробьев Т.В. Гришанина Аннотация Решена плоская задача о динамическом поведении упругого стержня нагруженного статическими силами вызывающими его потерю устойчивости. Для решения нелинейной задачи использовался метод конечных элементов. Рассмотрены примеры динамического поведения стержня после потери устойчивости под действием сил тяжести. Ключевые слова: конечная деформация нелинейная динамика устойчивость метод конечных элементов. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований Коды проектов а -8-9-а. Введение Гибкие стержневые системы являющиеся расчетными моделями определенных элементов конструкций могут совершать колебательные движения с амплитудами порядка их длин как например развертываемые космические системы. Для решения плоских задач динамики гибких стержневых систем при больших углах поворота и конечных упругих деформациях будем использовать метод конечных элементов МКЭ в геометрически нелинейной постановке. Применение метода конечных элементов для расчета нелинейных продольно-поперечных колебаний стержней рассмотрено в работах [-]. При учете продольных деформаций стержней получаются нелинейные уравнения сравнительно простой структуры. Уравнения нелинейных колебаний Рассмотрим плоскую стержневую систему совершающую упругие колебания с большими амплитудами в своей плоскости. Уравнения колебаний будем составлять

2 используя МКЭ в геометрически нелинейной формулировке. Для этого разделим стержневую систему на n балочных конечных элементов КЭ испытывающих конечные деформации изгиба растяжения-сжатия и поперечного сдвига. С каждым КЭ свяжем свою подвижную систему координат ξη начало которой расположим на левом конце упругой оси а ось η в плоскости поперечного сечения деформированного стержня рис. а. Будем считать что элемент неподвижно закреплен на левом краю: u. Обозначим через u - продольное перемещение поперечное перемещение и угол поворота поперечного сечения на правом краю КЭ а через соответствующие им продольную силу поперечную силу и изгибающий момент. Конечная деформация удлинения оси стержня равна u' ' а соответствующая растягивающая сила равна EF. Для гибкого стержня при конечных углах поворота sin os и поэтому при EF onst можно считать что onst. При этом допущении интегрируя выражение для с учетом u u получим u ' d L L O u u u а б Рис. Для поперечного перемещения и угла поворота в пределах длины КЭ будем использовать аппроксимацию

3 представляющую точное решение квазистатической задачи изгиба сдвига для стержня постоянного поперечного сечения без учета продольной силы т.е. при onst EI onst GF =. Здесь. 6 GF EI Если пренебречь поперечным сдвигом положив GF то. Потенциальная энергия растяжения изгиба и сдвига КЭ будет d EF GF EI П ' ' с учетом она записывается в виде EF EI П где u EF. Сила и момент L соответствующие перемещению и углу поворота определятся как d П L b П 6 где

4 . 6 EI d EI EI b 7 В коэффициентах жесткости b d вторые нелинейные слагаемые учитывают влияние продольной силы т.е. так называемой геометрической жесткости. В качестве обобщенных координат будем рассматривать абсолютные перемещения и углы поворота в узлах =... n рис. б. Упругие перемещения u и угол поворота выражаются через них следующим образом: os sin sin os u 8 Потенциальная энергия всей системы получается путем суммирования по всем элементам: n. 9 Кинетическую энергию системы и вариацию работы внешних нагрузок запишем по методу сосредоточенных масс и сил учитывая дополнительно приведенные к узлам моменты инерции и моменты внешних сил: n p n M Y X A J m T где m и J приведенные к му узлу сосредоточенная масса и массовый момент инерции а t X t Y t M приведенные к му узлу внешние силы и момент. Уравнения для обобщенных координат = n на основании 9 с учетом 8 записываются в виде.... os os sin sin sin sin os os n M L L u J Y m X m

5 Пример расчета В качестве примера рассмотрим консольно закрепленный вертикальный стержень прямоугольного сечения.6 м. м с сосредоточенными массами m и моментами инерции J находящийся под действием силы тяжести g Рис.. Тогда в уравнениях следует положить X m g Y M. Стержень разобьем на пять КЭ n = одинаковой длины. g Рис. Для расчета примем следующие параметры: EF EF EF 6 EI EI 8 H м EF 8 H m m m m кг m 8 кг кг и кг J J J J. кг м м/с. J м g =. кгм Критическое значение сжимающей силы на конце консольного стержня: проведен для двух вариантов начальных условий. P кр EI Вес массы на конце стержня: 76 H. G m g. Расчет был В первом варианте были заданы следующие начальные условия при t = соответствующие принудительно изогнутому -ому КЭ: м м м м 6 м u 6 м. м м м м.м. м.. при = Во втором варианте были приняты начальные условия соответствующие поперечному удару по массе m : при = при =.м/с. Для контроля устойчивости вычислительного процесса в процессе интегрирования дифференциальных уравнений определялась полная энергия стержня по отношению к

6 уровню =. Полная энергия для консервативной системы должна оставаться постоянной равной своему значению в начальный момент времени. Для данной стержневой системы полная энергия равна: E T EI m J. EF m g В первом варианте начальных условий при m 8 кг полная энергия в начальный момент времени равна E 8.[H м] mg m g. 6EI Для второго варианта начальных условий при m 8 кг полная энергия в начальный момент времени равна E mg mg m 8[Hм]. На рис. приведены графики изменения вертикального и горизонтального t перемещений и угла поворота для первого варианта начальных условий при различных значениях массы m. Для этого же варианта на рис. 6-8 показаны формы деформированного состояния стержня в различные моменты времени для m = 8 и кг соответственно. Из графиков видно что перемещения стержня являются достаточно большими максимальное отклонение составляет более м в момент времени t = 8 что соответствует геометрически нелинейной задаче динамики. t 6

7 [м] [м] 6 m = кг m = 8 кг m = кг Рис. t [].. m = кг... m = 8 кг m = кг t [] Рис. 7

8 [м] рад φ [рад]. m = кг.. -. m = 8 кг m = кг t [] Рис... m = 8 кг t = 8. t = 6. t =..... [м] Рис. 6 8

9 [м] [м].. m = кг t = 8 t = 6.. t = Рис. 7 [м]. m = кг t = t = 6 t =..... Рис. 8 [м] На рис. 9 приведены графики вертикального и горизонтального перемещений и угла поворота для второго варианта начальных условий при различных значениях массы m. Для этих же значений на рис. - показаны формы деформированного состояния стержня в различные моменты времени. t t 9

10 [м] [м] 6 m = кг m = 8 кг - m = кг 6 8 t [] Рис. 9 m = кг m = кг m = 8 кг Рис. t []

11 [м] φ [рад] m = кг m = кг m = 8 кг - Рис. t [] m = кг t = t = t = t = - Рис. [м]

12 [м] [м] m = кг t = t = 9 t = t = - Рис. [м] m = 8 кг t = t = 9 t = t = - Рис. [м] В процессе интегрирования полная энергия E оставалась постоянной с точностью до 7. Выводы Построена математическая модель для расчета нелинейных колебаний плоской стержневой системы. Рассмотрены примеры динамического поведения стержня под действием сил тяжести при различных вариантах параметров системы и начальных условий.

13 Библиографический список. Шклярчук Ф.Н. Гришанина Т.В. Нелинейные и параметрические колебания упругих систем.. - М.: МАИ с... Гришанина Т.В. Задачи по теории колебаний упругих систем. М.: Изд-во МАИ с.. Гришанина Т.В. Шклярчук Ф.Н. Динамика упругих управляемых конструкций. М.: Изд-во МАИ 7. 8 с. Сведения об авторах Воробьев Илья Николаевич аспирант Московского авиационного института национального исследовательского университета МАИ Волоколамское шоссе Москва Российская Федерация A-8 GSP- 99. Гришанина Татьяна Витальевна профессор Московского авиационного института национального исследовательского университета д.ф.-м. н. доцент тел.:


Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/cience/trudy/ УДК 539.3 Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе поперечном сдвиге

Подробнее

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ Профессор, д.т.н. Богус Ш.Н., студент КубГАУ Лысов Д.С., Пономарев Р.В. Кубанский государственный аграрный университет Краснодар, Россия При увеличении пропускной способности

Подробнее

Исследование упругой линии трехслойной балки с существенно различающейся слоевой жесткостью

Исследование упругой линии трехслойной балки с существенно различающейся слоевой жесткостью Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/science/trudy/ УДК 69.735.0184 Исследование упругой линии трехслойной балки с существенно различающейся слоевой жесткостью А.А. Дудченко, Е.А. Башаров

Подробнее

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3 ОГЛАВЛЕНИЕ Предисловие... 3 Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ И ПОНЯТИЯ СТРОИТЕЛЬНОЙ МЕХАНИКИ... 4 1.1. Задачи и методы строительной механики... 4 1.2. Понятие о расчетной схеме сооружения и ее элементах.. 6 1.3.

Подробнее

МОДАЛЬНЫЙ АНАЛИЗ ДИНАМИЧЕСКИХ СИСТЕМ РОТОРОВ

МОДАЛЬНЫЙ АНАЛИЗ ДИНАМИЧЕСКИХ СИСТЕМ РОТОРОВ УДК 69.7.36/534.. А.В. ИВАНОВ, кандидат технических наук, М.К. ЛЕОНТЬЕВ, доктор технических наук МАИ, Москва МОДАЛЬНЫЙ АНАЛИЗ ДИНАМИЧЕСКИХ СИСТЕМ РОТОРОВ Развиваются методы модального анализа для решения

Подробнее

П Р И М Е Р выполнения РГР по теме «Малые колебания механической системы с одной степенью свободы»

П Р И М Е Р выполнения РГР по теме «Малые колебания механической системы с одной степенью свободы» П Р И М Е Р выполнения РГР по теме «Малые колебания механической системы с одной степенью свободы» х Р УСЛОВИЕ ЗАДАЧИ Механическая система состоит из -х абсолютно твердых тел: груза, блока, стержня 3,

Подробнее

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб Введение Настоящая программа базируется на основных разделах следующих дисциплин: Математика; Физика; Теоретическая механика; Сопротивление материалов; Теория упругости и пластичности; Статика, динамика

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 4 Введение... 7

ОГЛАВЛЕНИЕ. Предисловие... 4 Введение... 7 ОГЛАВЛЕНИЕ Предисловие... 4 Введение... 7 Глава 1. Механика абсолютно твердого тела. Статика... 8 1.1. Общие положения... 8 1.1.1. Модель абсолютно твердого тела... 9 1.1.2. Сила и проекция силы на ось.

Подробнее

главному вектору R, R, R и главному

главному вектору R, R, R и главному Лекция 08 Общий случай сложного сопротивления Косой изгиб Изгиб с растяжением или сжатием Изгиб с кручением Методики определения напряжений и деформаций, использованные при решении частных задач чистого

Подробнее

Сравнение результатов расчетов динамических моделей манометрических трубчатых пружин

Сравнение результатов расчетов динамических моделей манометрических трубчатых пружин 114 С.П. Пирогов, А.Ю. Чуба С.П. Пирогов, А.Ю. Чуба piro-gow@yandex.ru, aleksandr-chuba@mail.ru УДК 622.691.4 Сравнение результатов расчетов динамических моделей манометрических трубчатых пружин АННОТАЦИЯ.

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА. Рабочая тетрадь по решению задач

ТЕХНИЧЕСКАЯ МЕХАНИКА. Рабочая тетрадь по решению задач МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов

Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов Электронный журнал «Труды МАИ». Выпуск 37 www.mai.ru/science/trud/ Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов А.А. Дудченко Е.А. Башаров Аннотация

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 3 ЧАСТЬ ПЕРВАЯ

ОГЛАВЛЕНИЕ. Предисловие... 3 ЧАСТЬ ПЕРВАЯ ОГЛАВЛЕНИЕ Предисловие... 3 ЧАСТЬ ПЕРВАЯ Глава первая Растяжение и сжатие......6 1.1. Продольная сила...6 1.2. Нормальные напряжения, абсолютное удлинение и потенциальная энергия...8 1.3. Поперечная деформация

Подробнее

467 - Расчетные длины колонн

467 - Расчетные длины колонн 467 - Расчетные длины колонн 1 2 Программа предназначена для определения расчетных длин произвольно закрепленных стальных и железобетонных колонн переменного сечения, а также для определения усилий в колонне

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1 Задача 1 Рассматривается два загружения плоской рамы, состоящей из стержневых элементов квадратного поперечного сечения При загружении распределенными нагрузками q и 2q в точке к указанного на рисунке

Подробнее

5. Расчет остова консольного типа

5. Расчет остова консольного типа 5. Расчет остова консольного типа Для обеспечения пространственной жесткости остовы поворотных кранов обычно выполняют из двух параллельных ферм, соединенных между собой, где это возможно, планками. Чаще

Подробнее

ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ

ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 24. Т. 45, N- 5 67 УДК 539.3 ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ Ю. В. Захаров, К. Г. Охоткин, А. Д. Скоробогатов Институт физики им. Л. В. Киренского

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии

Подробнее

Решение. При кручении возникает напряженное состояние чистого сдвига,. В соответствии с обобщенным законом Гука

Решение. При кручении возникает напряженное состояние чистого сдвига,. В соответствии с обобщенным законом Гука Задача 1 1 Стержень загружен крутящим моментом На поверхности стержня в точке к была замерена главная деформация Требуется определить угол поворота сечения, в котором приложен момент Решение При кручении

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА. Рабочая тетрадь по решению задач

ТЕХНИЧЕСКАЯ МЕХАНИКА. Рабочая тетрадь по решению задач МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ

Подробнее

А.Ч. МЕТОД «ПЛОЩАДЕЙ» ДЛЯ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИЙ ПРИ ИЗГИБЕ БАЛОК

А.Ч. МЕТОД «ПЛОЩАДЕЙ» ДЛЯ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИЙ ПРИ ИЗГИБЕ БАЛОК n c t tg tg, (0) min,96,5,96,5 где c 0, 0088 ; t o градиент снижения температуры ниже o t 80 уровня +0. По результатам измерения твердости контролируемых зон конструкций, используя формулы (6) (7) и (8)

Подробнее

ГЛАВА 10. УСТОЙЧИВОСТЬ ПЛОСКИХ РАМ

ГЛАВА 10. УСТОЙЧИВОСТЬ ПЛОСКИХ РАМ ГЛАВА УСТОЙЧИВОСТЬ ПЛОСКИХ РАМ Стр Основные понятия Формула Эйлера Дифференциальное уравнение сжато-изогнутого стержня 4 4 Решение уравнения с помощью метода начальных параметров 5 5 Частное решение для

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

Лабораторная работа ) Экспериментальное определение модуля Юнга и модуля сдвига

Лабораторная работа ) Экспериментальное определение модуля Юнга и модуля сдвига Лабораторная работа 1.17-18 1) Экспериментальное определение модуля Юнга и модуля сдвига Введение В области упругих деформаций напряжение, возникающее в деформированном теле, пропорционально относительной

Подробнее

14.1. Система с двумя степенями свободы

14.1. Система с двумя степенями свободы Глава 14 МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ В разделе МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ вы научитесь определять частоты малых собственных колебаний механической системы с двумя степенями свободы. Другие темы этого раздела,

Подробнее

ПРОСТРАНСТВЕННЫЕ ПАРАМЕТРИЧЕСКИЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ. Российской академии наук, г.

ПРОСТРАНСТВЕННЫЕ ПАРАМЕТРИЧЕСКИЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ. Российской академии наук, г. ПРОСТРАНСТВЕННЫЕ ПАРАМЕТРИЧЕСКИЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ. ЧАСТЬ П. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ХАРАКТЕРИСТИК ВНУТРЕННЕГО ДАВЛЕНИЯ В ЖИДКОСТИ, СИЛЫ АРХИМЕДА, СИЛ ИНЕРЦИИ

Подробнее

Задача 1. Рис.1.1. Решение.

Задача 1. Рис.1.1. Решение. Задача 1 Стержень квадратного поперечного сечения со стороной квадрата равной a и длиной 2l изготовлен из изотропного упругого материала с модулем упругости и коэффициентом Пуассона μ. Стержень вставляется

Подробнее

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов»

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» 1. Историческое развитие учения о сопротивлении материалов. Диаграмма стального образца Ст 3. 2. Диаграмма Ф.Ясинского. 3. Основные понятия курса

Подробнее

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 0 Энергетические методы определения перемещений 1 Обобщенные силы и перемещения Обобщенной силой (ОС) называется некоторое внешнее силовое воздействие

Подробнее

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней Задача 1 Для внецентренно сжатого короткого стержня с заданным поперечным сечением по схеме (рис.7.1) с геометрическими размерами

Подробнее

ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ

ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 ЛЕКЦИЯ Энергетические методы определения перемещений (продолжение) Теорема о взаимности работ Теорема о взаимности работ применима к системам, для которых

Подробнее

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ СВОБОДНЫХ КОЛЕБАНИЙ БАЛКИ С ОСЦИЛЛЯТОРАМИ

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ СВОБОДНЫХ КОЛЕБАНИЙ БАЛКИ С ОСЦИЛЛЯТОРАМИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 26. Т. 47, N- 4 35 УДК 59.632.4 ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ СВОБОДНЫХ КОЛЕБАНИЙ БАЛКИ С ОСЦИЛЛЯТОРАМИ С. Д. Алгазин Институт проблем механики РАН, 9526 Москва E-mail:

Подробнее

Институт архитектуры и строительства. Кафедра механики деформируемого твердого тела. А.И. Ярмолинский Ю.Г. Иванищев

Институт архитектуры и строительства. Кафедра механики деформируемого твердого тела. А.И. Ярмолинский Ю.Г. Иванищев ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» Институт архитектуры и строительства

Подробнее

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов.

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов. . РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ Усилия в статически неопределимых фермах как правило определяют методом сил. Последовательность расчета такая же как и для рам.. Степень статической неопределимости

Подробнее

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Деформации и перемещения Метод сечений Частные случаи нагружения

Подробнее

Дисциплина «Сопротивление материалов»

Дисциплина «Сопротивление материалов» Дисциплина «Сопротивление материалов» 1. Цель и задачи дисциплины Место дисциплины в структуре основной профессиональной образовательной программы Дисциплина «Сопротивление материалов» относится к вариативной

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ УЛЬЯНОВСК МИНИСТЕРСТВО ОБЩЕГО И

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

МАТЕРИАЛЫ ПО КОНТРОЛЮ И ОЦЕНКЕ УЧЕБНЫХ ДОСТИЖЕНИЙ

МАТЕРИАЛЫ ПО КОНТРОЛЮ И ОЦЕНКЕ УЧЕБНЫХ ДОСТИЖЕНИЙ МАТЕРИАЛЫ ПО КОНТРОЛЮ И ОЦЕНКЕ УЧЕБНЫХ ДОСТИЖЕНИЙ Для магистрантов ФМ и Т ВКГТУ, обучающихся по специальностям: 6М072400 «Технологические машины и оборудование» В О П Р О С Ы для текущего, рубежного и

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 14 Деформация плоский изгиб балки с прямолинейной продольной осью. Расчет на прочность Напомним, что деформация «плоский изгиб» реализуется в

Подробнее

УДК ОЦЕНКА ДИНАМИКИ ВАФЕЛЬНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ ПОПЕРЕЧНОМ УДАРНОМ ВОЗДЕЙСТВИИ

УДК ОЦЕНКА ДИНАМИКИ ВАФЕЛЬНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ ПОПЕРЕЧНОМ УДАРНОМ ВОЗДЕЙСТВИИ УДК61.316.3.08 ОЦЕНКА ДИНАМИКИ ВАФЕЛЬНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ ПОПЕРЕЧНОМ УДАРНОМ ВОЗДЕЙСТВИИ Е.С. Онучин, Ю.М. Хищенко Решены задачи линейной динамики элементов вафельной цилиндрической оболочки,

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Подробнее

Сопротивление материалов ОПД. 001 (шифр и наименование дисциплины)

Сопротивление материалов ОПД. 001 (шифр и наименование дисциплины) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСТПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

24 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПРОЕКТИРО- ВАНИЮ ЭЛЕМЕНТОВ ДВУТАВРОВОГО СЕЧЕНИЯ С ГОФРИ- РОВАННОЙ СТЕНКОЙ

24 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПРОЕКТИРО- ВАНИЮ ЭЛЕМЕНТОВ ДВУТАВРОВОГО СЕЧЕНИЯ С ГОФРИ- РОВАННОЙ СТЕНКОЙ 4 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПРОЕКТИРО- ВАНИЮ ЭЛЕМЕНТОВ ДВУТАВРОВОГО СЕЧЕНИЯ С ГОФРИ- РОВАННОЙ СТЕНКОЙ 4.. Общие рекомендации 4.. В элементах сложного двутаврового сечения для повышения их стойкости и

Подробнее

Институт вычислительного моделирования СО РАН, Красноярск

Институт вычислительного моделирования СО РАН, Красноярск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 2 141 УДК 539.370 ЧИСЛЕННЫЙ АНАЛИЗ РАЗВЕТВЛЕННЫХ ФОРМ ИЗГИБА СТЕРЖНЕЙ Л. И. Шкутин Институт вычислительного моделирования СО РАН, 660036 Красноярск

Подробнее

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Глава 8 СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 8.1. Шарнирно закрепленное твердое тело на упругих стержнях Постановка задачи. Определить усилия в стержнях статически неопределимой системы, состоящей из шарнирно

Подробнее

Тезисы курса сопротивления материалов Часть 2. wb(x) x L

Тезисы курса сопротивления материалов Часть 2. wb(x) x L Тезисы курса сопротивления материалов Часть Глава 7. Перемещения при изгибе При действии внешних сил балка изменяет кривизну. При этом каждое сечение получает два перемещения: линейное - прогиб и угловое

Подробнее

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления.

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления. Лекция 14 Сложное сопротивление. Косой изгиб. Определение внутренних усилий, напряжений, положения нейтральной оси при чистом косом изгибе. Деформации при косом изгибе. 14. СЛОЖНОЕ СОПРОТИВЛЕНИЕ. КОСОЙ

Подробнее

b + a + l + (Рис. 1) (8.2)

b + a + l + (Рис. 1) (8.2) Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

Подробнее

РАСЧЕТ ЛИСТОВЫХ РЕССОР ПЕРЕМЕННОЙ ЖЕСТКОСТИ

РАСЧЕТ ЛИСТОВЫХ РЕССОР ПЕРЕМЕННОЙ ЖЕСТКОСТИ Труды Одесского политехнического университета, 9, вып. () 9 УДК 59.:64.7.4 Н.Г. Сурьянинов, канд. техн. наук, доц., А.Ю. Влазнева, специалист, Одес. нац. политехн. ун-т РАСЧЕТ ЛИСТОВЫХ РЕССОР ПЕРЕМЕННОЙ

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

Тычина К.А. О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я.

Тычина К.А. О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я. www.tychin.pro Тычина К.А. VI О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я. П о т е н ц ц и а л ь н а я э н е р г и я с т е р ж н я в о б щ е м с л у ч а е н а г р у ж е н и я Двумя бесконечно

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Сопротивление материалов

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Сопротивление материалов ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Проектирование и управление в технических системах» МЕТОДИЧЕСКИЕ

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

удлинениям. Обозначив продольную силу в первом стержне N 1, для второго

удлинениям. Обозначив продольную силу в первом стержне N 1, для второго Задача Система, состоящая из трех одинаковых стержней с равными параметрами l, A, E, загружена наклонной силой F. При каком угле наклона силы α (см. рис.) точка приложения силы будет смещаться по вертикали?

Подробнее

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского Министерство образования и науки Российской Федерации Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет Учебно-научный и инновационный комплекс

Подробнее

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ УТВЕРЖДАЮ Декан факультета сервиса к.т.н., доцент Сумзина Л.В ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ Материаловедение основной образовательной программы высшего образования программы специалитета по направлению

Подробнее

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА М-8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ Цель работы: определение модуля сдвига и момента инерции диска методом крутильных колебаний. Приборы и принадлежности:

Подробнее

ГЕОМЕТРИЧЕСКИЕ СВОЙСТВА ЭЛАСТИКИ СТЕРЖНЯ В РАЗНОВИДНОСТЯХ ПЛОСКОГО ИЗГИБА (СОСРЕДОТОЧЕННАЯ НАГРУЗКА)

ГЕОМЕТРИЧЕСКИЕ СВОЙСТВА ЭЛАСТИКИ СТЕРЖНЯ В РАЗНОВИДНОСТЯХ ПЛОСКОГО ИЗГИБА (СОСРЕДОТОЧЕННАЯ НАГРУЗКА) Известия Томского политехнического университета 8 Т 33 УДК 53937 ГЕОМЕТРИЧЕСКИЕ СВОЙСТВА ЭЛАСТИКИ СТЕРЖНЯ В РАЗНОВИДНОСТЯХ ПЛОСКОГО ИЗГИБА (СОСРЕДОТОЧЕННАЯ НАГРУЗКА) АВ Анфилофьев Томский политехнический

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

ТЕСТОВЫЕ ЗАДАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ТЕСТОВЫЕ ЗАДАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

от времени. Существует, однако, особый класс сил, которые в явном виде зависят от координат и времени одновременно, (5.1) ( ) ( )

от времени. Существует, однако, особый класс сил, которые в явном виде зависят от координат и времени одновременно, (5.1) ( ) ( ) 5. Параметрические колебания 5.. Введение Рассмотренные ранее случаи возникновения и протекания колебаний были характерны тем, что проявляющиеся в процессе движения силы, можно было отнести к одной из

Подробнее

ОБ УСТОЙЧИВОСТИ ТОНКОСТЕННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С КРУГОВЫМИ ВЫРЕЗАМИ БЕЗ РЕБЕР ЖЕСТКОСТИ ПРИ ЕЕ ОСЕВОМ СЖАТИИ

ОБ УСТОЙЧИВОСТИ ТОНКОСТЕННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С КРУГОВЫМИ ВЫРЕЗАМИ БЕЗ РЕБЕР ЖЕСТКОСТИ ПРИ ЕЕ ОСЕВОМ СЖАТИИ ОБ УСТОЙЧИВОСТИ ТОНКОСТЕННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С КРУГОВЫМИ ВЫРЕЗАМИ БЕЗ РЕБЕР ЖЕСТКОСТИ ПРИ ЕЕ ОСЕВОМ СЖАТИИ Меньшенин Александр Аркадьевич Ульяновский государственный университет Задача данного

Подробнее

Расчет элементов стальных конструкций.

Расчет элементов стальных конструкций. Расчет элементов стальных конструкций. План. 1. Расчет элементов металлических конструкций по предельным состояниям. 2. Нормативные и расчетные сопротивления стали 3. Расчет элементов металлических конструкций

Подробнее

РАСЧЁТ СООРУЖЕНИЙ ПО ДЕФОРМИРОВАННОЙ СХЕМЕ

РАСЧЁТ СООРУЖЕНИЙ ПО ДЕФОРМИРОВАННОЙ СХЕМЕ УДК 624.04 РАСЧЁТ СООРУЖЕНИЙ ПО ДЕФОРМИРОВАННОЙ СХЕМЕ Досько В.А., аспирант, Сидорович Е.М., д-р техн. наук, профессор (БНТУ) Аннотация. Проводится анализ требований, предъявляемых современными нормативными

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.. Баумана»

Подробнее

Варианты домашнего задания ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

Варианты домашнего задания ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ Варианты домашнего задания ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ Вариант 1. 1. На рисунке а приведен график колебательного движения. Уравнение колебаний x = Asin(ωt + α o ). Определить начальную фазу. x О t

Подробнее

КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ

КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ С.П.Тимошенко, Д.Х.Янг, У.Уивер КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ В монографии, написанной известным русским ученым и американскими специалистами, изложены результаты исследований различных аспектов теории колебаний

Подробнее

РАСЧЕТ БРУСЬЕВ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ. Методические указания к выполнению домашнего задания по курсу «Механика материалов и конструкций»

РАСЧЕТ БРУСЬЕВ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ. Методические указания к выполнению домашнего задания по курсу «Механика материалов и конструкций» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» РАСЧЕТ БРУСЬЕВ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ Методические указания к

Подробнее

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ СОСТАВНЫХ БАЛОК ИЗ НЕОДНОРОДНЫХ МАТЕРИАЛОВ МЕТОДОМ НАЧАЛЬНЫХ ПАРАМЕТРОВ. д. т. н. Дудяк А.И., асп. Гурковская О.И.

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ СОСТАВНЫХ БАЛОК ИЗ НЕОДНОРОДНЫХ МАТЕРИАЛОВ МЕТОДОМ НАЧАЛЬНЫХ ПАРАМЕТРОВ. д. т. н. Дудяк А.И., асп. Гурковская О.И. УДК.7. ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ СОСТАВНЫХ БАЛОК ИЗ НЕОДНОРОДНЫХ МАТЕРИАЛОВ МЕТОДОМ НАЧАЛЬНЫХ ПАРАМЕТРОВ д. т. н. Дудяк А.И., асп. Гурковская О.И. УО «Белорусский национальный технический университет»,

Подробнее

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ Лекция 17 Энергетические методы расчета упругих систем. Потенциальная энергия деформации. Обобщенные силы и обобщенные перемещения. Основные энергетические уравнения механики (теорема Кастильяно). Метод

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

уравнение изогнутой оси балки и θ tg θ =.

уравнение изогнутой оси балки и θ tg θ =. Лекция 06 Деформации балок при изгибе Теорема Кастильяно При чистом изгибе балки её ось искривляется Перемещение центра тяжести сечения по направлению перпендикулярному к оси балки в её недеформированном

Подробнее

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях Содержание РГР. Растяжение сжатие.... Определение усилий в стержнях и расчет их на прочность..... Определение усилий в стержнях..... Определение диаметра стержней.... Расчет ступенчатого бруса на прочность

Подробнее

Электронный журнал «Труды МАИ». Выпуск 70 www.mai.ru/science/trudy/ УДК 629.735.33 Энергетический метод анализа массы рессорного шасси лёгкого самолёта Кичеев В. Е. Московский авиационный институт (национальный

Подробнее

ПРОСТРАНСТВЕННЫЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ

ПРОСТРАНСТВЕННЫЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ Уфа : УГАТУ, 1 Т. 14, (37). С. 3 35 МАШИНОСТРОЕНИЕ ГИДРАВЛИЧЕСКИЕ МАШИНЫ, ГИДРОПНЕВМОАГРЕГАТЫ УДК 61.6 А. Г. ХАКИМОВ, М. М. ШАКИРЬЯНОВ ПРОСТРАНСТВЕННЫЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО

Подробнее

Содержание Постановка задачи... 3 Статический расчёт балки... 4 Частотный анализ балки... 7 Динамический расчёт балки Выводы...

Содержание Постановка задачи... 3 Статический расчёт балки... 4 Частотный анализ балки... 7 Динамический расчёт балки Выводы... Содержание Постановка задачи... 3 Статический расчёт балки... 4 Частотный анализ балки... 7 Динамический расчёт балки... 10 Выводы... 13 Постановка задачи Решить статическую задачу для консольной балки

Подробнее

Контрольные вопросы по сопротивлению материалов

Контрольные вопросы по сопротивлению материалов Контрольные вопросы по сопротивлению материалов 1. Основные положения 2. Каковы основные гипотезы, допущения и предпосылки положены в основу науки о сопротивлении материалов? 3. Какие основные задачи решает

Подробнее

РАЗДЕЛ 11. УСТОЙЧИВОСТЬ УПРУГИХ СИСТЕМ Критическая сила. Равновесные состояния систем. Все строительные сооружения и элементы должны отвечать

РАЗДЕЛ 11. УСТОЙЧИВОСТЬ УПРУГИХ СИСТЕМ Критическая сила. Равновесные состояния систем. Все строительные сооружения и элементы должны отвечать АЗДЕЛ 11. УСТОЙЧИВОСТЬ УПУГИХ СИСТЕМ. 11.1. Критическая сила. авновесные состояния систем. Все строительные сооружения и элементы должны отвечать не только условиям прочности, но и условиям устойчивости.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФГБОУ ВПО ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра теоретической механики

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФГБОУ ВПО ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра теоретической механики МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФГБОУ ВПО ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра теоретической механики КУРСОВАЯ РАБОТА ПО РАЗДЕЛУ "ДИНАМИКА" «ИССЛЕДОВАНИЕ КОЛЕБАНИЙ МЕХАНИЧЕСКОЙ СИСТЕМЫ С ОДНОЙ

Подробнее

6.1 Работа силы на перемещении

6.1 Работа силы на перемещении 6. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ. ТЕОРЕМА ВЗАИМНОСТИ РАБОТ ФОРМУЛА МАКСВЕЛЛА-МОРА 6.1 Работа силы на перемещении Пусть к точке приложена сила F и точка получает перемещение u по направлению действия силы

Подробнее

Ю.Б. Назаренко. ФГУП «НПЦ газотурбостроения «Салют» (г. Москва)

Ю.Б. Назаренко. ФГУП «НПЦ газотурбостроения «Салют» (г. Москва) Ю.Б. Назаренко ФГУП «НПЦ газотурбостроения «Салют» (г. Москва) УСТРАНЕНИЕ РЕЗОНАНСА НА КРИТИЧЕСКОЙ ЧАСТОТЕ ВРАЩЕНИЯ РОТОРА ПРИ ЭЛЛИПТИЧЕСКОЙ ТРАЕКТОРИИ ПЕРЕМЕЩЕНИЯ ОСИ ВАЛА НА УПРУГОЙ ОПОРЕ Отстройка роторов

Подробнее

ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ

ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ Задача 1 Однопролетная балка длиной l, высотой h нагружена равномерно распределенной нагрузкой. Радиус кривизны нейтрального слоя балки в середине пролета равен. Жесткость поперечного

Подробнее

ОГЛАВЛЕНИЕ ПРЕДИСЛОВИЕ РАЗДЕЛ 1 ОСНОВЫ РАСЧЕТА АБСОЛЮТНО ТВЕРДОГО ТЕЛА КАК МОДЕЛИ МЕХАНИЧЕСКОГО ОБЪЕКТА... 12

ОГЛАВЛЕНИЕ ПРЕДИСЛОВИЕ РАЗДЕЛ 1 ОСНОВЫ РАСЧЕТА АБСОЛЮТНО ТВЕРДОГО ТЕЛА КАК МОДЕЛИ МЕХАНИЧЕСКОГО ОБЪЕКТА... 12 ОГЛАВЛЕНИЕ ПРЕДИСЛОВИЕ... 11 РАЗДЕЛ 1 ОСНОВЫ РАСЧЕТА АБСОЛЮТНО ТВЕРДОГО ТЕЛА КАК МОДЕЛИ МЕХАНИЧЕСКОГО ОБЪЕКТА... 12 ГЛАВА 1. ОСНОВНЫЕ ПОЛОЖЕНИЯ СТАТИКИ... 12 1.1. Общие сведения... 12 1.2. Аксиомы статики...

Подробнее

Тема 7 Расчет прочности и жесткости простых балок.

Тема 7 Расчет прочности и жесткости простых балок. Тема 7 Расчет прочности и жесткости простых балок. Лекция 8 7.1Основные типы опорных связей и балок. Определение опорных реакций. 7. Внутренние усилия при изгибе 7.3 Дифференциальные зависимости между

Подробнее

УСТОЙЧИВОСТЬ РАВНОВЕСИЯ ПЛАСТИН ПЛАСТИНЫ

УСТОЙЧИВОСТЬ РАВНОВЕСИЯ ПЛАСТИН ПЛАСТИНЫ СОДЕРЖАНИЕ тома II 9. УСТОЙЧИВОСТЬ РАВНОВЕСИЯ ПЛАСТИН ПЛАСТИНЫ КИРХГОФФА-ЛЯВА И РЕЙССНЕРА.... 1 9.1 Устойчивость равновесия пластин Кирхгоффа-Лява 2 9.1.1 Основные соотношения теории тонких пластин...

Подробнее

Раскачивание и стабилизация равновесия двухмассового маятника ограниченным параметрическим управлением

Раскачивание и стабилизация равновесия двухмассового маятника ограниченным параметрическим управлением Труды МАИ. Выпуск 84 www.mai.ru/science/trudy/ УДК 531.36: 534.1 Раскачивание и стабилизация равновесия двухмассового маятника ограниченным параметрическим управлением Мухаметзянова А.А. Самарский государственный

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 7 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА ДИНАМИЧЕСКИМ МЕТОДОМ

ЛАБОРАТОРНАЯ РАБОТА 7 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА ДИНАМИЧЕСКИМ МЕТОДОМ ЛАБОРАТОРНАЯ РАБОТА 7 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА ДИНАМИЧЕСКИМ МЕТОДОМ Краткая теория метода и описание установки Моментом инерции материальной точки относительно оси вращения называется

Подробнее

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ОПД.Ф.2.2 Сопротивление материалов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ОПД.Ф.2.2 Сопротивление материалов ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Проектирование механизмов и машин» РАБОЧАЯ

Подробнее

Задание 1 Построение эпюр при растяжении-сжатии

Задание 1 Построение эпюр при растяжении-сжатии Задание 1 Построение эпюр при растяжении-сжатии Стальной двухступенчатый брус, длины ступеней которого указаны на рисунке 1, нагружен силами F 1, F 2, F 3. Построить эпюры продольных сил и нормальных напряжений

Подробнее

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ УДК 59. Х.Г. Киямов кандидат технических наук доцент кафедры прикладной математики Н.М. Якупов доктор технических наук профессор кафедры строительной механики заведующий лабораторией ИММ КазНЦ РАН И.Х.

Подробнее

Задача 1. Решение. Рис. 1 Ступенчатый брус

Задача 1. Решение. Рис. 1 Ступенчатый брус Задача 1 Ступенчатый брус (рис. 1) нагружен силами P 1, P 2 и P 3, направленными вдоль его оси. Заданы длины участков a, b и c и площади их поперечных сечений F 1 и F 2. Модуль упругости материала Е 2

Подробнее