Нелинейная задача динамического изгиба стержня после потери устойчивости

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Нелинейная задача динамического изгиба стержня после потери устойчивости"

Транскрипт

1 Электронный журнал «Труды МАИ». Выпуск 7 УДК 9.:. Нелинейная задача динамического изгиба стержня после потери устойчивости И.Н. Воробьев Т.В. Гришанина Аннотация Решена плоская задача о динамическом поведении упругого стержня нагруженного статическими силами вызывающими его потерю устойчивости. Для решения нелинейной задачи использовался метод конечных элементов. Рассмотрены примеры динамического поведения стержня после потери устойчивости под действием сил тяжести. Ключевые слова: конечная деформация нелинейная динамика устойчивость метод конечных элементов. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований Коды проектов а -8-9-а. Введение Гибкие стержневые системы являющиеся расчетными моделями определенных элементов конструкций могут совершать колебательные движения с амплитудами порядка их длин как например развертываемые космические системы. Для решения плоских задач динамики гибких стержневых систем при больших углах поворота и конечных упругих деформациях будем использовать метод конечных элементов МКЭ в геометрически нелинейной постановке. Применение метода конечных элементов для расчета нелинейных продольно-поперечных колебаний стержней рассмотрено в работах [-]. При учете продольных деформаций стержней получаются нелинейные уравнения сравнительно простой структуры. Уравнения нелинейных колебаний Рассмотрим плоскую стержневую систему совершающую упругие колебания с большими амплитудами в своей плоскости. Уравнения колебаний будем составлять

2 используя МКЭ в геометрически нелинейной формулировке. Для этого разделим стержневую систему на n балочных конечных элементов КЭ испытывающих конечные деформации изгиба растяжения-сжатия и поперечного сдвига. С каждым КЭ свяжем свою подвижную систему координат ξη начало которой расположим на левом конце упругой оси а ось η в плоскости поперечного сечения деформированного стержня рис. а. Будем считать что элемент неподвижно закреплен на левом краю: u. Обозначим через u - продольное перемещение поперечное перемещение и угол поворота поперечного сечения на правом краю КЭ а через соответствующие им продольную силу поперечную силу и изгибающий момент. Конечная деформация удлинения оси стержня равна u' ' а соответствующая растягивающая сила равна EF. Для гибкого стержня при конечных углах поворота sin os и поэтому при EF onst можно считать что onst. При этом допущении интегрируя выражение для с учетом u u получим u ' d L L O u u u а б Рис. Для поперечного перемещения и угла поворота в пределах длины КЭ будем использовать аппроксимацию

3 представляющую точное решение квазистатической задачи изгиба сдвига для стержня постоянного поперечного сечения без учета продольной силы т.е. при onst EI onst GF =. Здесь. 6 GF EI Если пренебречь поперечным сдвигом положив GF то. Потенциальная энергия растяжения изгиба и сдвига КЭ будет d EF GF EI П ' ' с учетом она записывается в виде EF EI П где u EF. Сила и момент L соответствующие перемещению и углу поворота определятся как d П L b П 6 где

4 . 6 EI d EI EI b 7 В коэффициентах жесткости b d вторые нелинейные слагаемые учитывают влияние продольной силы т.е. так называемой геометрической жесткости. В качестве обобщенных координат будем рассматривать абсолютные перемещения и углы поворота в узлах =... n рис. б. Упругие перемещения u и угол поворота выражаются через них следующим образом: os sin sin os u 8 Потенциальная энергия всей системы получается путем суммирования по всем элементам: n. 9 Кинетическую энергию системы и вариацию работы внешних нагрузок запишем по методу сосредоточенных масс и сил учитывая дополнительно приведенные к узлам моменты инерции и моменты внешних сил: n p n M Y X A J m T где m и J приведенные к му узлу сосредоточенная масса и массовый момент инерции а t X t Y t M приведенные к му узлу внешние силы и момент. Уравнения для обобщенных координат = n на основании 9 с учетом 8 записываются в виде.... os os sin sin sin sin os os n M L L u J Y m X m

5 Пример расчета В качестве примера рассмотрим консольно закрепленный вертикальный стержень прямоугольного сечения.6 м. м с сосредоточенными массами m и моментами инерции J находящийся под действием силы тяжести g Рис.. Тогда в уравнениях следует положить X m g Y M. Стержень разобьем на пять КЭ n = одинаковой длины. g Рис. Для расчета примем следующие параметры: EF EF EF 6 EI EI 8 H м EF 8 H m m m m кг m 8 кг кг и кг J J J J. кг м м/с. J м g =. кгм Критическое значение сжимающей силы на конце консольного стержня: проведен для двух вариантов начальных условий. P кр EI Вес массы на конце стержня: 76 H. G m g. Расчет был В первом варианте были заданы следующие начальные условия при t = соответствующие принудительно изогнутому -ому КЭ: м м м м 6 м u 6 м. м м м м.м. м.. при = Во втором варианте были приняты начальные условия соответствующие поперечному удару по массе m : при = при =.м/с. Для контроля устойчивости вычислительного процесса в процессе интегрирования дифференциальных уравнений определялась полная энергия стержня по отношению к

6 уровню =. Полная энергия для консервативной системы должна оставаться постоянной равной своему значению в начальный момент времени. Для данной стержневой системы полная энергия равна: E T EI m J. EF m g В первом варианте начальных условий при m 8 кг полная энергия в начальный момент времени равна E 8.[H м] mg m g. 6EI Для второго варианта начальных условий при m 8 кг полная энергия в начальный момент времени равна E mg mg m 8[Hм]. На рис. приведены графики изменения вертикального и горизонтального t перемещений и угла поворота для первого варианта начальных условий при различных значениях массы m. Для этого же варианта на рис. 6-8 показаны формы деформированного состояния стержня в различные моменты времени для m = 8 и кг соответственно. Из графиков видно что перемещения стержня являются достаточно большими максимальное отклонение составляет более м в момент времени t = 8 что соответствует геометрически нелинейной задаче динамики. t 6

7 [м] [м] 6 m = кг m = 8 кг m = кг Рис. t [].. m = кг... m = 8 кг m = кг t [] Рис. 7

8 [м] рад φ [рад]. m = кг.. -. m = 8 кг m = кг t [] Рис... m = 8 кг t = 8. t = 6. t =..... [м] Рис. 6 8

9 [м] [м].. m = кг t = 8 t = 6.. t = Рис. 7 [м]. m = кг t = t = 6 t =..... Рис. 8 [м] На рис. 9 приведены графики вертикального и горизонтального перемещений и угла поворота для второго варианта начальных условий при различных значениях массы m. Для этих же значений на рис. - показаны формы деформированного состояния стержня в различные моменты времени. t t 9

10 [м] [м] 6 m = кг m = 8 кг - m = кг 6 8 t [] Рис. 9 m = кг m = кг m = 8 кг Рис. t []

11 [м] φ [рад] m = кг m = кг m = 8 кг - Рис. t [] m = кг t = t = t = t = - Рис. [м]

12 [м] [м] m = кг t = t = 9 t = t = - Рис. [м] m = 8 кг t = t = 9 t = t = - Рис. [м] В процессе интегрирования полная энергия E оставалась постоянной с точностью до 7. Выводы Построена математическая модель для расчета нелинейных колебаний плоской стержневой системы. Рассмотрены примеры динамического поведения стержня под действием сил тяжести при различных вариантах параметров системы и начальных условий.

13 Библиографический список. Шклярчук Ф.Н. Гришанина Т.В. Нелинейные и параметрические колебания упругих систем.. - М.: МАИ с... Гришанина Т.В. Задачи по теории колебаний упругих систем. М.: Изд-во МАИ с.. Гришанина Т.В. Шклярчук Ф.Н. Динамика упругих управляемых конструкций. М.: Изд-во МАИ 7. 8 с. Сведения об авторах Воробьев Илья Николаевич аспирант Московского авиационного института национального исследовательского университета МАИ Волоколамское шоссе Москва Российская Федерация A-8 GSP- 99. Гришанина Татьяна Витальевна профессор Московского авиационного института национального исследовательского университета д.ф.-м. н. доцент тел.:

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/cience/trudy/ УДК 539.3 Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе поперечном сдвиге

Подробнее

Исследование упругой линии трехслойной балки с существенно различающейся слоевой жесткостью

Исследование упругой линии трехслойной балки с существенно различающейся слоевой жесткостью Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/science/trudy/ УДК 69.735.0184 Исследование упругой линии трехслойной балки с существенно различающейся слоевой жесткостью А.А. Дудченко, Е.А. Башаров

Подробнее

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ Профессор, д.т.н. Богус Ш.Н., студент КубГАУ Лысов Д.С., Пономарев Р.В. Кубанский государственный аграрный университет Краснодар, Россия При увеличении пропускной способности

Подробнее

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3 ОГЛАВЛЕНИЕ Предисловие... 3 Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ И ПОНЯТИЯ СТРОИТЕЛЬНОЙ МЕХАНИКИ... 4 1.1. Задачи и методы строительной механики... 4 1.2. Понятие о расчетной схеме сооружения и ее элементах.. 6 1.3.

Подробнее

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб Введение Настоящая программа базируется на основных разделах следующих дисциплин: Математика; Физика; Теоретическая механика; Сопротивление материалов; Теория упругости и пластичности; Статика, динамика

Подробнее

Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов

Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов Электронный журнал «Труды МАИ». Выпуск 37 www.mai.ru/science/trud/ Учет стеснения депланации сечения при кручении слоистой балки типа торсион из композиционных материалов А.А. Дудченко Е.А. Башаров Аннотация

Подробнее

Сравнение результатов расчетов динамических моделей манометрических трубчатых пружин

Сравнение результатов расчетов динамических моделей манометрических трубчатых пружин 114 С.П. Пирогов, А.Ю. Чуба С.П. Пирогов, А.Ю. Чуба piro-gow@yandex.ru, aleksandr-chuba@mail.ru УДК 622.691.4 Сравнение результатов расчетов динамических моделей манометрических трубчатых пружин АННОТАЦИЯ.

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 4 Введение... 7

ОГЛАВЛЕНИЕ. Предисловие... 4 Введение... 7 ОГЛАВЛЕНИЕ Предисловие... 4 Введение... 7 Глава 1. Механика абсолютно твердого тела. Статика... 8 1.1. Общие положения... 8 1.1.1. Модель абсолютно твердого тела... 9 1.1.2. Сила и проекция силы на ось.

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

5. Расчет остова консольного типа

5. Расчет остова консольного типа 5. Расчет остова консольного типа Для обеспечения пространственной жесткости остовы поворотных кранов обычно выполняют из двух параллельных ферм, соединенных между собой, где это возможно, планками. Чаще

Подробнее

467 - Расчетные длины колонн

467 - Расчетные длины колонн 467 - Расчетные длины колонн 1 2 Программа предназначена для определения расчетных длин произвольно закрепленных стальных и железобетонных колонн переменного сечения, а также для определения усилий в колонне

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 3 ЧАСТЬ ПЕРВАЯ

ОГЛАВЛЕНИЕ. Предисловие... 3 ЧАСТЬ ПЕРВАЯ ОГЛАВЛЕНИЕ Предисловие... 3 ЧАСТЬ ПЕРВАЯ Глава первая Растяжение и сжатие......6 1.1. Продольная сила...6 1.2. Нормальные напряжения, абсолютное удлинение и потенциальная энергия...8 1.3. Поперечная деформация

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

ГЛАВА 10. УСТОЙЧИВОСТЬ ПЛОСКИХ РАМ

ГЛАВА 10. УСТОЙЧИВОСТЬ ПЛОСКИХ РАМ ГЛАВА УСТОЙЧИВОСТЬ ПЛОСКИХ РАМ Стр Основные понятия Формула Эйлера Дифференциальное уравнение сжато-изогнутого стержня 4 4 Решение уравнения с помощью метода начальных параметров 5 5 Частное решение для

Подробнее

ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ

ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 24. Т. 45, N- 5 67 УДК 539.3 ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ Ю. В. Захаров, К. Г. Охоткин, А. Д. Скоробогатов Институт физики им. Л. В. Киренского

Подробнее

УДК ОЦЕНКА ДИНАМИКИ ВАФЕЛЬНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ ПОПЕРЕЧНОМ УДАРНОМ ВОЗДЕЙСТВИИ

УДК ОЦЕНКА ДИНАМИКИ ВАФЕЛЬНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ ПОПЕРЕЧНОМ УДАРНОМ ВОЗДЕЙСТВИИ УДК61.316.3.08 ОЦЕНКА ДИНАМИКИ ВАФЕЛЬНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ ПОПЕРЕЧНОМ УДАРНОМ ВОЗДЕЙСТВИИ Е.С. Онучин, Ю.М. Хищенко Решены задачи линейной динамики элементов вафельной цилиндрической оболочки,

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней Задача 1 Для внецентренно сжатого короткого стержня с заданным поперечным сечением по схеме (рис.7.1) с геометрическими размерами

Подробнее

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 0 Энергетические методы определения перемещений 1 Обобщенные силы и перемещения Обобщенной силой (ОС) называется некоторое внешнее силовое воздействие

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1 Задача 1 Рассматривается два загружения плоской рамы, состоящей из стержневых элементов квадратного поперечного сечения При загружении распределенными нагрузками q и 2q в точке к указанного на рисунке

Подробнее

Институт вычислительного моделирования СО РАН, Красноярск

Институт вычислительного моделирования СО РАН, Красноярск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 2 141 УДК 539.370 ЧИСЛЕННЫЙ АНАЛИЗ РАЗВЕТВЛЕННЫХ ФОРМ ИЗГИБА СТЕРЖНЕЙ Л. И. Шкутин Институт вычислительного моделирования СО РАН, 660036 Красноярск

Подробнее

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии

Подробнее

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов»

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» 1. Историческое развитие учения о сопротивлении материалов. Диаграмма стального образца Ст 3. 2. Диаграмма Ф.Ясинского. 3. Основные понятия курса

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Деформации и перемещения Метод сечений Частные случаи нагружения

Подробнее

Дисциплина «Сопротивление материалов»

Дисциплина «Сопротивление материалов» Дисциплина «Сопротивление материалов» 1. Цель и задачи дисциплины Место дисциплины в структуре основной профессиональной образовательной программы Дисциплина «Сопротивление материалов» относится к вариативной

Подробнее

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления.

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления. Лекция 14 Сложное сопротивление. Косой изгиб. Определение внутренних усилий, напряжений, положения нейтральной оси при чистом косом изгибе. Деформации при косом изгибе. 14. СЛОЖНОЕ СОПРОТИВЛЕНИЕ. КОСОЙ

Подробнее

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов.

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов. . РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ Усилия в статически неопределимых фермах как правило определяют методом сил. Последовательность расчета такая же как и для рам.. Степень статической неопределимости

Подробнее

МАТЕРИАЛЫ ПО КОНТРОЛЮ И ОЦЕНКЕ УЧЕБНЫХ ДОСТИЖЕНИЙ

МАТЕРИАЛЫ ПО КОНТРОЛЮ И ОЦЕНКЕ УЧЕБНЫХ ДОСТИЖЕНИЙ МАТЕРИАЛЫ ПО КОНТРОЛЮ И ОЦЕНКЕ УЧЕБНЫХ ДОСТИЖЕНИЙ Для магистрантов ФМ и Т ВКГТУ, обучающихся по специальностям: 6М072400 «Технологические машины и оборудование» В О П Р О С Ы для текущего, рубежного и

Подробнее

14.1. Система с двумя степенями свободы

14.1. Система с двумя степенями свободы Глава 14 МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ В разделе МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ вы научитесь определять частоты малых собственных колебаний механической системы с двумя степенями свободы. Другие темы этого раздела,

Подробнее

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ УЛЬЯНОВСК МИНИСТЕРСТВО ОБЩЕГО И

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 14 Деформация плоский изгиб балки с прямолинейной продольной осью. Расчет на прочность Напомним, что деформация «плоский изгиб» реализуется в

Подробнее

Сопротивление материалов ОПД. 001 (шифр и наименование дисциплины)

Сопротивление материалов ОПД. 001 (шифр и наименование дисциплины) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСТПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

Лабораторная работа ) Экспериментальное определение модуля Юнга и модуля сдвига

Лабораторная работа ) Экспериментальное определение модуля Юнга и модуля сдвига Лабораторная работа 1.17-18 1) Экспериментальное определение модуля Юнга и модуля сдвига Введение В области упругих деформаций напряжение, возникающее в деформированном теле, пропорционально относительной

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Подробнее

ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ

ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 ЛЕКЦИЯ Энергетические методы определения перемещений (продолжение) Теорема о взаимности работ Теорема о взаимности работ применима к системам, для которых

Подробнее

Институт архитектуры и строительства. Кафедра механики деформируемого твердого тела. А.И. Ярмолинский Ю.Г. Иванищев

Институт архитектуры и строительства. Кафедра механики деформируемого твердого тела. А.И. Ярмолинский Ю.Г. Иванищев ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» Институт архитектуры и строительства

Подробнее

24 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПРОЕКТИРО- ВАНИЮ ЭЛЕМЕНТОВ ДВУТАВРОВОГО СЕЧЕНИЯ С ГОФРИ- РОВАННОЙ СТЕНКОЙ

24 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПРОЕКТИРО- ВАНИЮ ЭЛЕМЕНТОВ ДВУТАВРОВОГО СЕЧЕНИЯ С ГОФРИ- РОВАННОЙ СТЕНКОЙ 4 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПРОЕКТИРО- ВАНИЮ ЭЛЕМЕНТОВ ДВУТАВРОВОГО СЕЧЕНИЯ С ГОФРИ- РОВАННОЙ СТЕНКОЙ 4.. Общие рекомендации 4.. В элементах сложного двутаврового сечения для повышения их стойкости и

Подробнее

b + a + l + (Рис. 1) (8.2)

b + a + l + (Рис. 1) (8.2) Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

Тезисы курса сопротивления материалов Часть 2. wb(x) x L

Тезисы курса сопротивления материалов Часть 2. wb(x) x L Тезисы курса сопротивления материалов Часть Глава 7. Перемещения при изгибе При действии внешних сил балка изменяет кривизну. При этом каждое сечение получает два перемещения: линейное - прогиб и угловое

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

РАСЧЕТ ЛИСТОВЫХ РЕССОР ПЕРЕМЕННОЙ ЖЕСТКОСТИ

РАСЧЕТ ЛИСТОВЫХ РЕССОР ПЕРЕМЕННОЙ ЖЕСТКОСТИ Труды Одесского политехнического университета, 9, вып. () 9 УДК 59.:64.7.4 Н.Г. Сурьянинов, канд. техн. наук, доц., А.Ю. Влазнева, специалист, Одес. нац. политехн. ун-т РАСЧЕТ ЛИСТОВЫХ РЕССОР ПЕРЕМЕННОЙ

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Глава 8 СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 8.1. Шарнирно закрепленное твердое тело на упругих стержнях Постановка задачи. Определить усилия в стержнях статически неопределимой системы, состоящей из шарнирно

Подробнее

РАСЧЁТ СООРУЖЕНИЙ ПО ДЕФОРМИРОВАННОЙ СХЕМЕ

РАСЧЁТ СООРУЖЕНИЙ ПО ДЕФОРМИРОВАННОЙ СХЕМЕ УДК 624.04 РАСЧЁТ СООРУЖЕНИЙ ПО ДЕФОРМИРОВАННОЙ СХЕМЕ Досько В.А., аспирант, Сидорович Е.М., д-р техн. наук, профессор (БНТУ) Аннотация. Проводится анализ требований, предъявляемых современными нормативными

Подробнее

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ УТВЕРЖДАЮ Декан факультета сервиса к.т.н., доцент Сумзина Л.В ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ Материаловедение основной образовательной программы высшего образования программы специалитета по направлению

Подробнее

от времени. Существует, однако, особый класс сил, которые в явном виде зависят от координат и времени одновременно, (5.1) ( ) ( )

от времени. Существует, однако, особый класс сил, которые в явном виде зависят от координат и времени одновременно, (5.1) ( ) ( ) 5. Параметрические колебания 5.. Введение Рассмотренные ранее случаи возникновения и протекания колебаний были характерны тем, что проявляющиеся в процессе движения силы, можно было отнести к одной из

Подробнее

Тычина К.А. О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я.

Тычина К.А. О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я. www.tychin.pro Тычина К.А. VI О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я. П о т е н ц ц и а л ь н а я э н е р г и я с т е р ж н я в о б щ е м с л у ч а е н а г р у ж е н и я Двумя бесконечно

Подробнее

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского Министерство образования и науки Российской Федерации Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет Учебно-научный и инновационный комплекс

Подробнее

Варианты домашнего задания ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

Варианты домашнего задания ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ Варианты домашнего задания ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ Вариант 1. 1. На рисунке а приведен график колебательного движения. Уравнение колебаний x = Asin(ωt + α o ). Определить начальную фазу. x О t

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

уравнение изогнутой оси балки и θ tg θ =.

уравнение изогнутой оси балки и θ tg θ =. Лекция 06 Деформации балок при изгибе Теорема Кастильяно При чистом изгибе балки её ось искривляется Перемещение центра тяжести сечения по направлению перпендикулярному к оси балки в её недеформированном

Подробнее

Содержание Постановка задачи... 3 Статический расчёт балки... 4 Частотный анализ балки... 7 Динамический расчёт балки Выводы...

Содержание Постановка задачи... 3 Статический расчёт балки... 4 Частотный анализ балки... 7 Динамический расчёт балки Выводы... Содержание Постановка задачи... 3 Статический расчёт балки... 4 Частотный анализ балки... 7 Динамический расчёт балки... 10 Выводы... 13 Постановка задачи Решить статическую задачу для консольной балки

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Сопротивление материалов

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Сопротивление материалов ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Проектирование и управление в технических системах» МЕТОДИЧЕСКИЕ

Подробнее

ПРОСТРАНСТВЕННЫЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ

ПРОСТРАНСТВЕННЫЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ Уфа : УГАТУ, 1 Т. 14, (37). С. 3 35 МАШИНОСТРОЕНИЕ ГИДРАВЛИЧЕСКИЕ МАШИНЫ, ГИДРОПНЕВМОАГРЕГАТЫ УДК 61.6 А. Г. ХАКИМОВ, М. М. ШАКИРЬЯНОВ ПРОСТРАНСТВЕННЫЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО

Подробнее

Расчет элементов стальных конструкций.

Расчет элементов стальных конструкций. Расчет элементов стальных конструкций. План. 1. Расчет элементов металлических конструкций по предельным состояниям. 2. Нормативные и расчетные сопротивления стали 3. Расчет элементов металлических конструкций

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

УСТОЙЧИВОСТЬ РАВНОВЕСИЯ ПЛАСТИН ПЛАСТИНЫ

УСТОЙЧИВОСТЬ РАВНОВЕСИЯ ПЛАСТИН ПЛАСТИНЫ СОДЕРЖАНИЕ тома II 9. УСТОЙЧИВОСТЬ РАВНОВЕСИЯ ПЛАСТИН ПЛАСТИНЫ КИРХГОФФА-ЛЯВА И РЕЙССНЕРА.... 1 9.1 Устойчивость равновесия пластин Кирхгоффа-Лява 2 9.1.1 Основные соотношения теории тонких пластин...

Подробнее

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА М-8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ Цель работы: определение модуля сдвига и момента инерции диска методом крутильных колебаний. Приборы и принадлежности:

Подробнее

КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ

КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ С.П.Тимошенко, Д.Х.Янг, У.Уивер КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ В монографии, написанной известным русским ученым и американскими специалистами, изложены результаты исследований различных аспектов теории колебаний

Подробнее

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ Лекция 17 Энергетические методы расчета упругих систем. Потенциальная энергия деформации. Обобщенные силы и обобщенные перемещения. Основные энергетические уравнения механики (теорема Кастильяно). Метод

Подробнее

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ОПД.Ф.2.2 Сопротивление материалов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ОПД.Ф.2.2 Сопротивление материалов ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Проектирование механизмов и машин» РАБОЧАЯ

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ УДК 59. Х.Г. Киямов кандидат технических наук доцент кафедры прикладной математики Н.М. Якупов доктор технических наук профессор кафедры строительной механики заведующий лабораторией ИММ КазНЦ РАН И.Х.

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.. Баумана»

Подробнее

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ ОПД.Ф.12.5 ОСНОВЫ ФУНКЦИОНИРОВАНИЯ СИСТЕМ СЕРВИСА. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА основной образовательной программы высшего образования программы специалитета Специальность: 100101.65

Подробнее

Задачи для самостоятельных работ по сопротивлению материалов

Задачи для самостоятельных работ по сопротивлению материалов МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТЕННОЕ БЮДЖЕТНОЕ ОБРАЗОАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОАНИЯ «САМАРСКИЙ ГОСУДАРСТЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИЕРСИТЕТ имени академика С.П. КОРОЛЁА»

Подробнее

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ СОСТАВНЫХ БАЛОК ИЗ НЕОДНОРОДНЫХ МАТЕРИАЛОВ МЕТОДОМ НАЧАЛЬНЫХ ПАРАМЕТРОВ. д. т. н. Дудяк А.И., асп. Гурковская О.И.

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ СОСТАВНЫХ БАЛОК ИЗ НЕОДНОРОДНЫХ МАТЕРИАЛОВ МЕТОДОМ НАЧАЛЬНЫХ ПАРАМЕТРОВ. д. т. н. Дудяк А.И., асп. Гурковская О.И. УДК.7. ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ СОСТАВНЫХ БАЛОК ИЗ НЕОДНОРОДНЫХ МАТЕРИАЛОВ МЕТОДОМ НАЧАЛЬНЫХ ПАРАМЕТРОВ д. т. н. Дудяк А.И., асп. Гурковская О.И. УО «Белорусский национальный технический университет»,

Подробнее

РАЗДЕЛ 11. УСТОЙЧИВОСТЬ УПРУГИХ СИСТЕМ Критическая сила. Равновесные состояния систем. Все строительные сооружения и элементы должны отвечать

РАЗДЕЛ 11. УСТОЙЧИВОСТЬ УПРУГИХ СИСТЕМ Критическая сила. Равновесные состояния систем. Все строительные сооружения и элементы должны отвечать АЗДЕЛ 11. УСТОЙЧИВОСТЬ УПУГИХ СИСТЕМ. 11.1. Критическая сила. авновесные состояния систем. Все строительные сооружения и элементы должны отвечать не только условиям прочности, но и условиям устойчивости.

Подробнее

4. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ ПРИ РАСТЯЖЕНИИ И СЖАТИИ 4.1. Основные сведения о статически неопределимых системах

4. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ ПРИ РАСТЯЖЕНИИ И СЖАТИИ 4.1. Основные сведения о статически неопределимых системах Понятие о статически определимых и неопределимых системах. Порядок решения статически неопределимых задач. Расчет статически неопределимой стержневой системы при растяжении и сжатии (на примере семестрового

Подробнее

Расчет балки. 1 Исходные данные

Расчет балки. 1 Исходные данные Расчет балки 1 Исходные данные 1.1 Схема балки Пролет A: 6 м. Пролет B: 1 м. Пролет C: 1 м. Шаг балок: 0,5 м. 1.2 Нагрузки Наименование q н1, кг/м2 q н2, кг/м γ f k d q р, кг/м Постоянная 100 50 1 1 50

Подробнее

Электронный учебно-методический комплекс «Статика и динамика плоских стержневых систем» по курсу «Сопротивление материалов»

Электронный учебно-методический комплекс «Статика и динамика плоских стержневых систем» по курсу «Сопротивление материалов» З.Н. Соколовский, С.А. Макеев Омский государственный технический университет Электронный учебно-методический комплекс «Статика и динамика плоских стержневых систем» по курсу «Сопротивление материалов»

Подробнее

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях Содержание РГР. Растяжение сжатие.... Определение усилий в стержнях и расчет их на прочность..... Определение усилий в стержнях..... Определение диаметра стержней.... Расчет ступенчатого бруса на прочность

Подробнее

О ПЕРЕДАЧЕ ВРАЩЕНИЯ ПОСРЕДСТВОМ ГИБКОГО ВАЛА

О ПЕРЕДАЧЕ ВРАЩЕНИЯ ПОСРЕДСТВОМ ГИБКОГО ВАЛА УДК 539.3 В.В. ЕЛИСЕЕВ, Т.В. ЗИНОВЬЕВА О ПЕРЕДАЧЕ ВРАЩЕНИЯ ПОСРЕДСТВОМ ГИБКОГО ВАЛА Гибкий упругий стержень вставлен в жесткую трубку-оболочку и приводится во вращение от одного конца (рис. ). Трения о

Подробнее

МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ

МАЛЫЕ КОЛЕБАНИЯ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра теоретической механики

Подробнее

ПРОГРАММА ДИСЦИПЛИНЫ по кафедре механики деформируемого твердого тела ДИНАМИКА И УСТОЙЧИВОСТЬ ИСКУССТВЕННЫХ СООРУЖЕНИЙ

ПРОГРАММА ДИСЦИПЛИНЫ по кафедре механики деформируемого твердого тела ДИНАМИКА И УСТОЙЧИВОСТЬ ИСКУССТВЕННЫХ СООРУЖЕНИЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» УТВЕРЖДАЮ: Проректор по учебной работе

Подробнее

Электронный журнал «Труды МАИ». Выпуск 70 www.mai.ru/science/trudy/ УДК 629.735.33 Энергетический метод анализа массы рессорного шасси лёгкого самолёта Кичеев В. Е. Московский авиационный институт (национальный

Подробнее

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ. ÐÀÑ ÅÒÍÛÅ È ÒÅÑÒÎÂÛÅ ÇÀÄÀÍÈß

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ. ÐÀÑ ÅÒÍÛÅ È ÒÅÑÒÎÂÛÅ ÇÀÄÀÍÈß Ë. Ñ. Ìèíèí, Þ. Ï. Ñàìñîíîâ, Â. Å. Õðîìàòîâ ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ. ÐÀÑ ÅÒÍÛÅ È ÒÅÑÒÎÂÛÅ ÇÀÄÀÍÈß УЧЕБНОЕ ПОСОБИЕ ДЛЯ АКАДЕМИЧЕСКОГО БАКАЛАВРИАТА 3-е издание, исправленное и дополненное под редакцией

Подробнее

Расчет плоской рамы методом перемещений

Расчет плоской рамы методом перемещений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Расчет плоской

Подробнее

МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КИНО И

Подробнее

1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ 3 СОДЕРЖАНИЕ 1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ...4 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ...4 2.1. Цель преподавания дисциплины...4 2.2. Задачи изучения дисциплины...4 2.3. Перечень базовых дисциплин...5 2.4. Перечень дисциплин,

Подробнее

Б Е Л О Р У С С К И Й Н А Ц И О Н А Л Ь Н Ы Й Т Е Х Н И Ч Е С К И Й У Н И В Е Р С И Т Е Т С Т Р О И Т Е Л Ь Н Ы Й Ф А К У Л Ь Т Е Т

Б Е Л О Р У С С К И Й Н А Ц И О Н А Л Ь Н Ы Й Т Е Х Н И Ч Е С К И Й У Н И В Е Р С И Т Е Т С Т Р О И Т Е Л Ь Н Ы Й Ф А К У Л Ь Т Е Т Б Е Л О Р У С С К И Й Н А Ц И О Н А Л Ь Н Ы Й Т Е Х Н И Ч Е С К И Й У Н И В Е Р С И Т Е Т С Т Р О И Т Е Л Ь Н Ы Й Ф А К У Л Ь Т Е Т М Е Ж Д У Н А Р О Д Н Ы Й Н А У Ч Н О М Е Т О Д И Ч Е С К И Й С Е М И

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. К. Манжосов РАСЧЕТ СТАТИЧЕСКИ

Подробнее

О расчете несущих железобетонных конструкций в стержневом приближении Д.т.н. Кантур О.В., Лоскутов И.С., Глотов Д.А. ООО «ПКБ Катриэль», г. Москва.

О расчете несущих железобетонных конструкций в стержневом приближении Д.т.н. Кантур О.В., Лоскутов И.С., Глотов Д.А. ООО «ПКБ Катриэль», г. Москва. О расчете несущих железобетонных конструкций в стержневом приближении Д.т.н. Кантур О.В., Лоскутов И.С., Глотов Д.А. ООО «ПКБ Катриэль», г. Москва. В общем случае задача расчета любой конструкции, в наиболее

Подробнее

Раскачивание и стабилизация равновесия двухмассового маятника ограниченным параметрическим управлением

Раскачивание и стабилизация равновесия двухмассового маятника ограниченным параметрическим управлением Труды МАИ. Выпуск 84 www.mai.ru/science/trudy/ УДК 531.36: 534.1 Раскачивание и стабилизация равновесия двухмассового маятника ограниченным параметрическим управлением Мухаметзянова А.А. Самарский государственный

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 7 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА ДИНАМИЧЕСКИМ МЕТОДОМ

ЛАБОРАТОРНАЯ РАБОТА 7 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА ДИНАМИЧЕСКИМ МЕТОДОМ ЛАБОРАТОРНАЯ РАБОТА 7 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА ДИНАМИЧЕСКИМ МЕТОДОМ Краткая теория метода и описание установки Моментом инерции материальной точки относительно оси вращения называется

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ по образовательной программе высшего образования программе подготовки научно-педагогических кадров в аспирантуре ФГБОУ ВО «Орловский государственный университет имени

Подробнее

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 007. Т. 48, N- 5 УДК 539.3 ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ Ю. В. Захаров, К. Г. Охоткин,

Подробнее

ДИНАМИКА И УСТОЙЧИВОСТЬ ИСКУССТВЕННЫХ СООРУЖЕНИЙ

ДИНАМИКА И УСТОЙЧИВОСТЬ ИСКУССТВЕННЫХ СООРУЖЕНИЙ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ПОСЛЕ ПОТЕРИ УСТОЙЧИВОСТИ д.т.н. И. Д. Евзеров

ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ПОСЛЕ ПОТЕРИ УСТОЙЧИВОСТИ д.т.н. И. Д. Евзеров УДК 59 ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ПОСЛЕ ПОТЕРИ УСТОЙЧИВОСТИ д.т.н. И. Д. Евзеров Аннотация Рассматриваются геометрически нелинейные задачи в трехмерной вариационной постановке и шаговый метод для

Подробнее

Задача 1. Решение. Рис. 1 Ступенчатый брус

Задача 1. Решение. Рис. 1 Ступенчатый брус Задача 1 Ступенчатый брус (рис. 1) нагружен силами P 1, P 2 и P 3, направленными вдоль его оси. Заданы длины участков a, b и c и площади их поперечных сечений F 1 и F 2. Модуль упругости материала Е 2

Подробнее

Задание 1 Построение эпюр при растяжении-сжатии

Задание 1 Построение эпюр при растяжении-сжатии Задание 1 Построение эпюр при растяжении-сжатии Стальной двухступенчатый брус, длины ступеней которого указаны на рисунке 1, нагружен силами F 1, F 2, F 3. Построить эпюры продольных сил и нормальных напряжений

Подробнее

О ПЕРЕДАЧЕ ВРАЩЕНИЯ ПОСРЕДСТВОМ ГИБКОГО ВАЛА

О ПЕРЕДАЧЕ ВРАЩЕНИЯ ПОСРЕДСТВОМ ГИБКОГО ВАЛА О передаче вращения посредством гибкого вала УДК 539.3 В.В. ЕЛИСЕЕВ, Т.В. ЗИНОВЬЕВА О ПЕРЕДАЧЕ ВРАЩЕНИЯ ПОСРЕДСТВОМ ГИБКОГО ВАЛА Гибкий упругий стержень вставлен в жесткую трубку-оболочку и приводится

Подробнее