2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D."

Транскрипт

1 Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (, ), содержащий замкнутый = + +, D G Предположим, что выполнены следующие условия: (У) Пусть f (, ) непрерывна в области D и, следовательно, равномерно ограничена Тогда прямоугольник D [ a, a] [ b, b] существует постоянная M = ma f (, ), те (, ) D f M в D (У) Пусть f (, ) удовлетворяет в D условию Липшица по переменной, те f (, ) f(, ) N, где N - постоянная Липшица, не зависящая от и f(, ) Замечание Последнее условие будет выполнено, в частности, если C( D) Очевидно, что если интегральная кривая, проходящая через точку (, ) то она не покинет прямоугольник D до точки = + H, где H min a, b = M, существует, (см рис ) D + b (, ) b + M + a b + a Рис

2 Действительно, уравнения «крайних» интегральных кривых, удовлетворяющих задаче Коши d M d =±, =, имеют вид =± M( ) Подставив уравнения b горизонтальных границ области D = ± b в эти уравнения, получим = + M Теорема (существования и единственности решения задачи Коши для скалярного ОДУ) Пусть выполнены условия (У) и (У) Тогда на отрезке H + H существует единственное решение задачи () Следующее утверждение существенно используется при доказательстве сформулированной теоремы Лемма Пусть функция f (, ) непрерывна по совокупности переменных в некотором прямоугольнике D [ a, a] [ b, b] = + + Тогда задача Коши () эквивалентна интегральному уравнению = + f ξ, ( ξ), () которое рассматривается в классе непрерывных функций Доказательство Пусть решение (), целиком лежащее в D Тогда, подставляя его в () и интегрируя полученное тождество в пределах от a, + a, получим, что удовлетворяет уравнению () С другой стороны, если непрерывная функция является решением (), то f (, ) также непрерывна, а (, ) до [ ] f ξ ξ d ξ является непрерывно дифференцируемой функцией переменной Следовательно, решение дифференциального уравнения d f ( ) d =,, удовлетворяющее начальным условиям = Доказательство теоремы существования решения задачи Коши Для доказательства теоремы применим метод последовательных приближений (метод Пикара) Определим итерационный процесс метода последовательных приближений так: = f,, (3) n n ( n ) =, n =,,, где - произвольная непрерывная функция, график которой целиком лежит в области D На каждой итерации задача (3) разрешима, и ее решение при [, H] n + представимо в виде n = + f ξ, ( ξ) () Далее, в силу условия f (, ) M, D имеем n M Поэтому интегральная кривая n ( ) не покинет угол между диагоналями прямоугольника b b, + b, + b M M [ ], и, следовательно, f ( n ) C[ H, H], + Отсюда, в

3 частности, вытекает, что b В результате получим функциональную некоторую последовательность { n } Исследуем ее свойства Лемма Функциональная последовательность { n } сходится равномерно на множестве [, + H] Доказательство Рассмотрим функциональный ряд S = + ( ) + + ( n n ) +, частичная сумма Sn( ) которого совпадает с n( ): Sn n Для членов этого ряда справедливы следующие оценки: ( ξ ( ξ) ) ( ξ ( ξ) ) ξ N ( ξ) ( ξ) bn( ) f, f, d ( ) 3 bn ( ξ ) = bn f ξ, ξ f ξ, ξ N ( ξ ) ( ξ) ( ) NH b!! Методом математической индукции можно доказать (проделайте это самостоятельно), что ( ) f ξ, ξ f ξ, ξ N ( ξ ) ( ξ) n n n n n bn n ( ξ ) ( n! ) = bn ( ) ( n ) n n n n n NH b (5)! ( n! ) Таким образом, члены рассматриваемого функционального ряда мажорируются по абсолютной величине членами сходящегося (например, по признаку Даламбера) числового ряда n ( NH ) NH, сумма которого равна e Следовательно, ряд Sn n= ( n! ) равномерно на множестве [, H] последовательность { n } также сходится равномерно на множестве [, H] Лемма 3 Функциональная последовательность { } сходится абсолютно и + (признак Вейерштрасса), а значит функциональная + n сходится к непрерывному решению интегрального уравнения (), записанного выше Доказательство Поскольку все функции n( ) непрерывны, а функциональная последовательность { ( n ) }, то C [, + H] ( ) n Кроме того, равномерная сходимость последовательности непрерывных функций { } n является достаточным условием для перехода к пределу под знаком интеграла в выражении () В результате получим = + (, ) f ξ ( ξ), те предел последовательных приближений { } n удовлетворяет интегральному уравнению (), эквивалентному задаче Коши () Итак, существование решения задачи Коши для скалярного уравнения доказано

4 3 Единственность решения задачи Коши Единственность решения задачи Коши вытекает из следующего утверждения Лемма Интегральное уравнение () имеет единственное решение C( [, H] ) + Доказательство Предположим, что имеется два различных решения уравнения () ( ) и Тогда их разность u = удовлетворяет интегральному уравнению ( ξ ξ ) ( ξ ξ ) ξ (6) u = f, f, d Покажем, что интегральное уравнение (6) имеет только тривиальное решение Доказательство этого факта можно провести с помощью следующей леммы Лемма (Гронуолла) Пусть существует постоянная L > такая, что для всех [ ab] ( ξ ), выполнено неравенство z z + L z, (7) L( a) Тогда при z > справедлива оценка z ze (8) В случае z = имеет место z Доказательство ) Пусть (7) имеем z > Положим Y z + L z( ξ) >, [ a, b], Y( a) z z Y a a =, тогда в силу Так как Y( ) дифференцируемая функция, то выполнено Y = Lz LY, откуда в силу Y >, вытекает Y Y( a) = z L Далее интегрируя, имеем ln Y ln Y( a) ln Y ln z L( a) Y =, (8) L( a) L( a) откуда после потенцирования получаем Y ze z Y ze, [ ab, ] ) Пусть z = Если (7) выполнено для z =, то тем более (7) верно при всех z >, те справедлива оценка (8) Переходя к пределу при z в (8), получим z, откуда следует, что z Лемма Гронуолла доказана Продолжим доказательство леммы Рассмотрим (6), откуда получаем оценку усл Липшица (9) u f ξ, ( ξ) f ξ, ( ξ) N u( ξ) Полагая z = u и пользясь леммой Гронуолла для случае z =, имеем л Гронуолла ξ ξ z N z d, [, + H] Лемма доказана z = Из леммы, как было указано в начале параграфа, вытекает единственность решения задачи Коши Доказательство теоремы существования и единственности задачи () завершено Замечание Доказательство леммы можно провести и другим способом, не используя лемму Гронуолла Для этого из (9) получим следующее неравенство

5 u N ( ) ma uξ () ) Если N H < ( H см формулировку леммы ), то из () получим неравенство [, ] ma u N H ma u, [, + H] [, + H] () которое, очевидно, выполняется лишь при u при [, + H] ) Если N H, то рассмотрим (6) на отрезке [, + h], где N h< Применяя (), получим, что u на отрезке [, + h], а при [ + h, + H] функция u удовлетворяет уравнению u = f ξ, ( ξ) f ξ, ( ξ) + h Далее, проведя аналогичные рассуждения, за конечное число шагов [ N ] что u при [, + H] = + + докажем, Замечание Условие Липшица может быть заменено более удобным требованием f наличия непрерывной в D (и потому ограниченной) производной Тогда существует постоянная N = ma f такая, что f (, ) f(, ) N, те выполнено условие D Липшица Замечание 3 Теорема носит локальный характер Мы доказали ее в области D + = { + H, b} Аналогично можно доказать ее в области D = { H, b} Теорема существования и единственности решения задачи Коши в случае, когда правая часть уравнения непрерывна и удовлетворяет условию Липшица в полосе Примером утверждения, имеющего нелокальный характер, те в котором устанавливается существование решения на всем промежутке гладкости по, является следующая теорема Теорема Пусть функция f (, ) непрерывна и удовлетворяет условию Липшица по + Тогда задача () имеет единственное решение на отрезке [, + a] Доказательство этой важнейшей в нашем курсе теоремы лишь незначительно отличается от приведенного выше доказательства Теоремы При организации итерационного процесса (3) в качестве начального приближения можно взять любую непрерывную на отрезке переменой в полосе {[, a], R} [, + a] функцию ( ) Так как определяемая формулой (3) функция непрерывна на отрезке [, + a] (как и все последующие приближения i, i =,3, ), то на всем отрезке [, + a] выполнено неравенство d Это приводит к незначительному изменению в оценке (5): постоянную b нужно заменить на d, а постоянную H на a Детали этого доказательства читателю предлагается уточнить самостоятельно 5 Дополнения, примеры, упражнения

6 Дополнение Можно доказать разрешимость задачи Коши лишь при выполнении условия (У), те предполагая лишь непрерывность функции f (, ) в области D (теорема Пеано) Однако, в этом случае решение не обязательно единственно Пример (нарушение единственности решения задачи Коши) Рассмотрим уравнение d d = Правая часть f (, ) = определена и непрерывна при всех (, ) Покажем, что условие Липшица не выполняется в прямоугольниках, содержащих точки оси Действительно, если условие Липшица выполняется, то при справедливо неравенство: f(, ) f(, ) = L, тогда как при = и f(, ) f(,) = Проверьте самостоятельно, что существуют два решения задачи Коши, удовлетворяющие начальному условию () = :, = и, Дополнение (о продолжении решения) Решение задачи Коши () может быть продолжено, например, вправо за точку = + H, если условия теоремы существования и единственности выполняются в прямоугольнике D = { a, ( ) b} В этом случае решение () существует и единственно на отрезке [, + H], где постоянная H находится из тех же соображений, что и H в Теореме Заметим, что продолжение решения возможно не всегда даже в случае, если f (, ) бесконечно дифференцируемая функция Пример Рассмотрим задачу Коши d = d () = Найдем ее точное решение d d = => d d = => d d = => = + C => = + C общее решение дифференциального уравнения Используя начальное условие () =, получим C = Поэтому = = решение задачи Коши Оценим промежуток существования решения задачи Коши в соответствии с Теоремой, те найдем параметр H, фигурирующий в этой теореме Пусть решение задачи Коши на, H отклонилось от своего начального значения на величину Тогда отрезке [ ] H =, M ( ) H M Найдем максимальное значение H ( + ) ( + ) ( + )( + ) H ( ) = = = = = + => = ( + ) => =, H H() = =

7 Таким образом, Теорема гарантирует разрешимость задачи лишь на отрезке, Заметим, что из вида точного решения задачи Коши вытекает возможность его продолжения вправо лишь на промежутке < Попробуем продолжить его на больший промежуток, последовательно используя Теорему Рассмотрим следующий процесс =, = ( ) = =, H =, M = + => H( ) = 3 M H ( ) = => 3 =, 3 3 = =,, Далее =, = = =, H =, M = => H( ) = 9 M H ( ) = => =, = =,, Итак, мы построили продолжение решения на больший интервал Заметим, что на - том шаге описанного процесса H =, = +,, и H = = + = = 3 = = = Дополнение 3 Метод последовательных приближений Пикара активно используется при численном решении задачи Коши После n итераций получается приближенное решение n( ), тем более точное, чем больше n Пример 3 Рассмотрим снова задачу Коши d = d () = Ее точное решение было получено выше (см пример ), и имеет вид = = Получим решение рассматриваемой задачи, применяя метод последовательных приближений Пикара Определим итерационный процесс так: dn = n d () n =, n =,,3, В качестве нулевого приближения возьмем = На каждой итерации задача разрешима при [, H ] и ее решение имеет вид: Проделаем несколько первых итераций: = + = +, n ( ξ ) n = + ( ξ) ξ ( ξ) ξ 3 = + d = + + d = ,

8 3 3 ( ξ) ξ = + d = Продолжая этот итерационный процесс, мы все точнее будем приближаться к функции n = =, < n= Упражнение Найдите точное решение задачи Коши d 3 d =, () = Методом последовательных приближений Пикара найдите ( ) и Далее с помощью Теоремы оцените промежуток существования решения и попробуйте построить продолжение решения на больший интервал Дополнение Рассмотрим задачу Коши () d = f (, ) d, ( ) = в случае, когда функция f (, ) в окрестности точки (, ) раскладывается в степенной ряд j f (, ) = f j j Такая функция f (, ) называется аналитической Справедливо следующее утверждение Теорема 3 Если функция f (, ) аналитическая в окрестности точки (, ), то в некоторой окрестности этой точки существует единственное аналитическое решение задачи Коши () вида = + c = Этот ряд определяет решение задачи Коши лишь при тех значениях переменной, при которых он сходится Разложив f (, ) в окрестности точки (, ) в степенной ряд j j, подставив в обе части ряд для f (, ) = f j и приравняв коэффициенты при одинаковых степенях, получим линейную систему уравнений для определения коэффициентов c В силу Теоремы 3 эта система имеет единственное решение Аналогичная теорема имеет место и для задачи Коши для ОДУ n-го порядка, разрешенного относительно старшей производной: ( n) ( n ) = f,,,,, n =, =,, = n ( n ) в случае, когда правая часть f,,,, является аналитической функцией в окрестности точки,,,, n Пример Рассмотрим еще раз задачу Коши d = d, () =

9 точным решением которой является функция = (см пример ) Построим ее решение, используя Теорему 3 Обозначив z =, для функции z получим задачу Коши: dz = z+ = + z+ z d z() = В окрестности точки (,) выполнены все условия Теоремы 3, что позволяет искать решение в виде степенного ряда z = c = Подставив данный ряд в обе части уравнения, получим c = + c + c = = = Выпишем несколько первых слагаемых сумм справа и слева: 3 3 c+ c+ 3c3 + = + c+ c + c3 + + c + cc + Приравнивая коэффициенты при одинаковых степенях, найдем c =, c =, c3 =,, c =, 3 Таким образом, z = = =, <, следовательно, = = z = =

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Глава 3 ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Лекции 3-4 Интегральное уравнение Фредгольма -го рода как пример некорректно поставленной задачи Эта тема по предмету рассмотрения

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

1.Разложение аналитической функции в степенной ряд.

1.Разложение аналитической функции в степенной ряд. ЛЕКЦИЯ N37. Ряды аналитических функций. Разложение аналитической функции в степенной ряд. Ряд Тейлора. Ряд Лорана..Разложение аналитической функции в степенной ряд.....ряд Тейлора.... 3.Разложение аналитической

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

ТЕМА 2. Элементы теории линейных операторов. Обратный оператор. Вполне непрерывный оператор.

ТЕМА 2. Элементы теории линейных операторов. Обратный оператор. Вполне непрерывный оператор. ТЕМА Элементы теории линейных операторов Обратный оператор Вполне непрерывный оператор Основные определения и теоремы Оператор A, действующий из линейного пространства L в линейное пространство L, называется

Подробнее

1.Последовательности комплексных чисел. Предел.

1.Последовательности комплексных чисел. Предел. ЛЕКЦИЯ N33. Функции комплексного переменного. Пределы. Непрерывность. Элементарные функции. Дифференцирование ФКП. Свойства производных. 1.Последовательности комплексных чисел. Предел.... 1.Ограниченные

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

Лекция 1 (13 января 2017)

Лекция 1 (13 января 2017) КОНСПЕКТ ЛЕКТОРА математический анализ, курс, 2 семестр, 207, А.М. Красносельский Числовые ряды Лекция (3 января 207) Рассмотрим последовательность R и напишем «бесконечную сумму»: a k a + a 2 +... + a

Подробнее

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 4.0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

Лекция 10 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ. 1. Банаховы алгебры

Лекция 10 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ. 1. Банаховы алгебры Лекция 0 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ В этой лекции мы изучим банаховы алгебры и рассмотрим спектральную теорию операторов, действующих в банаховом пространстве, которое в данной лекции всюду

Подробнее

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА В этой лекции мы введём альтернативы Фредгольма и докажем с их помощью существование классических решений задач Дирихле и Неймана в ограниченных и неограниченных

Подробнее

такова, что: 1)f(, t, y, z) прогрессивно измерима t и для всех (y, z) со значениями в R d 1

такова, что: 1)f(, t, y, z) прогрессивно измерима t и для всех (y, z) со значениями в R d 1 3 2.2.2 Метод сжимаающих отображений Аналогичные рассуждения при определенных условиях справедливы и в общем случае. Приведем условия, при которых существует единственное решение (y(), z()) Y M задачи

Подробнее

Основы теории специальных функций

Основы теории специальных функций Основы теории специальных функций Необходимость изучения специальных функций математической физики связана с двумя основными обстоятельствами. Во-первых, при разработке математической модели физического

Подробнее

Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ. Содержание

Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ. Содержание Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ Постановка вопроса Содержание Некоторые напоминания Итерационные методы решения уравнений. Сжимающие отображения. Принцип неподвижной

Подробнее

ЛЕКЦИЯ 4Б Метрические пространства 2

ЛЕКЦИЯ 4Б Метрические пространства 2 ЛЕКЦИЯ 4Б Метрические пространства 2. Простейшие (и важнейшие) свойства метрических пространств. Непрерывность расстояния. Легко видеть, что функция «расстояние» ρ(x, y) непрерывна по совокупности аргументов.

Подробнее

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1 В.В. Жук, А.М. Камачкин 5 Функциональные последовательности и ряды. Равномерная сходимость, возможность перестановки предельных переходов, интегрирование и дифференцирование рядов и последовательностей.

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

СОДЕРЖАНИЕ. ВВЕДЕНИЕ.. 5 Тема 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 1. Пространство R..

СОДЕРЖАНИЕ. ВВЕДЕНИЕ.. 5 Тема 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 1. Пространство R.. СОДЕРЖАНИЕ ВВЕДЕНИЕ 5 Тема ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция Пространство R 6 Лекция Предел и непрерывность функции нескольких переменных 5 Лекция 3 Функции многих переменных

Подробнее

ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега. 1. Типы сходимости функциональных последовательностей

ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега. 1. Типы сходимости функциональных последовательностей ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега 1. Типы сходимости функциональных последовательностей На лекции было отмечено, что имеются следующие виды сходимости функциональных последовательностей:

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

1 Экспонента линейного оператора.

1 Экспонента линейного оператора. 134 1. ЭКСПОНЕНТА ЛИНЕЙНОГО ОПЕРАТОРА. 1 Экспонента линейного оператора. 1.1 Напоминание: геометрическая формулировка основной задачи ОДУ. Напомним, что векторное поле это отображение, которое каждой точке

Подробнее

1., 2., 3., где а, d постоянные числа.

1., 2., 3., где а, d постоянные числа. ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь

Подробнее

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики Учебно-методическое пособие для студентов факультета прикладной математики и информатики

Подробнее

О системах дифференциальных уравнений, содержащих параметры

О системах дифференциальных уравнений, содержащих параметры Математический сборник т 7(69) 95 А Н Тихонов О системах дифференциальных уравнений содержащих параметры Рассмотрим систему дифференциальных уравнений n и решение этой системы определяемое условиями Это

Подробнее

Методологические особенности формулы Тейлора в курсе математического анализа

Методологические особенности формулы Тейлора в курсе математического анализа Методологические особенности формулы Тейлора в курсе математического анализа # январь Кандаурова И Е УДК: 57 Россия МГТУ им НЭ Баумана hadaur@gyrplaru Введение Классический курс математического анализа

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x)

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x) 6 Ряды Фурье 6 Ортогональные системы функций Ряд Фурье по ортогональной системе функций Функции ϕ () и ψ (), определенные и интегрируемые на отрезке [, ], называются ортогональными на этом отрезке, если

Подробнее

ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега. 1. Типы сходимости функциональных последовательностей

ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега. 1. Типы сходимости функциональных последовательностей ЛЕКЦИЯ 3А Типы сходимости. Интеграл Лебега. Пространства Лебега 1. Типы сходимости функциональных последовательностей На лекции 3 было отмечено, что имеются следующие виды сходимости функциональных последовательностей:

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Определение 1. Степенным рядом называется функциональный ряд вида

Определение 1. Степенным рядом называется функциональный ряд вида . Радиус сходимости Определение. Степенным рядом называется функциональный ряд вида c 0 + c (t a) + c 2 (t a) 2 + + c (t a) + = c (t a), () где c 0, c, c 2,..., c,... C называются коэффициентами степенного

Подробнее

Лекция 3. Интегральный признак

Лекция 3. Интегральный признак С. А. Лавренченко www.lwreceko.ru Лекция Интегральный признак Перед прослушиванием этой лекции рекомендуется повторить несобственные интегралы (лекция 9 и практическое занятие 9 из модуля «Интегральное

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

Интегралы и дифференциальные уравнения. Лекции 9-10

Интегралы и дифференциальные уравнения. Лекции 9-10 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов -го курса -го семестра специальностей РЛ,,3,6, БМТ, Лекции 9- Признаки сходимости

Подробнее

a β, откуда следует α справедливость формулы (13.1).

a β, откуда следует α справедливость формулы (13.1). Лекция. Замена переменной и интегрирование по частям в определенном интеграле. Применение определенного интеграла к вычислению площадей плоских фигур. Теорема.. Если: функция непрерывна на отрезке [,],

Подробнее

ЛЕКЦИЯ 5 Пример глобальной разрешимости

ЛЕКЦИЯ 5 Пример глобальной разрешимости ЛЕКЦИЯ 5 Пример глобальной разрешимости S 9. Применение теоремы Пикара в сочетании с методом априорных оценок: доказательство глобальной разрешимости одной начально-краевой задачи 1. Классическая постановка

Подробнее

Ряды аналитических функций

Ряды аналитических функций Лекция 6 Ряды аналитических функций 6.1 Функциональные последовательности Пусть D C и f n : D C. Последовательность функций {f n } сходится поточечно (converges pointwise) к функции f : D C если для каждого

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

М. В. Дейкалова КОМПЛЕКСНЫЙ АНАЛИЗ Вопросы к экзамену (группа МХ-201, 2015) Вопросы первого коллоквиума 1

М. В. Дейкалова КОМПЛЕКСНЫЙ АНАЛИЗ Вопросы к экзамену (группа МХ-201, 2015) Вопросы первого коллоквиума 1 М. В. Дейкалова КОМПЛЕКСНЫЙ АНАЛИЗ Вопросы к экзамену (группа МХ-21, 215) Вопросы первого коллоквиума 1 1. Дифференцируемость функции комплексного переменного в точке. Условия Коши Римана (Даламбера Эйлера).

Подробнее

ДУ 2курс 4 семестр 1 задание

ДУ 2курс 4 семестр 1 задание . ДУ курс семестр задание. Постановка задачи Коши для нормальной системы дифференциальных уравнений.. Выяснить, при каких начальных условиях существует единственное решение уравнения y y y.. Решить уравнения,

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Math-NetR Общероссийский математический портал В Ф Бутузов Н Т Левашова А А Мельникова Контрастная структура типа ступеньки в сингулярно возмущенной системе уравнений с различными степенями малого параметра

Подробнее

ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции.

ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции. ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции..окрестность бесконечно удаленной точки.....разложение Лорана в окрестности бесконечно удаленной точки.... 3.Поведение

Подробнее

ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР )

ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР ) ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР 2007-2008) 1 Сформулируйте определение шаровой окрестности точки пространства R 2 Сформулируйте определение прямоугольной

Подробнее

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными.

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными. ЛЕКЦИЯ N9. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными..дифференциальные уравнения. Общие понятия.....дифференциальные уравнения

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Семинар Лекция 1 ФУНКЦИИ ОГРАНИЧЕННОЙ ВАРИАЦИИ. 2. Другие важные свойства

Семинар Лекция 1 ФУНКЦИИ ОГРАНИЧЕННОЙ ВАРИАЦИИ. 2. Другие важные свойства Семинар Лекция 1 ФУНКЦИИ ОГРАНИЧЕННОЙ ВАРИАЦИИ 1. Факты, сообщённые на лекции 1 (напоминание) Для удобства ссылок приведём некоторые основные факты. Л 1. Функции ограниченной вариации образуют линейное

Подробнее

ЛЕКЦИЯ 1А Функции ограниченной вариации. 1. Факты, сообщённые на лекции 1 (напоминание)

ЛЕКЦИЯ 1А Функции ограниченной вариации. 1. Факты, сообщённые на лекции 1 (напоминание) ЛЕКЦИЯ 1А Функции ограниченной вариации 1. Факты, сообщённые на лекции 1 (напоминание) Для удобства ссылок приведём некоторые основные факты. Л1. Функции ограниченной вариации образуют линейное пространство.

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

РЯДЫ РЯДЫ РЯДЫ. П.Ф. Зибров, О.А. Кузнецова. П.Ф. Зибров, О.А. Кузнецова. Учебно-методическое пособие. Тольятти ТГУ Тольятти ТГУ 2009 ) ( ) x

РЯДЫ РЯДЫ РЯДЫ. П.Ф. Зибров, О.А. Кузнецова. П.Ф. Зибров, О.А. Кузнецова. Учебно-методическое пособие. Тольятти ТГУ Тольятти ТГУ 2009 ) ( ) x u u u u u u u u u u!!! iy iy iy!!!! iy iy iy iy iy cos d ПФ Зибров, ОА Кузнецова РЯДЫ Учебно-методическое пособие Тольятти ТГУ 9 РЯДЫ РЯДЫ u u u u u u u u u u!!! iy iy iy!!!! iy iy iy iy iy cos d ПФ Зибров,

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

Лекция 4. Гармонический анализ. Ряды Фурье

Лекция 4. Гармонический анализ. Ряды Фурье Лекция 4. Гармонический анализ. Ряды Фурье Периодические функции. Гармонический анализ В науке и технике часто приходится иметь дело с периодическими явлениями, т. е. такими, которые повторяются через

Подробнее

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Лабораторная работа Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Постановка задачи: Требуется найти безусловный минимум функции одной переменной (

Подробнее

РЯДЫ. 1. Числовые ряды

РЯДЫ. 1. Числовые ряды РЯДЫ. Числовые ряды. Основные определения Пусть дана бесконечная последовательность чисел Выражение (бесконечная сумма) a, a 2,..., a n,... a i = a + a 2 + + a n +... () i= называется числовым рядом. Числа

Подробнее

Вопросы к экзамену по курсу 1-2 модулей

Вопросы к экзамену по курсу 1-2 модулей На устном экзамене студент получает два вопроса и две задачи. Вопросы к экзамену по курсу 1- модулей 1. Расскажите о числах: натуральных, целых, рациональных и иррациональных. Расскажите о числовой прямой

Подробнее

7. Экстремумы функций нескольких переменных

7. Экстремумы функций нескольких переменных 7. Экстремумы функций нескольких переменных 7.. Локальные экстремумы Пусть функция f(x,..., x n ) определена на некотором открытом множестве D R n. Точка M D называется точкой локального максимума (локального

Подробнее

Лекция 3. Дифференцируемость

Лекция 3. Дифференцируемость 1 С А Лавренченко wwwlawrencenkor Лекция 3 Дифференцируемость 1 Понятие дифференцируемости Пусть комплексная функция w f комплексной переменной определена в некоторой окрестности точки Определение 11 дифференцируемости

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

5. Еще о пределах; ряды

5. Еще о пределах; ряды 5. Еще о пределах; ряды Докажем сначала предложение, на которое нам не хватило времени на прошлой лекции. Предложение 5.. Для всякого b > 0 имеем lim n (ln n=n b ) = 0. (Переход к произвольному основанию

Подробнее

В.Ф. Бутузов ЧИСЛОВЫЕ РЯДЫ ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ. Учебное пособие

В.Ф. Бутузов ЧИСЛОВЫЕ РЯДЫ ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ. Учебное пособие МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ В.Ф. Бутузов ЧИСЛОВЫЕ РЯДЫ ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ Учебное пособие Москва 05 Предисловие

Подробнее

( 1) по крайней мере, с одной стороны: неубывающие снизу, невозрастающие. Лекция 3. МОНОТОННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

( 1) по крайней мере, с одной стороны: неубывающие снизу, невозрастающие. Лекция 3. МОНОТОННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ Лекция МОНОТОННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ Монотонные последовательности Теорема Вейерштрасса Число e Принцип выбора 4 Фундаментальные последовательности Критерий Коши Теорема о вложенных отрезках Определение

Подробнее

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Лекция 4 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Тема: Элементарная кривая Касательная Длина кривой План лекции Понятие и способы задания элементарной кривой Вектор-функция одного переменного Касательная к кривой

Подробнее

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет Министерство образования и науки Российской Федерации Федеральное агентство по образованию Пензенский государственный университет Руденко АК, Руденко МН, Семерич ЮС СБОРНИК ЗАДАЧ С РЕШЕНИЯМИ ДЛЯ ПОДГОТОВКИ

Подробнее

Лекция 27 Глава 3. Системы линейных неравенств 3.1. Основные понятия

Лекция 27 Глава 3. Системы линейных неравенств 3.1. Основные понятия Лекция 7 Глава. Системы линейных неравенств.. Основные понятия Системы линейных неравенств применяются для решения различных математических задач. Системой линейных неравенств из с неизвестными система

Подробнее

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ ЗАДАЧА ОПТИМИЗАЦИИ На прошлой лекции были рассмотрены методы решения нелинейных уравнений Были рассмотрены двухточечные методы, которые используют локализацию корня,

Подробнее

1. Числовой последовательностью называется бесконечное множество чисел

1. Числовой последовательностью называется бесконечное множество чисел 1. Числовой последовательностью называется бесконечное множество чисел (1) следующих одно за другим в определенном порядке и построенных по определенному закону, с помощью которого задается как функция

Подробнее

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f( x ) слева при стремлении x к a, если для любого числа существует такое число

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр, г. Тема 1. Числовые множества и последовательности

Вопросы и задачи к экзамену по математическому анализу I семестр, г. Тема 1. Числовые множества и последовательности Вопросы и задачи к экзамену по математическому анализу I семестр, - г Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

Пусть Γ C ориентированная кусочно-гладкая кривая, f определённая на кривой Γ непрерывная функция. Для любой точки z C \ Γ функция z

Пусть Γ C ориентированная кусочно-гладкая кривая, f определённая на кривой Γ непрерывная функция. Для любой точки z C \ Γ функция z Лекция 5 Интеграл типа Коши 5.1 Интеграл типа Коши Пусть C ориентированная кусочно-гладкая кривая, f определённая на кривой непрерывная функция. Для любой точки z C \ функция t f(t) z непрерывна по переменной

Подробнее

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения.

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения. Глава Введение Лекция Понятие дифференциального уравнения Основные определения Определение Дифференциальным уравнением (ДУ) называют уравнение, в котором неизвестная функция находится под знаком производной

Подробнее

18-е занятие. Равномерная сходимость функциональных рядов. Признак Вейерштрасса Матем. анализ, прикл. матем., 3-й семестр

18-е занятие. Равномерная сходимость функциональных рядов. Признак Вейерштрасса Матем. анализ, прикл. матем., 3-й семестр 8-е занятие. Равномерная сходимость функциональных рядов. Признак Вейерштрасса Матем. анализ, прикл. матем., 3-й семестр Исследовать следующие ряды на равномерную сходимость с помощью определения: Д 767

Подробнее

ГЛАВА II Элементы теории полугрупп

ГЛАВА II Элементы теории полугрупп ГЛАВА II Элементы теории полугрупп ЛЕКЦИЯ 7 Неограниченные линейные операторы Хотя методами главы I нам удалось исследовать многие задачи математической физики, некоторые вполне классические задачи не

Подробнее

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0 Ряды Лорана Более общим типом степенных рядов являются ряды, содержащие как положительные, так и отрицательные степени z z 0. Как и ряды Тейлора, они играют важную роль в теории аналитических функций.

Подробнее

Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ

Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ Глава 28 ОБОБЩЕННЫЕ ФУНКЦИИ 28.1. Пространства D, D основных и обобщенных функций Понятие обобщенной функции обобщает классическое понятие функции и дает возможность выразить в математической форме такие

Подробнее

k называется рядом Лорана. Здесь k, z

k называется рядом Лорана. Здесь k, z Практическое занятие 6 Ряды Тейлора и Лорана 6 Ряд Тейлора 6 Ряд Лорана 6 Ряд Тейлора Т е о р е м а ( Т е й л о р а ) Функция однозначная и аналитическая в круге R единственным образом разлагается в этом

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы ЛАБОРАТОРНАЯ РАБОТА 7 ОБОБЩЕННЫЕ ФУНКЦИИ I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Обозначим через D множество всех бесконечно дифференцируемых финитных функций действительного переменного. Это

Подробнее

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения:

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения: МНОЖЕСТВА Множество В математике понятие множество используется для описания совокупности предметов или объектов При этом предполагается, что предметы (объекты) данной совокупности можно отличить друг

Подробнее

Аналитические решения экстремальных задач для уравнения Лапласа

Аналитические решения экстремальных задач для уравнения Лапласа Дальневосточный математический журнал. 214. Том 14. 2. C. 231 241 УДК 517.95 MSC21 35J5 c A. A. Илларионов, Л. В. Илларионова 1 Аналитические решения экстремальных задач для уравнения Лапласа Представлены

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 7 Предел функции СОДЕРЖАНИЕ: Предел функции в точке Предел функции на бесконечности Основные теоремы о пределах функций Бесконечно

Подробнее

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса.

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Для численного решения нелинейных задач в различных ситуациях используют как линейные, так и нелинейные схемы. Устойчивость соответствующих

Подробнее

«Математический анализ»

«Математический анализ» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени НЭ БАУМАНА Билеты для сдачи экзамена по курсу «Математический анализ» МГТУ имени НЭ Баумана МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени

Подробнее

Математический анализ. Введение [1,3,4]

Математический анализ. Введение [1,3,4] I Краткие исторические сведения Математический анализ Введение [1,3,4] Математический анализ часть математики, в которой изучаются функции и их обобщения методами теории пределов Поскольку понятие предела

Подробнее

Приближенное вычисление определенных интегралов. 1. Формула трапеций.

Приближенное вычисление определенных интегралов. 1. Формула трапеций. ЛЕКЦИЯ N 7. Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов..... Формула трапеций.....формула парабол.... Несобственные интегралы....

Подробнее

ЛЕКЦИЯ 14. Численные методы нелинейного программирования. 3. Метод Такахаши (дуализация/градиентный

ЛЕКЦИЯ 14. Численные методы нелинейного программирования. 3. Метод Такахаши (дуализация/градиентный ЛЕКЦИЯ 14 Численные методы нелинейного программирования 1. Градиентный метод 2. Теоремы сходимости 3. Метод Такахаши (дуализация/градиентный метод) -1- Численные методы НЛП Задача поиска безусловного минимума:

Подробнее

n =1,2, K. Ряд называют

n =1,2, K. Ряд называют 2. Признаки сходимости знакоположительных рядов Ряд u называют знакоположительным, если все его члены неотрицательны, т.е. если u 0 для любого,2, K. Ряд называют знакоотрицательным, если все его члены

Подробнее

5. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения

5. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения УРАВНЕНИЯ НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения Уравнениями первого порядка неразрешенными относительно производной называются уравнения вида F ( x ) () Уравнение () можно решать следующими

Подробнее