РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях"

Транскрипт

1 Содержание РГР. Растяжение сжатие.... Определение усилий в стержнях и расчет их на прочность..... Определение усилий в стержнях..... Определение диаметра стержней.... Расчет ступенчатого бруса на прочность при растяжении и сжатии Определение продольных усилий Определение напряжений Определение перемещений Построение эпюр Проверка условия прочности и жесткости... 9 РГР. Расчет балки на прочность Определение реакций опор Построение эпюр Q и..... Расчет поперечных сил Q..... Расчет изгибающих моментов М.... Подбор двутаврового сечения Построение эпюры нормальных напряжений в опасном сечении... 6 РГР. Сложное нагружение бруса Построение эпюры продольных сил Построение эпюры изгибающих моментов Определение опасного сечения бруса Проверка прочности бруса...

2 РГР. Растяжение сжатие. Определение усилий в стержнях и расчет их на прочность.. Определение усилий в стержнях Определить реакции стержней, показанных на рисунке. Принять a b l; l 0,8 мм; P 6 кн; 60 где l длина стержней. На рисунке. приведена расчетная схема. d мм; МПа.,, номера стержней. Рисунок. Расчетная схема. Отбросили опоры и заменили их реакциями. Зададимся плоскостью с осями координат 0x и 0y. Рисунок. Расчетная схема без опор. Необходимо найти усилие N в стержне. Поэтому составим уравнение равновесия моментов относительно точки А iz 0 А М N sin 60 b P(a b) 0. Из этого уравнения выразим и посчитаем N

3 N P(a b) P(l l) Pl 6 ( 0,8 0,8) 6 0,8 sin 60 b sin 60 l sin 60 0,8 Найдем остальные усилия в стержнях. Составим уравнения равновесия Fix 0 N N cs60 0; (.) Fiy 0 N N sin 60 P 0, (.) Из формулы. выразим и найдем N N N cs60 0 ; N N cs60 8,6cs60,кН. Из формулы. выразим и найдем N N N sin 60 P 0 ; N P N sin ,6 sin 60 90кН 8,6 кн Обратим внимание, что усилие стержня сжимающее, о чем говорит его отрицательное значение... Определение диаметра стержней Условие прочности при растяжении для стержней Ni i (.) Fi где F i площадь поперечного сечения соответствующего стержня, м ; Выразим F i из формулы. N i F. i Диаметр круглого стержня находится по формуле Fi d i, где диаметр поперечного сечения соответствующего стержня, м; d i Для стержня N, 0 F 0,7 0 м, F 0,7 0 - d,0 0 м 0, мм, Для стержня

4 F N 90 0, ,56 0 м 6 F 0, d,68 0 м 6,8 мм, Для стержня N 8,6 0 F, 0 м, F, 0 - d,7 0 м,7 мм, I,II,III варианты схем Рисунок. Расчетные схемы. Расчет ступенчатого бруса на прочность при растяжении и сжатии Для заданного стального ступенчатого бруса на рисунке. требуется построить эпюры продольных сил; используя эпюру продольных сил, построить эпюры нормальных напряжений и перемещений; проверить выполнение условия прочности, если 5 60 МПа;Е 0 МПа. Принять a b l; c l; l 0,8 мм; P 6 кн; d мм Рисунок. Схема ступенчатого бруса Площадь круглого сечения (,5d) (,5 0,0) F,,0 0 м; d 0,0 F, 0,5 0 м; 5

5 .. Определение продольных усилий Отбросим опору, заменив ее реакцией, как показано на рисунке. Рисунок. Схема ступенчатого бруса без опоры Составим уравнение равновесия, найдем реакцию опоры. F ix 0 R P P P 0, Из этого уравнения найдем Величину реакции R P P P P. Разобьем брус на четыре участка z;z ;z; z. Определим для каждого из участков величину нагрузки. Схема, разбитая на участки, показана на рисунке.5. где ) P (Z i Рисунок.5 схема, разбитая на участки z;z ;z; z 0 z a P ( ) R; Z усилие в заданном сечении, кн. P ( 0) R P Z кн; P ( a ) R P Z кн. 0 z b P ( ) R P; Z P ( 0) R P P P P 7 Z кн; P ( b) R P P P P 7 Z кн. 0 z a 6

6 Для участка ; P ) Z R P P; ( P ( 0) R P P P P P P Z P ( a ) R P P P P P P Z 6 кн; 6 кн. z 0 z c R P P P; P ) Z ( P ( 0) R P P P P P P P Z P ( c) R P P P P P P P Z 0кН; 0 кн. Эпюра продольных усилий показана на рисунке.6 б). Вывод Положительные усилия растягивающие, отрицательные сжимающие... Определение напряжений По найденным усилиям в пункте.., найдем напряжения соответствующие участкам z;z ;z; z Для участка z P(Z) 0 ( Z ), МПа; F,0 0 где (Z ) напряжение в заданном сечении, МПа. i Для участка z P(Z ) 7 0 ( 70,6 Z ) МПа; F,0 0 Для участка z P(Z ) 6 0 ( 79,6 Z ) МПа; F 0,5 0 Для участка z P(Z ) 0 0 ( 0 Z ) МПа; F 0,5 0 Эпюра нормальных напряжений показана на рисунке.6 в). Вывод Положительные напряжения растягивающие, отрицательные сжимающие. 7

7 .. Определение перемещений Используя рисунок.5, найдем перемещения. 0 z a P(Z) z l( Z) ; EF где l (Z ) абсолютная продольная деформация соответствующего участка, м. i 0; l l ( Z 0) P(Z) a P(Z) l 0 0,8 l(, 0 м, мм Z a ), 9 EF EF 00 0,0 0 0 z b P z (Z ) l( l a ) ; Z ) (Z EF l, мм; (Z b) l (Z a ) P b (Z ) l EF l ( Z 0) (Z a ) (Z a ) P l (Z ), 0 EF 7 0 0, ,0 0,7 0 м,7 мм; 0 z l P z (Z ) l( Z ) l(z b) ; EF l ( 0) l b),7 мм; Z (Z P a P l (Z ) (Z ) 6 0 0,8 l l (Za ) b) l b),7 0 (Z (Z 9 EF EF ,5 0,06 0 м,06 мм; Для участка z ; 0 z c P z (Z ) l( Z ) l(z a ) ; EF l ( 0) l a ),06 мм; Z (Z P c P l (Z ) (Z ) 0 0 0,8 l l l a ),06 0 (Z c) (Za ) (Z 9 EF EF ,5 0,06 0 м,06 мм; Эпюра продольных деформаций показана на рисунке.6 г). 8

8 .. Построение эпюр По данным вычисленным в пунктах..;..;.. построим соответствующие эпюры на рисунке.6. а) расчетная схема; б) эпюра продольных сил; в) эпюра нормальных напряжений; г) эпюра продольных деформаций. Рисунок.6 эпюры..5 Проверка условия прочности и жесткости Условие прочности при растяжении данной схемы max, где max максимальные напряжения, МПа. Из эпюры нормальных напряжений на рисунке.6 в) видно, что максимальные напряжения на участке z. ( Z), МПа 60 МПа Вывод Условие прочности выполнилось. 9

9 РГР. Расчет балки на прочность Требуется определить реакции опор; построить эпюры изгибающих моментов и поперечных сил; подобрать двутавр при 60 МПа ; начертить двутавровый профиль и построить эпюру в опасном сечении. Рисунок. Расчетная схема. Принять A,6 м; A 0, м; B, м; B, 8м; C 0, 8 м; D, м; P 9 кн; P 8,5 кн; 8кН; 8кН; q кн/м. Определение реакций опор Отбросим опоры, заменив их соответствующими реакциями. Зададимся плоскостью с осями 0x и 0y. На рисунке. приведена схема без опор. Рисунок. Расчетная схема без опор Запишем уравнение равновесия для данной плоской системы сил 0

10 F F ix iy iz 0 R 0 R 0 0;(.) P R q(d C) P P A R 0;(.) D C q(d C) C P A R B 0.(.) где Fix, Fiy сумма всех сил на оси 0x и 0y соответственно, кн; iz сумма моментов относительно оси 0z (ось 0z перпендикулярна осям 0x и 0y), кнм; R момент относительно точки приложения силы R, кнм; R,R, R реакции опоры, кн; Из уравнения (.) видно, что реакция R 0. Из уравнения (.) выразим и посчитаем реакцию R D C PA q(d C) C P A R 0 ; B R, 0,8 8,5 0, (, 0,8) 0,8 8 9,6 8,6 кн;, Из уравнения (.) выразим и посчитаем момент опоры R R P q(d C) P R 0; P q(d C) P R 8,5 (, 0,8) 9,6 0,66 кн. R Реакции опоры имеющие отрицательные величины, направлены в противоположную сторону.. Построение эпюр Q и. Разобьем балку на шесть участков z;z ;z;z ;z 5;z 6;. Определим для каждого из участков величину нагрузки. Схема, разбитая на участки, показана на рисунке..

11 Рисунок. схема, разбитая на участки ;z ;z ;z ;z ;z ; z 5 6 где ) P (Z i.. Расчет поперечных сил Q Найдем поперечные силы. 0 z A Q( Z) R 0,66 кн; усилие в заданном сечении, кн. 0 z C A Q( R P 0,66 8,5 7,8 Z ) кн; 0 z D C Q( R P qz; Z ) Q( 0) R P qz 7,8 Z кн; ( D C) R P q(d C) 0,66 8,5 (, 0,8) 5,6 Z кн. 0 z B D Q( R P q(d C) 0,66 8,5 (, 0,8) 5,6 Z ) кн. Для участка z5; 0 z5 A B Q( R P q(d C) 0,66 8,5 (, 0,8) 5,6 Z5 ) кн. Для участка z ; 6 0 z 6 B A R P q(d C) P 0,66 8,5 (, 0,8) 9,6 кн; Q Q( Z6 ) Эпюра продольных усилий показана на рисунке. б)... Расчет изгибающих моментов М

12 где ) (Z i Найдем изгибающие моменты, используя рисунок.. Для участка ; z 0 z A ( Z) R zкн; ( 0) 0 Z кн; R A 0,66 0, 0,6 кнм. ( Z A ) момент изгибающий, в заданном сечении, кнм. Для участка z ; 0 z C A ( Z ) R (A z ) Pz, кнм; ( 0) R (A z ) Pz 0,6 Z кнм; R (A C A ) P (C A ) 0,66 (0,8) 8,5(0,8 0,),87 кнм. ( Z C A ) 0 z D C ( R (C z) P (C A z ) qz/; Z ) P R (C z ) P (C A z ) qz /,87 кн; ( Z0) (D C) P R (C D C) P (C A D C) q (Z DC) (, 0,8) 0,66 (,) 8,5 ( 0,,),6 кнм 0 z B D D C R (D z ) P (D A z ) q(d C) z ( кн. Z ) D C R (D z ) P (D A z ) q(d C) z,6 ( Z 0) кнм D C R (D B D) P (D A B D) q(d C) B D D) (Z B, 0,8 0,66 (,8) 8,5( 0,,8) (, 0,8),8,,7 кнм Для участка z5; 0 z5 A B D C R (B z ) P (B A z ) q(d C) B D z ( Z5 ) 5 5 5,кН. D C R (B z ) P (B A z ) q(d C) B D z 6,5 кнм ( Z5 0)

13 D C R (B A B ) P (B A A B ) q(d C) B D A B B ) (Z5 A, 0,8 0,66 (,6) 8,5( 0,,6) (, 0,8),,6 8 0,8 кнм 6 0 z 6 B A D C R (A z ) P (A A z ) q(d C) A D z P z ( Z6 ) 6 6 6,кН. 6 D C R (A z ) P (A A z ) q(d C) A D z P z 0,8 ( Z6 0) кнм D C R (A B A ) P (A A B A ) q(d C) A D B A A ) (Z6 B P (B A ) 6, 0,8 0,66 (,) 8,5( 0,,) (, 0,8),, 8 9(,,6) 8 кнм Эпюра изгибающих моментов показана на рисунке. в). На основе данных найденных в пунктах.. и.. построим эпюры.

14 а) расчетная схема; б) эпюра поперечных сил; в) эпюра изгибающих моментов Рисунок. эпюры. Подбор двутаврового сечения Как видно из эпюр изгибающих моментов на рисунке. в), опасное сечение на опоре, в месте приложения изгибающего момента. То есть, опасное сечение там где максимальный изгибающий момент. 5

15 Запишем условие прочности при изгибе max max, Wx где W x момент сопротивления сечения, м. Отсюда выразим и найдем величину W x. max W,5 0 м,5 см x Предварительно подберем двутавр 6, с W' x 09 см. Проверка погрешности Wx W' x, % 00%,% 5%, что допускается W,5 x Окончательно принимает двутавр 6, с W' x 09 см.. Построение эпюры нормальных напряжений в опасном сечении Найдем величину нормального напряжения в опасном сечении. max , МПа max 6 W 09 0 x На рисунке.5 б) показана эпюра нормальных напряжений. 6

16 а) двутавровое сечение б) эпюра нормальных напряжения в сечении; Рисунок.5 эпюры напряжений в сечении. 7

17 РГР. Сложное нагружение бруса Требуется построить эпюру продольных сил; построить эпюру изгибающих моментов; определить опасное сечение бруса, вычислить max ; проверить прочность бруса, если 60 МПа ; Принять l 0,5м; b 0, 05 м; h 0, 5 м; P x 5кН; P z кн. Рисунок. расчетная схема. Построение эпюры продольных сил Для удобства расчета, перенесем все силы в центр сечения бруса, с добавлением дополнительных сил, которые получаются в результате действия данных сил. Это показано на рисунке. 8

18 Рисунок. приведенная расчетная схема. В результате появилось два дополнительных момента b P y z изгибающий момент, h P крутящий момент. z x Разобьем схему на один участок как показано на рисунке. 0 z l Величина продольных сил P P кн ( Z) z Эпюра продольных сил показана на рисунке. б). Построение эпюры изгибающих моментов Используя рисунок., запишем уравнение для нахождения изгибающего момента. 0 z l Величина продольных сил P z кнм; ( Z) x y b 0,05 P,кНм; ( Z 0) y z 9

19 0,05 P l 5 0,5 9,05 кнм. l) x y ( Z Эпюра изгибающих моментов показана на рисунке. в) Дополнительно еще построим эпюру крутящего момента, величина которого будет постоянна по длине бруса и ровна h 0,5 P 5, кнм z x Эпюра крутящего момента показана на рисунке. г) а) приведенная схема; б) эпюра продольных сил; в) эпюра изгибающих моментов; г) эпюра крутящего момента. Рисунок. эпюры.. Определение опасного сечения бруса Как видно из рисунка., опасное сечение возле жесткой заделки. Найдем величину максимального напряжения по четвертой теории прочности. IV ЭКВ x (max y(max) 0,75 к max, МПа W W где W y y момент сопротивления прямоугольного сечения, IV ЭКВ эквивалентный момент по четвертой теории прочности, кнм 0 y м

20 b h 0,05 0,5 Wx,59 0 м 6 6 0,75 0 9,05 0,75, 0 x (max y(max) к max - W,59 0 y Теперь найдем напряжение продольных сил Pmax ' max F, МПа; где F площадь поперечного сечения бруса, м 0 ',6 МПа; max 0,05 0,5 Найдем общее напряжение ',6 0,58,8 МПа; общее max max 0,58МПа. Проверка прочности бруса Условие выполнилось. общее,8 60 МПа.

Задание 1 Построение эпюр при растяжении-сжатии

Задание 1 Построение эпюр при растяжении-сжатии Задание 1 Построение эпюр при растяжении-сжатии Стальной двухступенчатый брус, длины ступеней которого указаны на рисунке 1, нагружен силами F 1, F 2, F 3. Построить эпюры продольных сил и нормальных напряжений

Подробнее

Для данной балки из условия прочности подобрать номер двутавра. Решение

Для данной балки из условия прочности подобрать номер двутавра. Решение Задача 1 Для данной балки из условия прочности подобрать номер двутавра. Решение Дано: M = 8 кн м P = 4 кн q = 18 кн м L = 8 м a L = 0.5 b L = 0.4 c L = 0.3 [σ] = 160 МПа 1.Находим реакции опор балки:

Подробнее

Указания к выполнению контрольной работы 3

Указания к выполнению контрольной работы 3 Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе

Подробнее

Примеры решения задач по «Механике» Пример решения задачи 1

Примеры решения задач по «Механике» Пример решения задачи 1 Примеры решения задач по «еханике» Пример решения задачи Дано: схема конструкции (рис) kh g kh / m khm a m Определить реакции связей и опор Решение: Рассмотрим систему уравновешивающихся сил приложенных

Подробнее

Часть 1 Сопротивление материалов

Часть 1 Сопротивление материалов Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению

Подробнее

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней Задача 1 Для внецентренно сжатого короткого стержня с заданным поперечным сечением по схеме (рис.7.1) с геометрическими размерами

Подробнее

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие Задача 1 Для бруса прямоугольного сечения (рис. 1) определить несущую способность и вычислить перемещение свободного конца бруса. Дано: (шифр 312312) схема 2; l=0,5м; b=15см; h=14см; R p =80МПа; R c =120МПа;

Подробнее

Решение: Исходные данные: = 2 = 2 = 2

Решение: Исходные данные: = 2 = 2 = 2 Задача 1 Для данного бруса требуется: - вычертить расчетную схему в определенном масштабе, указать все размеры и величины нагрузок; - построить эпюру продольных сил; - построить эпюру напряжений; - для

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

Задача 1. Решение. Рис. 1 Ступенчатый брус

Задача 1. Решение. Рис. 1 Ступенчатый брус Задача 1 Ступенчатый брус (рис. 1) нагружен силами P 1, P 2 и P 3, направленными вдоль его оси. Заданы длины участков a, b и c и площади их поперечных сечений F 1 и F 2. Модуль упругости материала Е 2

Подробнее

Простые виды сопротивления прямых брусьев

Простые виды сопротивления прямых брусьев Приложение Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования Саратовский государственный аграрный университет имени

Подробнее

1. Определим недостающие геометрические параметры, необходимые для дальнейшего расчета.

1. Определим недостающие геометрические параметры, необходимые для дальнейшего расчета. b Методические рекомендации к практической подготовке по дисциплине "Сопротивление материалов" для студентов-заочников специальности -70 0 0 "Водоснабжение, водоотведение и охрана водных ресурсов" Отмена

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им НЕ Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г)

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г) ПРИЛОЖЕНИЕ 1 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Задача 1 Ступенчатый брус из стали Ст нагружен, как показано на рис. П.1.1, а. Из условия прочности подобрать размеры поперечного сечения. Построить эпюру перемещения

Подробнее

Предельная нагрузка для стержневой системы

Предельная нагрузка для стержневой системы Л е к ц и я 18 НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ Ранее, в первом семестре, в основном, использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной

Подробнее

Внутренние усилия и напряжения

Внутренние усилия и напряжения 1. Внутренние усилия и напряжения Интегральная связь между крутящим моментом Mz и касательными напряжениями имеет вид 2. Если известно нормальное и касательное напряжения в точке сечения, то полное напряжение

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ОСНОВНЫЕ ПОЛОЖЕНИЯ, МЕТОД СЕЧЕНИЙ, НАПРЯЖЕНИЯ Вариант 1.1 1. Прямой брус нагружается внешней силой F. После снятия нагрузки его форма и размеры полностью восстанавливаются.

Подробнее

7. СОДЕРЖАНИЕ ТЕСТОВЫХ ЗАДАНИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ «ПРИКЛАДНАЯ МЕХАНИКА» (СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ) Вопрос Ответ Правильный

7. СОДЕРЖАНИЕ ТЕСТОВЫХ ЗАДАНИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ «ПРИКЛАДНАЯ МЕХАНИКА» (СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ) Вопрос Ответ Правильный . Прочность это. Жесткость это. Устойчивость это 4. К допущениям о свойствах материала элементов конструкций не относится 5. Пластина это способность материала сопротивляться действию нагрузок, не разрушаясь

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Филиал Федерального государственного автономного образовательного учреждения высшего профессионального образования «Казанский (Приволжский) федеральный

Подробнее

РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ

РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ Омск 008 Федеральное агентство по образованию Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра строительной

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

РАСЧЕТНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

РАСЧЕТНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1.

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1. Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 4а ГОСТ 8509-86) и швеллера 4 (ГОСТ 840-89), требуется: 1. Вычертить сечение в масштабе 1: и указать на нем все оси и

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Государственный комитет Российской Федерации по высшему образованию Казанский государственный технологический университет СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к самостоятельной работе студентов

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

Задание по расчетно-графической работе 4 Определение напряжений в балках при изгибе. Расчет на прочность. Задача 1

Задание по расчетно-графической работе 4 Определение напряжений в балках при изгибе. Расчет на прочность. Задача 1 Задание по расчетно-графической работе 4 Определение напряжений в балках при изгибе. Расчет на прочность. Задача 1 Произвести расчет прокатной двутавровой балки на прочность по методу предельных состояний,

Подробнее

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1.1. Статически неопределимые стержневые системы Статически неопределимыми системами называются системы, для которых, пользуясь только условиями статики, нельзя определить

Подробнее

Домашняя работа Задание 8 Определение допускаемой силы при изгибе Работа 8

Домашняя работа Задание 8 Определение допускаемой силы при изгибе Работа 8 Определение допускаемой силы при изгибе Работа 8 Требуется по заданной схеме нагружения балки, размерам и допускаемым напряжением определить допускаемую величину нагрузки (рис.8). Материал балки чугун

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации ФГАОУ ВПО «УрФУ имени первого Президента России Б.Н.Ельцина» Р. Г. Игнатов, Ф. Г. Лялина, А. А. Поляков Д. Е. Черногубов, В. В. Чупин СОПРОТИВЛЕНИЕ

Подробнее

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики Утверждаю Зав. кафедрой профессор И.В. Демьянушко «0» января 007г. А.М. ВАХРОМЕЕВ РАСЧЕТ

Подробнее

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ)

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Контрольные задания по сопротивление материалов. для студентов заочной формы обучения

Контрольные задания по сопротивление материалов. для студентов заочной формы обучения Контрольные задания по сопротивление материалов для студентов заочной формы обучения Составитель: С.Г.Сидорин Сопротивление материалов. Контрольные работы студентов заочников: Метод. указания /С.Г.Сидорин,

Подробнее

Департамент образования и науки Тюменской области Государственное автономное профессиональное образовательное учреждение

Департамент образования и науки Тюменской области Государственное автономное профессиональное образовательное учреждение Департамент образования и науки Тюменской области Государственное автономное профессиональное образовательное учреждение Тюменской области «Агротехнологический колледж» (ГАПОУ ТО «Агротехнологический колледж»)

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Расчетно - графические работы Для студентов -го курса инженерного факультета (специальности ИСБ, ИДБ, ИМБ, ИРБ, ИТБ) Составители: д.т.н.,

Подробнее

Виды нагружения стержня

Виды нагружения стержня Виды нагружения стержня 1. Схема нагружения стержня внешними силами представлена на рисунке. Длины участков одинаковы и равны l. Третий участок стержня испытывает деформации 1) чистый изгиб и кручение;

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления.

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления. Лекция 14 Сложное сопротивление. Косой изгиб. Определение внутренних усилий, напряжений, положения нейтральной оси при чистом косом изгибе. Деформации при косом изгибе. 14. СЛОЖНОЕ СОПРОТИВЛЕНИЕ. КОСОЙ

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ

РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ Омск 011 РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ Методические указания к выполнению курсовой работы для студентов специальности

Подробнее

Задание по расчетно-графической работе 2 Определение усилий, напряжений и деформаций в стержнях, работающих на центральное растяжение и сжатие.

Задание по расчетно-графической работе 2 Определение усилий, напряжений и деформаций в стержнях, работающих на центральное растяжение и сжатие. 18 Задание по расчетно-графической работе 2 Определение усилий, напряжений и деформаций в стержнях, работающих на центральное растяжение и сжатие. Задача 1 Для статически определимого стержня ступенчато

Подробнее

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ)

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ) Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. К. Манжосов РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 14 Деформация плоский изгиб балки с прямолинейной продольной осью. Расчет на прочность Напомним, что деформация «плоский изгиб» реализуется в

Подробнее

Г.А. Тюмченкова РАСТЯЖЕНИЕ И СЖАТИЕ ПРЯМОГО БРУСА

Г.А. Тюмченкова РАСТЯЖЕНИЕ И СЖАТИЕ ПРЯМОГО БРУСА Министерство образования и науки Самарской области Государственное бюджетное профессиональное образовательное учреждение Самарской области «САМАРСКИЙ ЭНЕРГЕТИЧЕСКИЙ КОЛЛЕДЖ» (ГБПОУ «СЭК») Г.А. Тюмченкова

Подробнее

P 1 = = 0 0,1L1 0,3L1 0, 2L2 0,1L

P 1 = = 0 0,1L1 0,3L1 0, 2L2 0,1L Расчёт статически определимой многопролётной балки на неподвижную и подвижную нагрузки Исходные данные: расстояния между опорами L = 5, м L = 6, м L = 7,6м L4 = 4,5м сосредоточенные силы = 4кН = 6 распределённые

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИ- МОЙ СТЕРЖНЕВОЙ СИСТЕМЫ НА ИЗГИБ И УСТОЙЧИВОСТЬ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИ- МОЙ СТЕРЖНЕВОЙ СИСТЕМЫ НА ИЗГИБ И УСТОЙЧИВОСТЬ инистерство образования и науки России Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технологический университет» РАСЧЕТ

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА Часть I Методические указания и контрольные задания Пенза 00 УДК 5. (075) И85 Методические указания

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНО-ГРАФИЧЕСКИМ РАБОТАМ ПО ДИСЦИПЛИНЕ СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ (для студентов

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования и науки Украины Донбасская государственная машиностроительная академия СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по подготовке к практическим занятиям (для студентов всех

Подробнее

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета 1 УДК 624.04 (075) ББК 38.112 Г 96 Г 96 Задания и краткие методические указания к выполнению расчетнографических и курсовой работ по дисциплине «Техническая механика» для студентов направления 230400.62

Подробнее

3 ЗАДАЧИ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

3 ЗАДАЧИ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ ЗАДАЧИ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ Основные требования к оформлению контрольной работы Контрольная работа выполняется в рабочих тетрадях, на титульном листе которой должны быть указаны название дисциплины,

Подробнее

Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения

Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения Расчет стержней при внецентренном сжатии-растяжении Пример 1. Чугунный короткий стержень сжимается

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРОИНЖЕНЕРНЫЙ УНИВЕРСИТЕТ имени В.П. ГОРЯЧКИНА 2 УДК 539.3/8 (076) Рецензент: Кандидат технических наук, доцент кафедры

Подробнее

5. Расчет остова консольного типа

5. Расчет остова консольного типа 5. Расчет остова консольного типа Для обеспечения пространственной жесткости остовы поворотных кранов обычно выполняют из двух параллельных ферм, соединенных между собой, где это возможно, планками. Чаще

Подробнее

Тест: "Техническая механика "Сопротивление материалов ". Задание #1. Выберите один из 3 вариантов ответа: 1) - Высоте a.

Тест: Техническая механика Сопротивление материалов . Задание #1. Выберите один из 3 вариантов ответа: 1) - Высоте a. Тест: "Техническая механика "Сопротивление материалов ". Задание #1 Деформация l пропорциональна Выберите один из 3 вариантов ответа: 1) - Высоте a 2) - Ширине b 3) + Длине l Задание #2 Для какой части

Подробнее

СЛОЖНОЕ СОПРОТИВЛЕНИЕ

СЛОЖНОЕ СОПРОТИВЛЕНИЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Подробнее

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

КОНТРОЛЬНАЯ РАБОТА 2

КОНТРОЛЬНАЯ РАБОТА 2 Автономная некоммерческая организация высшего профессионального образования «СМОЛЬНЫЙ ИНСТИТУТ РОССИЙСКОЙ АКАДЕМИИ ОБРАЗОВАНИЯ» КАФЕДРА «СЕРВИС» КОНТРОЛЬНАЯ РАБОТА 2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ

Подробнее

Таблица 10. Методическое руководство Задание 10 Косой изгиб Работа 10. F kn. h/b. Исходные данные по предпоследней цифре матрикула

Таблица 10. Методическое руководство Задание 10 Косой изгиб Работа 10. F kn. h/b. Исходные данные по предпоследней цифре матрикула Косой изгиб Работа Деревянная балка (рис.) прямогольного поперечного сечения нагржена вертикальной силой в точке А и горизонтальной силой в точке В (обе точки расположены на оси балки). На опорах балки

Подробнее

436 Подбор поперечной арматуры

436 Подбор поперечной арматуры 436 Подбор поперечной арматуры 1 Программа предназначена для расчета поперечной арматуры, требуемой для обеспечения прочности по наклонным и пространственным сечениям, а также для конструирования хомутов

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. Примеры решения задач

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. Примеры решения задач Федеральное агентство железнодорожного транспорта Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Подробнее

УТВЕРЖДАЮ Зав. кафедрой ОНД А.К. Гавриленя протокол 9 от г.

УТВЕРЖДАЮ Зав. кафедрой ОНД А.К. Гавриленя протокол 9 от г. УТВЕРЖДАЮ Зав. кафедрой ОНД А.К. Гавриленя протокол 9 от 0.08. 06 г. Планы практических заданий для студентов курса семестр заочной формы получения образования специальности «Техническое обеспечение процессов

Подробнее

РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ ИЛИ СЖАТИИ

РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ ИЛИ СЖАТИИ Министерство образования Российской Федерации Кубанский государственный технологический университет Кафедра сопротивления материалов и строительной механики РАСЧЕТ СТЕРЖНЕЙ НА ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Пермский национальный исследовательский политехнический

Подробнее

Исходные данные по предпоследней цифре

Исходные данные по предпоследней цифре Методическое руководство Задание Статически неопределимые системы Работа Для балки, изображенной на рисунке (рис.) требуется: ) найти изгибающий момент на левой опоре (в долях ); ) построить эпюры Q y

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Подробнее

Тема 7 Расчет прочности и жесткости простой балки

Тема 7 Расчет прочности и жесткости простой балки Тема 7 Расчет прочности и жесткости простой балки Лекция Перемещения при изгибе. Учет симметрии при определении перемещений... Решение дифференциальных уравнений оси изогнутой балки способом выравнивания

Подробнее

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A Лекция 05 Изгиб Проверка прочности балок Опыт показывает, что при нагружении призматического стержня с прямой осью силами и парами сил, расположенными в плоскости симметрии, наблюдаются деформации изгиба

Подробнее

Задания и методические указания к расчетно-проектировочным работам. Часть 2

Задания и методические указания к расчетно-проектировочным работам. Часть 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ 1 Кафедра сопротивления материалов СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Задания и методические указания к расчетно-проектировочным

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Ивановская государственная текстильная академия» (ИГТА) Кафедра теоретической механики

Подробнее

Всероссийская дистанционная предметная олимпиада для студентов профессиональных образовательных организаций по дисциплине «Техническая механика»

Всероссийская дистанционная предметная олимпиада для студентов профессиональных образовательных организаций по дисциплине «Техническая механика» Всероссийская дистанционная предметная олимпиада для студентов профессиональных образовательных организаций по дисциплине «Техническая механика» Вопрос Варианты ответов Ответ 1. Какое из перечисленных

Подробнее

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ Å. Þ. Àñàäóëèíà ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ УЧЕБНОЕ ПОСОБИЕ ДЛЯ СПО 2-е издание, исправленное и дополненное Ðåêîìåíäîâàíî Ó åáíî-ìåòîäè åñêèì îòäåëîì ñðåäíåãî

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

ВЕРОЯТНОСТНЫЕ МЕТОДЫ КОНСТРУКТИВНОГО РАСЧЕТА ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПОД СЛУЧАЙНЫМ СИЛОВЫМ ВОЗДЕЙСТВИЕМ

ВЕРОЯТНОСТНЫЕ МЕТОДЫ КОНСТРУКТИВНОГО РАСЧЕТА ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПОД СЛУЧАЙНЫМ СИЛОВЫМ ВОЗДЕЙСТВИЕМ Министерство образования и науки Российской Федерации Саратовский государственный технический университет ВЕРОЯТНОСТНЫЕ МЕТОДЫ КОНСТРУКТИВНОГО РАСЧЕТА ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПОД СЛУЧАЙНЫМ СИЛОВЫМ ВОЗДЕЙСТВИЕМ

Подробнее

МЕХАНИКА. Тесты программированного контроля. Ульяновск 2010 СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

МЕХАНИКА. Тесты программированного контроля. Ульяновск 2010 СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Подробнее

Расчет на прочность при кручении

Расчет на прочность при кручении Расчет на прочность при кручении 1. При кручении стержня круглого поперечного сечения напряженное состояние материала во всех точках, за исключением точек на оси стержня, ОТВЕТ: 1) линейное (одноосное

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени С. М. Кирова»

Подробнее

РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ

РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения

Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Лекция 2 (продолжение) Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Расчет статически определимых стержней на растяжение-сжатие Пример 1 Круглая колонна диаметра d

Подробнее

ЗАДАНИЕ НА КОНТРОЛЬНУЮ РАБОТУ. «Расчет статически определимых многопролетной балки, плоской фермы, арки. Метод сил.»

ЗАДАНИЕ НА КОНТРОЛЬНУЮ РАБОТУ. «Расчет статически определимых многопролетной балки, плоской фермы, арки. Метод сил.» Министерство образования Республики Беларусь Учреждение образования «Гродненский государственный университет им. Я. Купалы» Факультет строительства и транспорта Кафедра «Строительное производство» ЗАДАНИЕ

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ФЕДЕРЛЬНОЕ ГЕНТСТВО ПО ОБРЗОВНИЮ Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» ПРИМЕРЫ РЕШЕНИЯ ЗДЧ КОНТРОЛЬНЫХ РБОТ ПО СОПРОТИВЛЕНИЮ

Подробнее

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 4 Введение... 7

ОГЛАВЛЕНИЕ. Предисловие... 4 Введение... 7 ОГЛАВЛЕНИЕ Предисловие... 4 Введение... 7 Глава 1. Механика абсолютно твердого тела. Статика... 8 1.1. Общие положения... 8 1.1.1. Модель абсолютно твердого тела... 9 1.1.2. Сила и проекция силы на ось.

Подробнее

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ Å. Þ. Àñàäóëèíà ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ: ÏÎÑÒÐÎÅÍÈÅ ÝÏÞÐ ÂÍÓÒÐÅÍÍÈÕ ÑÈËÎÂÛÕ ÔÀÊÒÎÐÎÂ, ÈÇÃÈÁ УЧЕБНОЕ ПОСОБИЕ ДЛЯ АКАДЕМИЧЕСКОГО БАКАЛАВРИАТА 2-е издание, исправленное и дополненное Ðåêîìåíäîâàíî Ó åáíî-ìåòîäè

Подробнее

ОП.03. ТЕХНИЧЕСКАЯ МЕХАНИКА МЕТОДИЧЕСКОЕ ПОСОБИЕ

ОП.03. ТЕХНИЧЕСКАЯ МЕХАНИКА МЕТОДИЧЕСКОЕ ПОСОБИЕ РОСЖЕЛДОР Федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный университет путей сообщения» (ФГБОУ ВО РГУПС) ТЕХНИКУМ (ФГБОУ ВО РГУПС) ОП.03.

Подробнее