ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

Размер: px
Начинать показ со страницы:

Download "ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА"

Транскрипт

1 ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

2 Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант на отрезке [ ;] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную

3 Вариант 4 на отрезке [ ;] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант 5 на отрезке [ ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления Вариант 6 5 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 Вариант 7 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант 8 на отрезке [ ;] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления Вариант 9 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную

5 Вариант 6 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную

6 Вариант на отрезке [ ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления Вариант 4 на отрезке [ ;] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления Вариант 5 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную

7 Вариант 6 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант 7 на отрезке [ ;] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления Вариант на отрезке [ ;] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления

8 Вариант 9 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант 4 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную

9 Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант 5 6 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант на отрезке [ ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления

10 Вариант 5 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант 6 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант 7 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную

11 Вариант 8 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант 9 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную Вариант 5 на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную

12 НЕОБХОДИМЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ. ЗАДАЧА КОШИ. ОБЩИЕ ЗАМЕЧАНИЯ. ПОСТАНОВКА ЗАДАЧИ. Для го дифференциального уравнения n порядка n... n f задача Коши заключается в отыскании решения уравнения удовлетворяющего начальным условиям n... n n... заданные числа. Если функция n где f... непрерывна а ее частные производные f f f... n ограничены в n области содержащей точку... то существует единственное решение задачи Коши. Задача Коши для нормальной системы дифференциальных уравнений f... n... n f n... n заключается в отыскании решения... n n системы удовлетворяющего начальным условиям... n n 4 где... n - заданные числа. Если функции f... n n непрерывны и имеют ограниченные частные производные f j n в некоторой области содержащей точку... n то существует единственное решение задачи Коши 4. Известно что систему дифференциальных уравнений содержащую производные высших порядков и разрешенную относительно старших производных искомых функций можно привести к системе вида путем введения новых неизвестных функций. В частности дифференциальное го уравнение n порядка приводится к системе вида с помощью замены n... которая приводит к следующей системе n j

13 ... n n n f... то есть к системе n дифференциальных уравнений первого порядка правая часть которых не зависит от производных искомых функций. Поэтому численные методы решения дифференциальных уравнений традиционно изучают для уравнений первого порядка f а затем как правило без труда распространяют на нормальные системы дифференциальных уравнений вида. Так мы и поступим. Итак дано дифференциальное уравнение первого порядка разрешенное относительно производной f 6 и начальное условие. 7 Требуется численно решить задачу Коши 6 7 на отрезке [ b ]. Это решение будет состоять в построении таблицы приближенных значений... искомого решения в точках... b где n n n n. Для этого отрезок [ b ] делят на n равных частей длины b так что n n. Величина называется шагом интегрирования..метод ЭЙЛЕРА. Будем считать что шаг интегрирования настолько мал что для всех значение искомой функции мало отличается от. Тогда для можно написать f. Иными словами на этом участке интегрирования кривая заменяется отрезком касательной к ней в точке. Для получим f. Аналогично для получим f. 5

14 Продолжая строить дальнейшие значения приближенного решения по тому же закону получим f n. Используя известные обозначения схему метода Эйлера можно представить формулами: Δ Δ f n. 8 Геометрический смысл метода Эйлера заключается в том что искомая интегральная кривая n заменяется ломаной соединяющей ϕ точки M n рис.. ϕ Причем первое звено ломаной касается истинной интегральной кривой в точке M. Эта ломаная n- n b называется ломаной Эйлера. При последовательность ломаных Эйлера Рис. на отрезке [ b ] стремится к искомой интегральной кривой. Оценку точности метода Эйлера если неизвестно точное решение проводят с помощью двойного пересчета - с шагом и с шагом. Совпадение десятичных знаков в полученных двумя способами результатах дает основание считать их верными. Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков которые должны быть предварительно приведены к нормальной системе переход от к 5. Рассмотрим систему двух дифференциальных уравнений первого порядка: f f 9 с начальными условиями. Приближенные значения и вычисляются последовательно по формулам: Δ Δ f Δ Δ f n.

15 .МОДИФИЦИРОВАННЫЙ МЕТОД ЭЙЛЕРА является более точным методом по сравнению с предыдущим. Модификация метода направлена на то чтобы более точно определить направление перехода из точки в точку. Для чего производятся дополнительные промежуточные вычисления в результате которых определяются координаты промежуточной точки f с помощью которых и определяется следующее приближенное значение искомого решения по формуле Δ Δ f. Геометрический смысл модифицированного метода Эйлера показан на рисунке. Исходя из точки M получаем по методу Эйлера для точку M. Для метод Эйлера дал бы точку M находящуюся на касательной к интегральной кривой в точке. Модифицированный метод M M состоит в том что из точки проводится отрезок M M параллельный отрезку M M направленному в соответствии со значением углового коэффициента в точке M. Точка которая получена по модифицированному методу Эйлера M M ϕ Рис. M M M M находится ближе к истинной кривой чем точка M. Следовательно модифицированный метод Эйлера будет обеспечивать большую точность чем метод Эйлера при одном и том же числе разбиения отрезка интегрирования. n

16 Модифицированный метод Эйлера можно легко распространить на нормальную систему дифференциальных уравнений. Рассмотрим систему двух уравнений первого порядка: f f с начальными условиями. Приближенные значения вычисляются последовательно по формулам: n Δ Δ где f Δ f Δ. f f 4.МЕТОД РУНГЕ-КУТТА наиболее известный и широко используемый метод численного интегрирования обыкновенных дифференциальных уравнений. Метод Эйлера и модифицированный метод Эйлера можно рассматривать в качестве простейших представителей метода Рунге-Кутта или как упрощенные его варианты. Согласно метода Рунге-Кутта приближенные значения искомого решения определяются по формулам: n Δ Δ 5

17 4 f f f f. Значение приближенного решения дифференциального уравнения 6 определяется в усредненном по формуле 5 направлении составляющими которого являются четыре направления определяемые углами α α α α 4 tgα tgα для которых 6 f tg α f f tg α 4 f что значительно повышает точность метода Рунге-Кутта. Для сравнения: в методе Эйлера вычисляется в направлении определяемом углом ϕ для которого tg ϕ f рис.; в модифицированном методе Эйлера вычисляется в уже подправленном с помощью средней точки текущего отрезка [ ] направлении определяемом углом ϕ для которого tg ϕ f рис.. Метод Рунге-Кутта имеет порядок точности на всем отрезке [ ]. Эффективная оценка погрешности метода очень затруднительна. Грубую оценку погрешности можно получить с помощью двойного просчета по формуле n n 4 n n n 5 b где - значение точного решения уравнения в точке n а n n - приближенные значения полученные с шагом и. Для определения правильности выбора шага на практике применяют двойной просчет с шагом и шагом. Если расхождение полученных значений не превышает допустимой погрешности то шаг точки удваивается в противном случае берут половинный шаг. для следующей

18 Метод Рунге-Кутта обладает значительной точностью и несмотря на свою трудоемкость очень широко используется при численных решениях дифференциальных уравнений на ЭВМ. Важным преимуществом этого метода является возможность на любом этапе вычисления изменить шаг интегрирования при условии выполнения заданной точности. Распространим метод Рунге-Кутта на нормальную систему дифференциальных уравнений. Рассмотрим систему двух дифференциальных уравнений первого порядка: f f с начальными условиями. Приближенные значения вычисляются последовательно по формулам: n Δ Δ 7 где 4 6 Δ 4 l l l l 6 Δ f f l l f l f l l f l f l 4 l f. 4 l f l

19 ОБРАЗЕЦ ВЫПОЛНЕНИЯ РАБОТЫ на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и сравнить значения точного и приближенных решений в точке. Найти абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления Решение. Шагом интегрирования отрезок [ ;] разбивается на пять равных частей точками ; ; 4; 6; 4 8; 5.. Решение уравнения методом Эйлера. Приближенные значения... решения исходного уравнения в точках вычислим по формуле 8 в которой f. Результаты вычисления будем заносить в таблицу. Заполняется она следующим образом. В первой строке при записываются начальные значения и по ним вычисляется f а затем Δ f. Тогда по формуле 8 при находим Δ. Во второй строке при записываем значения ;. Используя эти значения вычислим f 8667 затем Δ f И по формуле 8 при получаем Δ 7 7. При 4 5 вычисления ведутся аналогично. Вычисление f Δ / /

20 . Решение уравнения модифицированным методом Эйлера. Приближенные значения... 5 решения исходного уравнения в точках... 5 вычисляем по формулам и в которых f. Результаты вычислений будем заносить в таблицу. Заполняется она следующим образом. В первой строке записываем. Вычисляем ; f f. Далее находим f ; f 98 Δ f 86. Тогда по формуле при имеем Δ Используя этот результат записываем во второй строке 86 и последовательно находим ; f f 8457; f 68; f 794 ; Δ f 59. Тогда по формуле при имеем Δ Заполнение таблицы при 45 проводится аналогично. f f f Δ f

21 . Решение уравнения методом Рунге-Кутта. Приближенные значения... 5 решения исходного уравнения будем вычислять по формулам 4-6 где f. Результаты вычислений помещаем в таблицу заполняя ее в следующем порядке. При. Записываем в первой строке.. Вычисляем f ; тогда.. Записываем во второй строке ;. 4. Вычисляем f 98; тогда Записываем в третьей строке Вычисляем f 986; тогда Записываем в четвертой строке ; Вычисляем f тогда В столбце Δ записываем числа. Вычисляем Δ Получаем Δ 8. Значения 8 заносим в строку помеченную индексом и снова проводим вычисления по формулам 4-6. f Δ

22 Аналитическое решение заданного уравнения. Уравнение есть уравнение Бернулли. Проинтегрируем его для чего положим uv где u и v две неизвестные функции аргумента. Тогда исходное уравнение преобразуется к следующему: u v v u uv uv или u v v u v uv. Функцию v выберем из условия v v причем возьмем частное решение этого дифференциального уравнения v e. Подставив v в уравнение получаем u e u e а это - уравнение с разделяющимися переменными. Решая его находим u c e e. Так как решение исходного уравнения есть произведение функций u и v то получаем ce.

23 Используя начальное условие получим c c. Таким образом искомое частное решение есть. 5. Сравнение точного решения и приближенных решений исходного дифференциального уравнений: Решение Абсолют. погрешн. точное Метод Эйлера Модиф. метод Эйлера Метод Рунге- Кутта в точке Относит погрешн % % %

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

Решение обыкновенных дифференциальных уравнений.

Решение обыкновенных дифференциальных уравнений. Решение обыкновенных дифференциальных уравнений Инженеру часто приходится иметь дело с техническими системами и технологическими процессами, характеристики которых непрерывно меняются со временем t Эти

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Методы решения начальных задач для обыкновенных дифференциальных уравнений

Методы решения начальных задач для обыкновенных дифференциальных уравнений Методы решения начальных задач для обыкновенных дифференциальных уравнений Постановка задачи Рассмотрим обыкновенное дифференциальное уравнение сокращенно ОДУ первого порядка f,, [,b ] 6 с начальным условием

Подробнее

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения Обыкновенные дифференциальные уравнения Классификация ДУ Дифференциальное уравнение (ДУ) уравнение, связывающее функцию, ее производные и значения независимой переменной. Порядок ДУ наивысший порядок производной,

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений

Численные методы решения обыкновенных дифференциальных уравнений Численные методы решения обыкновенных дифференциальных уравнений Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в виде дифференциальных уравнений ДУ или системы дифференциальных

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

8. Обзор численных методов решения дифференциальных уравнений движения

8. Обзор численных методов решения дифференциальных уравнений движения 8. Обзор численных методов решения дифференциальных уравнений движения Постановка задачи Решение уравнений движения является классической задачей механики. В общем случае это система дифференциальных уравнений

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными.

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными. ЛЕКЦИЯ N9. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными..дифференциальные уравнения. Общие понятия.....дифференциальные уравнения

Подробнее

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного

Подробнее

М е т о д и ч е ские указания для п р о в едения семинарских занятий

М е т о д и ч е ские указания для п р о в едения семинарских занятий МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

4. Численные методы решения обыкновенных дифференциальных уравнений

4. Численные методы решения обыкновенных дифференциальных уравнений . Численные методы решения обыкновенных дифференциальных уравнений.. Решение задачи Коши... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши для одного дифференциального

Подробнее

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика»

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика» Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники ТУСУР Кафедра

Подробнее

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

Численное решение дифференциальных уравнений 1. Задача Коши

Численное решение дифференциальных уравнений 1. Задача Коши Численное решение дифференциальных уравнений - - Численное решение дифференциальных уравнений Задача Коши Значительное число задач вычислительной математики сводится к решению обыкновенных дифференциальных

Подробнее

«Численные методы» КОНСПЕКТ ЛЕКЦИЙ. Направление Прикладная информатика Профиль Прикладная информатика в образовании.

«Численные методы» КОНСПЕКТ ЛЕКЦИЙ. Направление Прикладная информатика Профиль Прикладная информатика в образовании. ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра информатики и методики

Подробнее

Численные методы интегрирования и решения дифференциальных уравнений

Численные методы интегрирования и решения дифференциальных уравнений Краевой конкурс учебно-исследовательских и проектных работ учащихся «Прикладные вопросы математики» Математический анализ Численные методы интегрирования и решения дифференциальных уравнений Новопоселенких

Подробнее

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения.

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения. 4 Дифференциальные уравнения высших порядков Понижение порядка уравнения 4 Основные понятия и определения Дифференциальными уравнениями высшего порядка называют уравнения порядка выше первого В общем случае

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Ф И Л И А Л «С Е В М А Ш В Т У З» Г О С У Д А Р С Т В Е Н Н О Г О О Б Р А З О В А Т Е Л Ь Н О Г О У Ч Р Е Ж Д Е Н И Я В Ы С Ш Е Г О П Р О Ф Е С С И О Н А Л Ь Н О Г

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

Государственное бюджетное образовательное учреждение среднего профессионального образования

Государственное бюджетное образовательное учреждение среднего профессионального образования Государственное бюджетное образовательное учреждение среднего профессионального образования «Владимирский авиамеханический колледж» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине ЧИСЛЕННЫЕ

Подробнее

a β, откуда следует α справедливость формулы (13.1).

a β, откуда следует α справедливость формулы (13.1). Лекция. Замена переменной и интегрирование по частям в определенном интеграле. Применение определенного интеграла к вычислению площадей плоских фигур. Теорема.. Если: функция непрерывна на отрезке [,],

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ . ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши

Подробнее

Численное решение нелинейных уравнений

Численное решение нелинейных уравнений Постановка задачи Метод половинного деления Метод хорд (метод пропорциональных частей 4 Метод Ньютона (метод касательных 5 Метод итераций (метод последовательных приближений Постановка задачи Пусть дано

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Численное решение задачи Коши для одного дифференциального уравнения

Численное решение задачи Коши для одного дифференциального уравнения Лабораторная работа 7 ( часа) Численное решение задачи Коши для одного дифференциального уравнения Цель работы: получение практических навыков построения алгоритмов численного решения обыкновенных дифференциальных

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Решением дифференциального уравнения называется функция y y(x)

Решением дифференциального уравнения называется функция y y(x) Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или нескольких

Подробнее

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА Методические указания Санкт-Петербург 2013

Подробнее

ДВОЙНЫЕ ИНТЕГРАЛЫ. 1. Задача, приводящая к двойному интегралу.

ДВОЙНЫЕ ИНТЕГРАЛЫ. 1. Задача, приводящая к двойному интегралу. ДВОЙНЫЕ ИНТЕГРАЛЫ. Задача, приводящая к двойному интегралу. Найти цилиндрического тела, основанием которого является часть координатной плоскости O, которую будем называть областью. Сверху тело ограниченно

Подробнее

СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ ГУМАНИТАРНО-ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ

СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ ГУМАНИТАРНО-ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ ГУМАНИТАРНО-ТЕХНОЛОГИЧЕСКАЯ

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Расчетные задания Варианты

Подробнее

А. П. Иванов. Методические указания. Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений. факультет ПМ ПУ СПбГУ 2007 г.

А. П. Иванов. Методические указания. Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений. факультет ПМ ПУ СПбГУ 2007 г. А. П. Иванов Методические указания Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений факультет ПМ ПУ СПбГУ 2007 г. Оглавление 1. Решение скалярных уравнений...........................

Подробнее

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ ММСП

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ ММСП МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ ММСП 1 Содержание Введение. 3 1. Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. 4. Численное решение задачи

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

КУРСОВАЯ РАБОТА ПО ПРОГРАММИРОВАНИЮ СТУДЕНТА 218 ГРУППЫ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М. В.

КУРСОВАЯ РАБОТА ПО ПРОГРАММИРОВАНИЮ СТУДЕНТА 218 ГРУППЫ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М. В. КУРСОВАЯ РАБОТА ПО ПРОГРАММИРОВАНИЮ СТУДЕНТА 218 ГРУППЫ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М. В. ЛОМОНОСОВА ГАМОВА АРТЕМИЯ ЛЬВОВИЧА. ТЕМА: Задача Коши для системы Лоренца.

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» В. М. Сафро,

Подробнее

Вычислительная математика

Вычислительная математика Федеральное агентство по образованию Российской Федерации Ухтинский государственный технический университет Вычислительная математика Методические указания и контрольные работы УХТА 6 УДК.6 7. ББК. я 7

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП Функции нескольких переменных 11. Определение функции нескольких переменных. Предел и непрерывность ФНП 1. Определение функции нескольких переменных ОПРЕДЕЛЕНИЕ. Пусть X = { 1 n i X i R } U R. Функция

Подробнее

3. Явный алгоритм Эйлера

3. Явный алгоритм Эйлера 3. Явный алгоритм Эйлера 1 3. Явный алгоритм Эйлера Мы надеемся, что сделанные предварительные замечания дали читателю хорошее представление о рассматриваемом круге проблем. Перейдем теперь к обсуждению

Подробнее

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра «Высшая математика 3» МАТЕМАТИКА

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра «Высшая математика 3» МАТЕМАТИКА Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика» МАТЕМАТИКА Лабораторные работы для студентов строительных специальностей В 4 частях

Подробнее

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Лекция 4 8 ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Рассматривается проблема решения систем обыкновенных дифференциальных уравнений первого порядка связывающих

Подробнее

Лабораторная работа 1. Приближенное решение нелинейных уравнений

Лабораторная работа 1. Приближенное решение нелинейных уравнений Лабораторная работа 1 Приближенное решение нелинейных уравнений Приближенно вычислить все корни данного уравнения f(x) = 0 с заданной погрешностью. 1) Для локализации и отделения корней построить график

Подробнее

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 4.0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

Линейные однородные дифференциальные уравнения с. Линейные неоднородные дифференциальные уравнения с

Линейные однородные дифференциальные уравнения с. Линейные неоднородные дифференциальные уравнения с Обыкновенные дифференциальные уравнения. Основные определения. Свойства общего решения. Теорема Коши. Интегральные кривые. Особое решение. Дифференциальные уравнения первого порядка. Уравнения вида у fх.

Подробнее

Требуется найти неизвестные величины x 1, x2,...,

Требуется найти неизвестные величины x 1, x2,..., . Решение систем линейных алгебраических уравнений (СЛАУ).. Метод Гаусса Цель: формирование практических навыков нахождения корней система линейных алгебраических уравнений (СЛАУ) методом Гаусса (схема

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика»

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева ЕГ Определение: Уравнение

Подробнее

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1 ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 007 Управление, вычислительная техника и информатика 1 УДК 519.865 В.В. Поддубный, О.В. Романович МОДИФИКАЦИЯ МЕТОДА ЭЙЛЕРА С УРАВНИВАНИЕМ ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

Тема7. «Численное интегрирование.»

Тема7. «Численное интегрирование.» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема7. «Численное интегрирование.» Кафедра теоретичской и прикладной математики. разработана доц.

Подробнее

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра прикладной математики М.В. Лукина МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

Подробнее

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА»

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» Задача 1. Найти общее решение дифференциального уравнения с разделяющимися переменными: 1. d d d d 1 1 0.. d d d. d d d 5. 6d 6d d d 6. d d 0 7. 8. (

Подробнее

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость .. Линейная корреляционная зависимость Часто на практике требуется установить вид и оценить силу зависимости изучаемой случайной величины Y от одной или нескольких других величин (случайных или неслучайных).

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы Иванов И.И. Вариант 1.

Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы Иванов И.И. Вариант 1. Задание: Вариант #1 x 11x + 36x 36 = 0 Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы 04-06 Иванов И.И. Вариант 1 Этап 5. Тема: Методы решения алгебраических

Подробнее

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения.

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения. Глава Введение Лекция Понятие дифференциального уравнения Основные определения Определение Дифференциальным уравнением (ДУ) называют уравнение, в котором неизвестная функция находится под знаком производной

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ Бережной Д.В. Тазюков Б.Ф. ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие

Подробнее

Курсовая работа по дисциплине: «дифференциальные уравнения»

Курсовая работа по дисциплине: «дифференциальные уравнения» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович

Подробнее

Приложение А. Комплект оценочных средств (контролирующих материалов) по дисциплине

Приложение А. Комплект оценочных средств (контролирующих материалов) по дисциплине Приложение А. Комплект оценочных средств (контролирующих материалов) по дисциплине Приложение А-1. Тесты текущего контроля СТО БТИ АлтГТУ 15.62.2.0008-2014 Вопросы к модулям (разделам) курса «Вычислительная

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М. В. ЛОМОНОСОВА. Научно-исследовательский вычислительный центр. О. Б. Арушанян, С.Ф.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М. В. ЛОМОНОСОВА. Научно-исследовательский вычислительный центр. О. Б. Арушанян, С.Ф. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М. В. ЛОМОНОСОВА Научно-исследовательский вычислительный центр О. Б. Арушанян, С.Ф. Залеткин РЕШЕНИЕ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ МЕТОДАМИ РУНГЕ

Подробнее

Методические указания к решению контрольной работы 2 по дисциплине «Математика» для студентов первого курса строительных специальностей

Методические указания к решению контрольной работы 2 по дисциплине «Математика» для студентов первого курса строительных специальностей Методические указания к решению контрольной работы по дисциплине «Математика» для студентов первого курса строительных специальностей Кафедра высшей математики А.В. Капусто Минск 07 07 Кафедра «Высшая

Подробнее

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФГОУ ВПО «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ В.Д. ГУНЬКО, Л.Ю. СУХОВЕЕВА, В.М. СМОЛЕНЦЕВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПРИМЕРЫ И ТИПОВЫЕ ЗАДАНИЯ Учебное пособие Краснодар

Подробнее

Разработка и сравнение инструментальных средств численного интегрирования с заданной точностью

Разработка и сравнение инструментальных средств численного интегрирования с заданной точностью Разработка и сравнение инструментальных средств численного интегрирования с заданной точностью В процессе выполнения курсовой работы необходимо разработать средства вычисления определенного интеграла от

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Часть 1. Основные понятия. 1.1. Введение 2 1.2. Начальные условия 4 1.3. Составление дифференциальных уравнений 5 1.4.

Подробнее

(n 1) (t)) y(t) = y 2 (t) m (t)) y m (t) u (t) = u (t)u 2 (t) + sin t, u(0) = 1, u (0) = 1, u (0) = 2. y 1 = u, y 2 = u, y 3 = u

(n 1) (t)) y(t) = y 2 (t) m (t)) y m (t) u (t) = u (t)u 2 (t) + sin t, u(0) = 1, u (0) = 1, u (0) = 2. y 1 = u, y 2 = u, y 3 = u Глава 3 Численное интегрирование обыкновенных дифференциальных уравнений!" $# &%' '()* +(, '+ -.' / ' 01!23434 5'6 %7 2098: : 1;= @?BA&C Рассмотрим методы численного интегрирования обыкновенных дифференциальных

Подробнее

Фонд оценочных средств

Фонд оценочных средств ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. АЛЕКСЕЕВА» ИНСТИТУТ РАДИОЭЛЕКТРОНИКИ И ИНФОРМАЦИОННЫХ

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ ИНФЛЮЕНТНОГО АНАЛИЗА

ЧИСЛЕННЫЕ МЕТОДЫ ИНФЛЮЕНТНОГО АНАЛИЗА Свердлов С З ктн, Усов Л В кэн, доцент Вологодский Политехнический Институт ЧИСЛЕННЫЕ МЕТОДЫ ИНФЛЮЕНТНОГО АНАЛИЗА Рукопись депонирована в ВИНИТИ 6885 г 585-85 ДЕП Содержание Формулировка задачи детерминированного

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» Методические указания к лабораторной работе «Вычисления корней трансцендентных уравнений»

Подробнее

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн.

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

Подробнее

равная произведению массы этой точки и квадрата расстояния до оси ОХ (оси ОУ,

равная произведению массы этой точки и квадрата расстояния до оси ОХ (оси ОУ, 9 Вычисление статических моментов инерции и координат центра масс Определение Статическим моментом материальной точки А(х;у) в которой сосредоточена масса m относительно оси ОХ (ОУ) называется величина

Подробнее

8. Численное решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядка

8. Численное решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядка Варианты задания 8. Численное решение задачи Коши для обыкновенного дифференциального уравнения -го порядка 8.. Постановка задачи Рассмотрим задачу Коши для обыкновеннго дифференциального уравнения y =

Подробнее

Дифференцирование функций, заданных таблично. x 1 1,2 1,3 1,55 y(x) ,5 16,5

Дифференцирование функций, заданных таблично. x 1 1,2 1,3 1,55 y(x) ,5 16,5 Дополнение к Вычислительному практикуму. Глава 1 1 Дифференцирование функций, заданных таблично Для функции, заданной таблицей, найти разностные производные всех типов. Найти эластичность этой функции,

Подробнее

Численные методы линейной и нелинейной алгебры

Численные методы линейной и нелинейной алгебры ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского» А.И. Зинина В.И. Копнина Численные методы линейной и нелинейной алгебры Учебное пособие Саратов

Подробнее

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО.

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО. ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО Понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пример: А множество натуральных чисел а В множество квадратов натуральных чисел

Подробнее