Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация)

Save this PDF as:
Размер: px
Начинать показ со страницы:

Download "Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация)"

Транскрипт

1 Аппроксимация по МНК Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация) Одна из главных задач математической статистики нахождение закона распределения случайной величины по результатам опытов. Чтобы установить закон распределения нужно располагать достаточно обширным статистическим материалом порядка нескольких сотен наблюдений. На практике же часто приходится иметь дело со статистическим материалом весьма ограниченного объема и даже меньше. Этого недостаточно чтобы найти заранее неизвестный закон распределения. Но все же этот материал может быть обработан и использован для получения некоторых сведений о случайной величине. Например могут быть оценены важнейшие числовые характеристики математическое ожидание M и дисперсия иногда высшие моменты. При сравнительно небольшом числе экспериментальных данных можно также получить приближенную эмпи- рическую формулу связи двух случайных величин. Постановка и метод решения задачи Пусть поводится опыт цель которого исследование зависимости некоторой физической величины от другой физической величины. Например - абсолютная высота местности - количество осадков. Предполагается что величины и связаны функциональной зависимостью ( ). Вид этой зависимости требуется определить из опыта причем число наблюдений невелико. В результате опыта получим данные приведенные в таблице. Таблица В таблице - номер наблюдения - значение аргумента - значение функции в - м наблюдении (... ). По данным таблицы построим график зависимости от. Экспериментальные точки на нем обнаруживают отклонения от общей видимой закономерности. Эти отклонения связаны с неизбежными случайными ошибками измерений а не с объективным характером зависимости от. Возникает задача сглаживания экспериментальной зависимости или задача аппроксимации. Т.е. надо так обработать экспериментальные данные чтобы по возможности точно отразить общую тенденцию зависимости и и сгладить не закономерные случайные уклонения связанные с погрешностями наблюдений. Тип кривой ( ) можно выбрать по графику. Пусть из теоретических или иных соображений (например по графику) выбран вид функции ( ). Функция ( ) содержит ряд числовых параметров:... Требуется так выбрать эти параметры чтобы кривая ( ) в каком-то смысле наилучшим образом изображала зависимость полученную в опыте.

2 Аппроксимация по МНК Решение задачи зависит от того что именно мы условимся считать «наилучшим». Общепринятым методом решения таких задач является метод наименьших квадратов (МНК) при котором требование наилучшего согласования кривой ( ) и экспериментальных точек сводится к тому чтобы сумма квадратов отклонений экспериментальных точек от сглаживающей кривой обращалась в минимум. Метод наименьших квадратов имеет перед другими методами сглаживания преимущество: сравнительно простой математический способ определения параметров... и кроме того он допускает веское теоретическое обоснование с вероятностной точки зрения. Запишем требование МНК аналитически: ( ) m. () Метод наименьших квадратов дает возможность при данном типе зависимости ( ) так выбрать ее числовые параметры чтобы кривая ( ) наилучшим образом отражала экспериментальные данные. Общее решение задачи по МНК Итак имеем таблицу экспериментальных данных и (...). Пусть выбран общий вид функции ( ) зависящей от нескольких числовых параметров... Эти параметры требуется выбрать согласно МНК. Запишем не только как функцию аргументов но параметров...: ( ;...). () Требуется выбрать параметры... так чтобы выполнялось условие МНК: ( ;...). () Найдем значения... обращающие левую часть () в минимум. Для этого дифференцируем () по... и приравниваем производные к нулю. ( ;...) ( ;...) (4) ( ;...)... где ;... - значение частной производной функции по параметру в точке ; ;... - значение частной производной функции по параметру в точке ; ;... - значение частной производной функции по параметру в точке ; и так далее. Система (4) содержит столько уравнений сколько неизвестных...

3 Аппроксимация по МНК Решить ее в общем виде нельзя т.к. необходимо задаться конкретным видом функции. Рассмотрим часто встречающиеся на практике случаи.. Подбор параметров линейной функции Пусть функция ( ) имеет линейный вид (Рис.) т.е.. (5) Найдем по МНК параметры и. Имеем ( ;). Дифференцируем (5) по и : ;. ;. Подставив значения производных в (4) получим:. Раскроем скобки и выполним суммирование: (6) или. (7) Получили систему двух нормальных уравнений с двумя неизвестными из решения которой и получим искомые параметры и.. Подбор параметров многочлена второго порядка (параболы) Пусть функция ( ) имеет вид (Рис.):. Найдем по МНК параметры и. Имеем ( ; ). Дифференцируем (5) по и : (5)

4 Аппроксимация по МНК 4 ; ; ; Подставив значения производных в (4) получим:. Раскроем скобки и выполним суммирование: 4 (6) или 4. (7) Получили систему трех нормальных уравнений с тремя неизвестными из решения которой и получим искомые параметры и. Нетрудно увидеть закон образования коэффициентов системы: это начальные моменты величины и убывающем порядке; а свободные члены - моменты системы причем порядок момента убывает от уравнения к уравнению а порядок по всегда остается первым. Аналогичными по структуре уравнениями будут определяться коэффициенты и свободные члены многочлена любого порядка. Точность подбора сглаживающей функции характеризуется остаточной дисперсией ост. : ост. k где ) ( k - число параметров в функции ) (. Остаточная дисперсия это та часть рассеивания которую нельзя объяснить действием наблюдаемой. Она может также служить для оценки полноты набора признаков ( ) включенных в анализ. Если ставится задача выбора лучшей сглаживающей функции из нескольких предполагаемых то этот выбор осуществляется сравнением соответствующих остаточных дисперсий. Предпочтение отдается той функции у которой ост. наименьшая.

5 Аппроксимация по МНК 5 Показатели тесноты связи Если требуется не только установить вид сглаживающей функции но и оценить тесноту связи между и то в случае линейной функции ( ) т.е. в случае линейной корреляционной зависимости между и характеристикой тесноты связи служит как известно коэффициент корреляции оценка которого r вычисляется по формуле Здесь r - среднее арифметическое из - среднее арифметическое из ~ - оценка среднего квадратического отклонения величины ~ - оценка среднего квадратического отклонения величины. Чем ближе r по абсолютной величине к единице тем теснее связь между и. Общим показателем тесноты группировки точек около сглаживающей линии независимо от ее вида т.е. от формы связи является корреляционное отношение : где - средняя из условных дисперсий (дисперсия сглаживающей функции относительно среднего значения ) ( ). Корреляционное отношение характеризует степень близости исследуемой связи к функциональной. При отсутствии функциональной связи при ее наличии -. При делается вывод о более или менее тесной связи величин и. Статистическая значимость значения. оценивается в зависимости от поставленных задач исследования на том или ином уровне значимости. В случае линейной связи корреляционное отношение по абсолютной величине равно коэффициенту корреляции r.


Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа 46 Глава 9. Регрессионный анализ 9.. Задачи регрессионного анализа Во время статистических наблюдений как правило получают значения нескольких признаков. Для простоты будем рассматривать в дальнейшем двумерные

Подробнее

Таким образом, точка А является точкой глобального максимума, а точка М- точкой глобального минимума данной функции в замкнутой области D.

Таким образом, точка А является точкой глобального максимума, а точка М- точкой глобального минимума данной функции в замкнутой области D. 66 Таким образом точка А является точкой глобального максимума а точка М- точкой глобального минимума данной функции в замкнутой области D 5 Эмпирические формулы Определение параметров эмпирических формул

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА С.П.Еркович ПРИМЕНЕНИЕ РЕГРЕССИОННОГО И КОРРЕЛЯЦИОННОГО АНАЛИЗА ДЛЯ ИССЛЕДОВАНИЯ ЗАВИСИМОСТЕЙ В ФИЗИЧЕСКОМ ПРАКТИКУМЕ. Москва, 994.

Подробнее

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость .. Линейная корреляционная зависимость Часто на практике требуется установить вид и оценить силу зависимости изучаемой случайной величины Y от одной или нескольких других величин (случайных или неслучайных).

Подробнее

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ Кременчугский национальный университет имени Михаила Остроградского МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ Математические методы вычислений на ЭВМ А.П. Черный, д.т.н., профессор http:\\saue.kdu.edu.ua 2 ЛЕКЦИЯ

Подробнее

Лекция 15. Элементы теории корреляции. 1. Функциональная, статистическая и корреляционная зависимости.

Лекция 15. Элементы теории корреляции. 1. Функциональная, статистическая и корреляционная зависимости. Лекция 5. Элементы теории корреляции.. Функциональная, статистическая и корреляционная зависимости. Две случайные величины могут быть связаны функциональной зависимостью, т.е. изменение одной из них по

Подробнее

Математическая статистика. Тема: «Статистическое оценивание параметров распределения»

Математическая статистика. Тема: «Статистическое оценивание параметров распределения» Математическая статистика Тема: «Статистическое оценивание параметров распределения» Введение Математическая статистика наука, занимающаяся методами обработки экспериментальных данных, полученных в результате

Подробнее

Лекция Сглаживание экспериментальных зависимостей. 6. Сглаживание экспериментальных зависимостей

Лекция Сглаживание экспериментальных зависимостей. 6. Сглаживание экспериментальных зависимостей Лекция 5 6. Сглаживание экспериментальных зависимостей 6.. Метод наименьших квадратов 6... Теоретическое обоснование метода наименьших квадратов 7. Проверка статистических гипотез 7..Критерий согласия

Подробнее

Математика (Статистика, корреляция и регрессия)

Математика (Статистика, корреляция и регрессия) Федеральное агентство воздушного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

, при уровнях значимости = 0, 05

, при уровнях значимости = 0, 05 Задача скачана с сайта wwwqacademru Задача Имеется информация за лет относительно среднего дохода X и среднего потребления Y (млн руб): Годы 9 9 9 93 94 95 96 97 98 99 X,5,6,3 3,7 4,5 6, 7,3 8,7,,8 Y 8,5,3

Подробнее

Лекция МЕТОДЫ ПРИБЛИЖЕНИЯ ФУНКЦИЙ ПОСТАНОВКА ЗАДАЧИ [ ]

Лекция МЕТОДЫ ПРИБЛИЖЕНИЯ ФУНКЦИЙ ПОСТАНОВКА ЗАДАЧИ [ ] Лекция 3 5. МЕТОДЫ ПРИБЛИЖЕНИЯ ФУНКЦИЙ ПОСТАНОВКА ЗАДАЧИ Рассматриваются сеточные табличные функции [ a b] y 5. определенные в узлах сетки Ω. Каждая сетка характеризуется шагами h неравномерного или h

Подробнее

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Регрессионный анализ Функциональная статистическая и корреляционная зависимости Во многих прикладных (в том числе экономических) задачах

Подробнее

α, β - неизвестные параметры.

α, β - неизвестные параметры. ОПРЕДЕЛЕНИЕ ФОРМЫ СВЯЗИ МЕЖДУ РЕЗУЛЬТИРУЮЩИМ (У) И ОБЪЯСНЯЮЩИМ (Х) ФАКТОРАМИ И РАСЧЕТ ПАРАМЕТРОВ УРАВНЕНИЯ ПАРНОЙ РЕГРЕССИИ Задачу определения парной регрессии можно сформулировать следующим образом: по

Подробнее

Постановка задачи аппроксимации Линейная, нелинейная (второго порядка) аппроксимация. Лекция 5

Постановка задачи аппроксимации Линейная, нелинейная (второго порядка) аппроксимация. Лекция 5 Постановка задачи аппроксимации Линейная, нелинейная (второго порядка) аппроксимация Лекция 5 Постановка задачи аппроксимации Пусть, изучая неизвестную функциональную зависимость y=f(x), был произведен

Подробнее

Глоссарий. Вариационный ряд группированный статистический ряд

Глоссарий. Вариационный ряд группированный статистический ряд Глоссарий Вариационный ряд группированный статистический ряд Вариация - колеблемость, многообразие, изменчивость значения признака у единиц совокупности. Вероятность численная мера объективной возможности

Подробнее

30. Оценка тесноты любой корреляционной связи.

30. Оценка тесноты любой корреляционной связи. 0 Оценка тесноты любой корреляционной связи Выше рассматривалась теснота линейной корреляционной связи Как оценить тесноту любой корреляционной связи? Пусть данные наблюдений над признаками X и Y сведены

Подробнее

Реализация алгоритма построения статистической модели объекта по методу Брандона. Постановка задачи

Реализация алгоритма построения статистической модели объекта по методу Брандона. Постановка задачи Голубев ВО Литвинова ТЕ Реализация алгоритма построения статистической модели объекта по методу Брандона Постановка задачи Статистические модели создают на основании имеющихся экспериментальных данных

Подробнее

ОДНОФАКТОРНЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ

ОДНОФАКТОРНЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ ОДНОФАКТОРНЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ Цель работы проведение однофакторного регрессионного анализа на основе полиномиальных моделей первого, второго и третьего порядка. Теоретические основы. Под регрессионным

Подробнее

6 Методы приближения функций. Наилучшее приближение.

6 Методы приближения функций. Наилучшее приближение. 6 Методы приближения функций. Наилучшее приближение. Рассмотренные в прошлой главе методы приближения требуют строгой принадлежности узлов сеточной функции результирующему интерполянту. Если не требовать

Подробнее

Управление дистанционного обучения и повышения квалификации. Математика ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Управление дистанционного обучения и повышения квалификации. Математика ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по дисциплине

Подробнее

7 Корреляционный и регрессионный анализ

7 Корреляционный и регрессионный анализ 7 Корреляционный и регрессионный анализ. Корреляционный анализ статистических данных.. Регрессионный анализ статистических данных. Статистические связи между переменными можно изучать методами дисперсионного,

Подробнее

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние,

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние, Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

Подробнее

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов 7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Линейная регрессия Метод наименьших квадратов ( ) Линейная корреляция ( ) ( ) 1 Практическое занятие 7 КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Для решения практических

Подробнее

Тема 2.3. Построение линейно-регрессионной модели экономического процесса

Тема 2.3. Построение линейно-регрессионной модели экономического процесса Тема 2.3. Построение линейно-регрессионной модели экономического процесса Пусть имеются две измеренные случайные величины (СВ) X и Y. В результате проведения n измерений получено n независимых пар. Перед

Подробнее

Абдиев Б.А. «Эконометрика» Предназначено для студентов специальности: Финансы, вечернее отделение (2 курс 4г.о.) Учебный год:

Абдиев Б.А. «Эконометрика» Предназначено для студентов специальности: Финансы, вечернее отделение (2 курс 4г.о.) Учебный год: Абдиев Б.А. «Эконометрика» Предназначено для студентов специальности: Финансы, вечернее отделение (2 курс 4г.о.) Учебный год: 2015-2016 Текст вопроса 1 Парная регрессия у=а+вх+е представляет собой регрессию

Подробнее

3. РЕГРЕССИОННЫЙ АНАЛИЗ Постановка задачи регрессионного анализа

3. РЕГРЕССИОННЫЙ АНАЛИЗ Постановка задачи регрессионного анализа 55 3 РЕГРЕССИОННЫЙ АНАЛИЗ 3 Постановка задачи регрессионного анализа Экономические показатели функционирования предприятия (отрасли хозяйства) как правило представляются таблицами статистических данных:

Подробнее

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН.

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

Подробнее

[] - Гауссово обозначение суммы

[] - Гауссово обозначение суммы Принцип наименьших квадратов, задачи решаемые МНК Параметрический способ уравнивания, оценка точности Коррелатный способ уравнивания Пример уравнивания измеренных углов треугольника параметрическим и коррелатным

Подробнее

1. Многочлен Лагранжа. Пусть из эксперимента получены значения неизвестной функции

1. Многочлен Лагранжа. Пусть из эксперимента получены значения неизвестной функции 1 Многочлен Лагранжа Пусть из эксперимента получены значения неизвестной функции ( x i = 01 x [ a b] i i i Возникает задача приближенного восстановления неизвестной функции ( x в произвольной точке x Для

Подробнее

Найдем вероятность события А - интересующие студента данные не содержатся только в двух пособиях.

Найдем вероятность события А - интересующие студента данные не содержатся только в двух пособиях. Задача. Студент выполняет работу по статистике, пользуясь пятью пособиями. Вероятность того, что интересующие его данные находятся в первом, втором, третьем, четвертом и пятом пособиях, соответственно

Подробнее

МЕТОДЫ ИНТЕРПОЛЯЦИИ И АППРОКСИМАЦИИ

МЕТОДЫ ИНТЕРПОЛЯЦИИ И АППРОКСИМАЦИИ МЕТОДЫ ИНТЕРПОЛЯЦИИ И АППРОКСИМАЦИИ Интерполяция Интерполяция способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений Пусть в ходе эксперимента при изменении

Подробнее

Рассмотрим в качестве функциональной зависимости многочлен., тогда

Рассмотрим в качестве функциональной зависимости многочлен., тогда Лекция 5. Аппроксимация функций по методу наименьших квадратов. В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

7 АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ

7 АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ 0 7 АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ Первоначально данные исследований представляют в виде таблиц. Однако табличные данные не имеют наглядности и не могут быть использованы

Подробнее

МЕТОДЫ ИНТЕГРАЛЬНОГО СГЛАЖИВАНИЯ

МЕТОДЫ ИНТЕГРАЛЬНОГО СГЛАЖИВАНИЯ Лекция продолжение лекции МЕТОДЫ ИНТЕГРАЛЬНОГО СГЛАЖИВАНИЯ А ТОЧЕЧНЫЙ МЕТОД НАИМЕНЬШИХ КВАДРАТОВ Пусть на множестве [ ] точкой ПРИМЕНЕНИЕ ОБОБЩЕННЫХ МНОГОЧЛЕНОВ задана сетка а на сетке задана сеточная

Подробнее

ε t y t Вариант 4 Решение: Объём продаж продовольственных товаров с 1 января 1990 г. в относительных единицах. Дата t t 2 ε t t ŷ t

ε t y t Вариант 4 Решение: Объём продаж продовольственных товаров с 1 января 1990 г. в относительных единицах. Дата t t 2 ε t t ŷ t Контрольная работа выполнена на сайте www.maburo.ru Вариант 4 Задание. Прогнозирование экономических процессов. В таблице приведены данные продаж продовольственных товаров в магазине. Разработать модель

Подробнее

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов.

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов. Лекция 5 ЭКОНОМЕТРИКА 5 Проверка качества уравнения регрессии Предпосылки метода наименьших квадратов Рассмотрим модель парной линейной регрессии X 5 Пусть на основе выборки из n наблюдений оценивается

Подробнее

Интерполирование функций

Интерполирование функций Постановка задачи, основные понятия Конечные разности и их свойства Интерполяционные многочлены Оценка остаточного члена интерполяционных многочленов Постановка задачи, основные понятия Пусть, то есть

Подробнее

6. Поиск эмпирических формул. Аппроксимация

6. Поиск эмпирических формул. Аппроксимация 6. Поиск эмпирических формул. Аппроксимация 6.. Понятие регрессии и корреляции При изучении различных явлений приходится сталкиваться с функциональными связями между двумя и более переменными. Когда эти

Подробнее

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии Камчатский государственный технический университет Кафедра высшей математики ЭКОНОМЕТРИКА Модель парной регрессии Задания и методические указания для студентов специальностей ФК, БУ, ПИ дневного и заочного

Подробнее

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания:

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания: МВДубатовская Теория вероятностей и математическая статистика Лекция 8 Числовые характеристики случайных величин При изучении случайных величин важную роль играют их числовые характеристики Математическим

Подробнее

Методические указания для выполнения лабораторной работы 2. Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы.

Методические указания для выполнения лабораторной работы 2. Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы. Методические указания для выполнения лабораторной работы Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы. Методические указания Регрессией Y на X или условным математическим

Подробнее

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков.

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков. Лекция 8 Тема Сравнение случайных величин или признаков. Содержание темы Аналогия дискретных СВ и выборок Виды зависимостей двух случайных величин (выборок) Функциональная зависимость. Линии регрессии.

Подробнее

В зависимости от способа сбора экспериментальной информации различают: 1. пассивный эксперимент; 2. активный эксперимент.

В зависимости от способа сбора экспериментальной информации различают: 1. пассивный эксперимент; 2. активный эксперимент. Лекция В зависимости от способа сбора экспериментальной информации различают: 1. пассивный эксперимент; 2. активный эксперимент. Суть: исследователь собирает некоторый объем экспериментальной информации:

Подробнее

ПРИБЛИЖЕНИЕ ТАБЛИЧНЫХ ФУНКЦИЙ ПО МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ

ПРИБЛИЖЕНИЕ ТАБЛИЧНЫХ ФУНКЦИЙ ПО МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ ПРИБЛИЖЕНИЕ ТАБЛИЧНЫХ ФУНКЦИЙ ПО МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ Постановка задачи аппроксимации По результатам экспериментов получена таблица с произвольным расположением аргументов: x, y,,. Аналитическое

Подробнее

СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ СОЦИАЛЬНО- ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ

СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ СОЦИАЛЬНО- ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ СОЦИАЛЬНО- ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ ТЕМА: СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ 1. Причинность, регрессия, корреляция 2. Применение корреляционно-регрессионный

Подробнее

ПРИМЕРНЫЙ ВАРИАНТ ТЕСТОВЫХ ЗАДАНИЙ

ПРИМЕРНЫЙ ВАРИАНТ ТЕСТОВЫХ ЗАДАНИЙ ПРИМЕРНЫЙ ВАРИАНТ ТЕСТОВЫХ ЗАДАНИЙ Вопрос 1. Эконометрика изучает a) Электронные методы измерения в экономике b) Количественные закономерности и взаимосвязи в экономике c) Методы математической статистики

Подробнее

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров . СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ.. Понятие о статистической оценке параметров Методы математической статистики используются при анализе явлений, обладающих свойством статистической устойчивости.

Подробнее

АППРОКСИМАЦИЯ. y i y 0 y 1 y 2 y n. i x 0 x 1 x 2 x n

АППРОКСИМАЦИЯ. y i y 0 y 1 y 2 y n. i x 0 x 1 x 2 x n АППРОКСИМАЦИЯ На практике часто приходится сталкиваться с задачей сглаживания экспериментальных данных задача аппроксимации. Основная задача аппроксимации построение приближенной (аппроксимирующей) функции

Подробнее

регрессионный анализ

регрессионный анализ регрессионный анализ регрессионный анализ -введение коэффициент корреляции степень связи в вариации двух переменных величин (мера тесноты этой связи) метод регрессии позволяет судить как количественно

Подробнее

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Математическая статистика занимается методами сбора и обработки статистического материала результатов наблюдений над объектами

Подробнее

Теория вероятностей и статистика

Теория вероятностей и статистика Теория вероятностей и статистика Тема 7. Статистические оценки параметров распределения Белов А.И. Уральский федеральный университет Екатеринбург, 2018 Содержание 1 Точечные оценки 2 Характеристики положения

Подробнее

ПРИБЛИЖЕНИЕ ФУНКЦИИ. Метод интерполяции многочленом Лагранжа. = j = 0,1,2,...,n, при i j

ПРИБЛИЖЕНИЕ ФУНКЦИИ. Метод интерполяции многочленом Лагранжа. = j = 0,1,2,...,n, при i j (С ИиКП РХТУ февраль г. Калинкин Владимир Николаевич ПРИБЛИЖЕНИЕ УНКЦИИ Для заданных на отрезке значениях независимой переменной и соответствующих им значениях зависимой переменной, (,,,,, определить аналитическую

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа 3 Парная регрессия Оглавление Парная регрессия... 3 Метод наименьших квадратов (МНК)... 3 Интерпретация уравнения регрессии... 4 Оценка качества построенной

Подробнее

Лабораторная работа 6. Построение эмпирической зависимости теплоемкости вещества от температуры.

Лабораторная работа 6. Построение эмпирической зависимости теплоемкости вещества от температуры. Лабораторная работа 6. Построение эмпирической зависимости теплоемкости вещества от температуры. Понятие статистической зависимости Две величины (например, x и y), могут быть независимыми, либо связанными

Подробнее

Линейная регрессионная модель и эмпирическое уравнение регрессии. Метод наименьших квадратов (МНК)

Линейная регрессионная модель и эмпирическое уравнение регрессии. Метод наименьших квадратов (МНК) Линейная регрессионная модель и эмпирическое уравнение регрессии Метод наименьших квадратов (МНК) Предпосылки МНК Анализ точности определения оценок коэффициентов регрессии Обе переменные равноценны нельзя

Подробнее

ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe :

ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe : 1 ЗАДАНИЕ ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe : 0.30-1.4 0.59-1.79 0.4 0.7 1.73 0.45 0.34-0.09 1.09 -.04

Подробнее

РЕКОМЕНДАЦИЯ ИЗМЕРЕНИЯ КОСВЕННЫЕ ОПРЕДЕЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИИ И ОЦЕНИВАНИЕ ИХ ПОГРЕШНОСТЕЙ МИ

РЕКОМЕНДАЦИЯ ИЗМЕРЕНИЯ КОСВЕННЫЕ ОПРЕДЕЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИИ И ОЦЕНИВАНИЕ ИХ ПОГРЕШНОСТЕЙ МИ РЕКОМЕНДАЦИЯ ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ ИЗМЕРЕНИЯ КОСВЕННЫЕ ОПРЕДЕЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИИ И ОЦЕНИВАНИЕ ИХ ПОГРЕШНОСТЕЙ МИ 208390 Москва КОМИТЕТ СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ

Подробнее

Лекция 5. Статистическое изучение взаимосвязи социальноэкономических

Лекция 5. Статистическое изучение взаимосвязи социальноэкономических Лекция 5. Статистическое изучение взаимосвязи социальноэкономических явлений Исследование объективно существующих связей между социальноэкономическими явлениями и процессами является важнейшей задачей

Подробнее

Содержательный модуль 1

Содержательный модуль 1 Содержательный модуль 1 Уравнивание результатов геодезических измерений методами математической статистики 1.1. Сущность задачи уравнивания результатов измерений в геодезии Напомним, что до сих пор, математическая

Подробнее

. Вследствие наличия неизбежных погрешностей при каждом измерении получают значение этой величины α. . Поэтому для повышения точности измерения α

. Вследствие наличия неизбежных погрешностей при каждом измерении получают значение этой величины α. . Поэтому для повышения точности измерения α Методические указания к выполнению лабораторных работ по курсу "Оптические измерения и основы метрологии" предназначены для студентов приборостроительного факультета КПИ обучающихся по оптическим специальностям

Подробнее

)? (Вероятность попадания непрерывной СВ

)? (Вероятность попадания непрерывной СВ Случайные величины. Определение СВ ( Случайной называется величина, которая в результате испытания может принимать то или иное значение, заранее не известное).. Какие бывают СВ? ( Дискретные и непрерывные.

Подробнее

Регрессионный анализ. [Часть II, стр ]

Регрессионный анализ. [Часть II, стр ] Регрессионный анализ [Часть II, стр. 59-68] Регрессионный анализ предназначен для получения теоретического уравнения регрессии = f(, ), вид которого задается, исходя из особенностей изучаемой системы случайных

Подробнее

МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. ПОСТРОЕНИЕ ФУНКЦИИ ПОТРЕБЛЕНИЯ ОТ ДВУХ ФАКТОРОВ

МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. ПОСТРОЕНИЕ ФУНКЦИИ ПОТРЕБЛЕНИЯ ОТ ДВУХ ФАКТОРОВ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. ПОСТРОЕНИЕ ФУНКЦИИ ПОТРЕБЛЕНИЯ ОТ ДВУХ ФАКТОРОВ Если на потребление влияет не один, а несколько факторов, то взаимосвязь их выражают уравнением множественной регрессии,

Подробнее

2 Статистические оценки неизвестных параметров распределения

2 Статистические оценки неизвестных параметров распределения Статистические оценки неизвестных параметров распределения Статистическая оценка неизвестного параметра теоретического распределения Виды статистических оценок 3 Нахождение оценок неизвестных параметров

Подробнее

Метод наименьших квадратов

Метод наименьших квадратов Метод наименьших квадратов Метод наименьших квадратов один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений содержащих случайные ошибки. Метод наименьших квадратов

Подробнее

Построение ММ статики технологических объектов

Построение ММ статики технологических объектов Построение ММ статики технологических объектов При исследовании статики технологических объектов наиболее часто встречаются объекты со следующими типами структурных схем (рис : О с одной входной х и одной

Подробнее

Если при изменении x изменяются M ( Y X x)

Если при изменении x изменяются M ( Y X x) Математическая статистика. Понятия функциональной, стохастической и корреляционной зависимости. Функция регрессии. Будем обозначать X независимую переменную, Y зависимую переменную. Зависимость величины

Подробнее

Федеральное агентство морского и речного транспорта

Федеральное агентство морского и речного транспорта Федеральное агентство морского и речного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования «МОРСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени адмирала Г.И.

Подробнее

Линейный коэффициент корреляции и коэффициент детерминации

Линейный коэффициент корреляции и коэффициент детерминации Лекция 10. Методы измерения тесноты парной корреляционной связи. Часть 1 Признаки могут быть представлены в количественных, порядковых и номинальных шкалах. В зависимости от того, по какой шкале представлены

Подробнее

АППРОКСИМАЦИЯ ФУНКЦИЙ. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

АППРОКСИМАЦИЯ ФУНКЦИЙ. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ АППРОКСИМАЦИЯ ФУНКЦИЙ. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Постановка задачи. Основу математических моделей многих процессов и явлений в физике, химии, биологии, экономике и других областях составляют уравнения

Подробнее

. (3.2.2) Вычисляемое отклонение графически означает, что из точки каждого фактического наблюдения (на рис одна из таких точек на плоскости

. (3.2.2) Вычисляемое отклонение графически означает, что из точки каждого фактического наблюдения (на рис одна из таких точек на плоскости 3.. ПОСТРОЕНИЕ ОДНОФАКТОРНЫХ МОДЕЛЕЙ ПРОГНОЗИРОВАНИЯ Пусть в ходе корреляционного анализа прогнозисту удалось определить степень взаимосвязи между двумя случайными факторами и и определить направление

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

Корреляция. u n. Методические указания

Корреляция. u n. Методические указания Методические указания Корреляция Регрессией Y на X или условным математическим ожиданием случайной величины Y относительно случайной величины X называется функция вида М (Y/ x)=f(x). Регрессией X на Y

Подробнее

1. Общий анализ временного ряда. Доходы населения

1. Общий анализ временного ряда. Доходы населения 1. Общий анализ временного ряда. 1.1. Проверка гипотезы о случайности временного ряда. График временного ряда изучаемого показателя «Среднедушевые денежные доходы» изображен на рис. «Доходы населения».

Подробнее

ТЕМА 1. ПРОСТАЯ ЛИНЕЙНАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ Оценивание параметров эконометрической модели методом наименьших квадратов

ТЕМА 1. ПРОСТАЯ ЛИНЕЙНАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ Оценивание параметров эконометрической модели методом наименьших квадратов 8 ТЕМА ПРОСТАЯ ЛИНЕЙНАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ Оценивание параметров эконометрической модели методом наименьших квадратов Простая линейная регрессионная модель устанавливает линейную зависимость между

Подробнее

«Оптимизация и математические методы принятия решений»

«Оптимизация и математические методы принятия решений» «Оптимизация и математические методы принятия решений» ст. преп. каф. СС и ПД Владимиров Сергей Александрович Лекция 4 Методы математической статистики в задачах принятия решений Введение С О Д Е Р Ж А

Подробнее

1 Обработка экспериментальных данных

1 Обработка экспериментальных данных Занятие 3 РЕГРЕССИОННЫЙ АНАЛИЗ ДЛЯ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА Регрессионный анализ часто используется в химии с целью обработки экспериментальных данных, совокупность которых представлена некоторой

Подробнее

Контрольная работа по дисциплине Эконометрика

Контрольная работа по дисциплине Эконометрика Министерство образования Российской Федерации Новосибирский государственный технический университет Кафедра прикладной математики Контрольная работа по дисциплине Эконометрика Выполнил: Студент группы

Подробнее

Планирование полного двухфакторного эксперимента. Регрессионный анализ

Планирование полного двухфакторного эксперимента. Регрессионный анализ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технический университет

Подробнее

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия.

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия. Квантили Выборочная квантиль x p порядка p (0 < p < 1) определяется как элемент вариационного ряда выборки x (1),, x () с номером [p]+1, где [a] целая часть числа а В статистической практике используется

Подробнее

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии.

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Пусть имеется нормально распределенная случайная величина N,, определенная на множестве объектов

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика»

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» Задача 1. ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0,

Подробнее

Лекция 9. Введение в регрессионный анализ

Лекция 9. Введение в регрессионный анализ Лекция 9. Введение в регрессионный анализ Изучение корреляционных зависимостей основывается на исследовании таких связей между переменными, при которых значения одной переменной, ее можно принять за зависимую

Подробнее

6.7. Статистические испытания

6.7. Статистические испытания Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Подробнее

600 и До размеру. Итого активов, млн руб. Удельный вес банков в % к

600 и До размеру. Итого активов, млн руб. Удельный вес банков в % к ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Б1.Б.11 Эконометрика Примерные зачетные практические задания Задачи: 1. В лотерее разыгрывается:

Подробнее

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна Тема: Математическая статистика Дисциплина: Математика Авторы: Нефедова Г.А.. Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка:. (0;0). (5;5) 3. (0;5) 4. (5;5) 5. (0;0).

Подробнее

( ) 1 N (5.1) (5.2) где x

( ) 1 N (5.1) (5.2) где x На практике исследователь всегда располагает ограниченным набором значений измеряемой величины, называемой выборкой. Выборка является случайным набором измерений. Поэтому любое суждение об измеряемой величине,

Подробнее

по учебной дисциплине «ЭКОНОМЕТРИКА»

по учебной дисциплине «ЭКОНОМЕТРИКА» НВУЗ АНО «Региональный финансово-экономический институт» ИТОГОВЫЙ ЭКЗАМЕН по учебной дисциплине «ЭКОНОМЕТРИКА» http://elearning.rfei.ru СОДЕРЖАНИЕ Введение... 3 Вопросы к экзамену по курсу «Эконометрика»...

Подробнее

Корреляционный анализ.

Корреляционный анализ. Корреляционный анализ. Корреляционно-регрессионный анализ выполняется на основе анализа эмпирических данных. Методы такого анализа являются составной частью эконометрики, которая устанавливает и исследует

Подробнее

1. Общий анализ временного ряда. Доходы населения

1. Общий анализ временного ряда. Доходы населения 1. Общий анализ временного ряда. 1.1. Проверка гипотезы о случайности временного ряда. График временного ряда изучаемого показателя «Среднедушевые денежные доходы» изображен на рис. «Доходы населения».

Подробнее

Таблица 1. Среднедневная зарплата, руб., у. региона

Таблица 1. Среднедневная зарплата, руб., у. региона В таблице 7 приведены данные по территориям региона за 199Х год. Число k рассчитывается по формуле k = 100 + 10i + j, где i, j две последние цифры зачетной книжки соответственно. (i = 1, j = 6) Требуется:

Подробнее

6.4. Системы случайных величин

6.4. Системы случайных величин Лекция 4.9. Системы случайных величин. Функция распределения системы двух случайных величин (СДСВ). Свойства функции 6.4. Системы случайных величин В практике часто встречаются задачи которые описываются

Подробнее

Министерство образования и науки РФ Восточно-Сибирский государственный технологический университет

Министерство образования и науки РФ Восточно-Сибирский государственный технологический университет Министерство образования и науки РФ Восточно-Сибирский государственный технологический университет Методические указания по статистической обработке данных экспериментальных исследований для студентов

Подробнее

СЕМИНАР 1 переменные параметры

СЕМИНАР 1 переменные параметры СЕМИНАР Основные понятия. Составление (вывод) дифференциального уравнения. Понятие решения дифференциального уравнения. Решение методом разделяющихся переменных. Решение линейного дифференциального уравнения

Подробнее

Математика (Статистика, корреляция и регрессия)

Математика (Статистика, корреляция и регрессия) Федеральное агентство воздушного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

Лекция. Элементы математической статистики.

Лекция. Элементы математической статистики. Лекция. Элементы математической статистики. План. 1. Статистика как наука. Этапы статистической работы.. I-й этап статистической работы. Генеральная совокупность и выборка. 3. I I-ой этап статистической

Подробнее

. Таким образом, вероятность того, что на каждом этаже выйдет по одному пассажиру. m n. которая носит название формулы полной вероятности.

. Таким образом, вероятность того, что на каждом этаже выйдет по одному пассажиру. m n. которая носит название формулы полной вероятности. МВДубатовская Теория вероятностей и математическая статистика Методические рекомендации к решению задач из экзаменационного задания Семь человек вошли в лифт на первом этаже восьмиэтажного дома Считая,

Подробнее