7.8. Примеры применения закона электромагнитной индукции

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "7.8. Примеры применения закона электромагнитной индукции"

Транскрипт

1 7.8. Примеры применения закона электромагнитной индукции Пример. Тонкое кольцо радиусом r = м, обладающее электрическим сопротивлением R =,73 Ом в однородном магнитном поле с индукцией В = Тл. Плоскость кольца составляет с вектором индукции угол α = 3. Магнитное поле внезапно пропадает, какое количество электричества протечёт, при этом, по кольцу?. Определим изменение магнитного потока магнитного потока, пронизывающего рамку, при исчезновении поля Φ ΔΦ = Bπr co α. (). Величина ЭДС индукции, возникающая при изменении магнитного потока ΔΦ Bπr co α ε i = =. () 3. Индукционный ток, возникающий в кольце εi ΔQ Br πco α i = = =, R R (3) Br π co α 3,4,87 Q = = мкл. R,73 Пример. Проволочное кольцо радиусом r =. м находится в магнитном поле с индукцией В = мктл. Вектор магнитной индукции перпендикулярен плоскости кольца. Кольцо поворачивают на 8 вокруг оси, совпадающей с его диаметром, и перпендикулярной В. Какое количество электричества протечёт по кольцу, если сопротивление кольца равно R = Ом. При поворачивании кольца по нему потечёт индукционный ток εi πr B ΔQ i = = =, R R () 6 πbr 6,8 ΔQ = = 63мкКл. R () Пример 3. Круговой виток с током, замкнутый на баллистический гальванометр, внесли в пространство между полюсами постоянного магнита. Гальванометр, при этом, зафиксировал протекание в цепи заряда Q = мккл. Найти величину магнитного потока, ели цепь обладает сопротивлением R = Ом.. Воспользуемся уравнением () предыдущей задачи εi πr B ΔQ i = = =, () R R где πr B = Ф магнитный поток.. Уравнение () с учётом введённых обозначений можно переписать следующим образом 7

2 Φ R = Q, Φ = QR, Φ = Вб. () Пример 4. Катушка, замкнутая на баллистический гальванометр, находится в межполюсном пространстве электрического магнита. Катушка содержит N = витков диаметром d = 3,57 см, с общим сопротивлением R = Ом. Сопротивление гальванометра равно r = Ом. При включении питания электромагнита по цепи прошёл электрический заряд Q = мккл. Определить величину индукции магнитного поля.. Определим площадь поперечного сечения катушки πd = = м. () 4. Магнитный поток через катушку при расположении её плоскости перпендикулярно вектору магнитной индукции поля электромагнита Φ = NB. () 3. Запишем далее уравнение индукционного тока, возникающего при появлении магнитного поля εi NB ΔQ Q( R + r) i = = =, B =, (3) R + r R + r N ( ) B = =,Тл. (4) Пример 5. Круговой виток радиусом r = м расположен перпендикулярно магнитному полю с индукцией В =,Тл. В разрыв витка вставлен гальванометр с внутренним сопротивлением R = Ом. Какой заряд пройдёт через гальванометр при повороте контура на 9?. Определим величину магнитного потока через контур, расположенный нормально к вектору индукции В Φ = πr B. (). Когда плоскость контура будет параллельна В, то Ф =, т.е. ΔФ = πr B. 3. Воспользуемся далее уравнением () задачи 3..3 εi πr B ΔQ i = = =, R R. () πr B 3,4, ΔQ = = 3,4 мкл R Пример 6. На расстоянии а = м от длинного прямолинейного проводника по которому течёт постоянный ток силой = А находится кольцо радиусом r = см. Кольцо расположено так, что через его поверхность проходит максимальный магнитный поток. Определить количество электричества, которое протечёт по кольцу при внезапном исчезновении тока в проводнике. Электрическое сопротивление кольца равно R = Ом.. Определим величину магнитной индукции на удалении а от проводника 7

3 B μ =, () πa. Магнитный поток пронизывающий поверхность кольца, при расположении его плоскости перпендикулярно вектору магнитной индукции В μ μr Φ = B = πr =. () πa a 3. Индукционный ток в кольце в этом случае определится уравнением 3 εi μr ΔQ μr,56 i = = =, ΔQ = = 6,8 нкл. (3) R ar ar Самоиндукция и взаимоиндукция Пример 7. Ток силой = А течёт по катушке индуктивностью L = мкгн. При отсоединении катушки от источника, сила тока уменьшилась до нулевого значения за время мкс. Определить среднюю величину ЭДС самоиндукции <ε i >.. ЭДС самоиндукции в цепи с индуктивностью определяется уравнением di Δ < εi >= L L = мв. () dt Пример 8. Величина тока в катушке с индуктивностью L = мгн линейно увеличивается на Δ =, A за = c. Определить среднее значение ЭДС самоиндукции <ε i >.. В соответствии с уравнением () предыдущей задачи di Δ < εi >= L L = dt, мв. () Пример 9. Сила тока в катушке с индуктивностью L = мгн изменяется по закону i(t) = in(πνt), где = A амплитудное значение силы тока, ν = 5 Гц частота питающей катушку сети. Определить среднее значение ЭДС самоиндукции за время, в течение которого сила тока в катушке меняется от минимального до максимального значения.. Определим период изменения силы тока в индуктивности T = =, c. () ν. Сила тока меняется от до за время, равное четверть периода, поэтому 4 < εi >= L = Lν = 4 5 = 4 B. () T Пример. Катушка с собственным сопротивление R =,5 Ом и индуктивностью L = 4 мгн соединена параллельно с сопротивлением R =,5 Ом, по которому течёт постоянный ток силой = A. Определить количество электричества, индуцированного в катушке при отключении цепи от источника питания. 73

4 . ЭДС самоиндукции в цепи определится как Δi < εi >= L. (). Индукционный ток < εi > i =. R + R () 3. Количество электричества, индуцированное в цепи при её отключении от источника питания ΔQ L 4 = L, Q = =,33мКл. (3) R + R R + R 3 Пример. Соленоид представляет собой диэлектрический каркас в виде цилиндра длиной l =,5 м и площадью основания = 4 4 м. На цилиндр в один слой виток к витку намотан провод радиусом d = м. Определить индуктивность соленоида.. Индуктивность соленоида, содержащего N витков, определяется как L = μ n V, () где n = N/l количество витков, приходящееся на единицу длины соленоида, V = l объём каркаса соленоида N l n = = =. () l dl d. Подставим значение n и V в уравнение () l,56,5 4 L = μ = = 6,8 мгн. (3) 8 d 4 Пример. Соленоид длиной l = м и сечением = 3 м обладает индуктивностью L =,6 мгн. Определить число витков n, приходящееся на см его длины.. Запишем уравнение индуктивности соленоида L = μ n l, () где n приведённое к длине число витков, V = l объём каркаса.. Определим из уравнения приведённое число витков n L,6 n = = 8 = 8. () μ l,56 м см Пример 3. Какое количество витков провода диаметром d =,4 мм в один слой намотано на цилиндрическую катушку с диаметром основания D =, м, имеющую индуктивность L = мгн?. Запишем уравнение индуктивности соленоида N l πd L = μ V = μ l, () l dl 4 и выразим из него длину соленоида 4Ld l =. () μ πd 74

5 . Число витков соленоида определится как l 4Ld 4 4 = = d μ πd,56 3,4 4 N = = 4. (3) Пример 4. Соленоид выполнен на немагнитном цилиндрическом каркасе, на который намотано N = 75 витков провода. Индуктивность соленоида составила L = 5 мгн. Для увеличения индуктивности соленоида до L = 36 мгн обмотку при сохранении её длины намотали более тонким проводом. Определить число витков N.. Запишем уравнение индуктивности соленоида для двух случаев N N L = μ V, L = μ V. () l l. Поделим почленно уравнения () друг на друга и найдём количество витков более тонкого провода N L N N L L 36 =, =, N = N = 75 = 9. () L N N L L 5 Пример 5. Соленоид индуктивностью L = 4 мгн содержит N = 6 витков. Найти величину магнитного потока Ф при силе тока, протекающего по обмотке = А.. Индуктивность соленоида может быть выражена через, пронизывающий его магнитный поток L = ΦN, () откуда L 4 Φ = = = 8 мквб. () N 6 Пример 6. Индуктивность катушки без сердечника составляет L = мгн. Определить величину потокосцепления ψ, когда по обмотке течёт ток силой = 5 А.. Потокосцепление контура определяется уравнением Ψ = L = 5 =,Вб. () Пример 7. Индуктивность соленоида L = 3 мгн без сердечника обеспечивается N = витками провода. Определить величины потокосцепления ψ и магнитного потока Ф при протекании по обмотке тока силой = А.. Потокосцепление соленоида определится уравнением () предыдущей задачи Ψ = L = 3 = 3мВб. (). Потокосцепление, т.е. полный магнитный поток, сцепленный со всеми витками катушки соленоида равен Ψ 3 Ψ = ΦN, Φ = = = 3мкВб. () 3 N 75

6 Пример 8. Соленоид площадью поперечного сечения = 5 4 м содержит N = витков провода, создающих в центральной внутренней области магнитное поле с индукцией В =, Тл при силе тока = А. Определить индуктивность соленоида.. Определим величину магнитного потока и потокосцепление Φ = B, Ψ = ΦN = L, () откуда следует, что BN 5 L = = = 3мГн. () Пример 9. Соленоид, образованный цилиндрическим немагнитным каркасом с площадью поперечного сечения = 3 м, на который намотано N = витков проволоки. При пропускании по катушке тока генерируется магнитное поле с индукцией B =,5 Тл. Определить среднюю величину ЭДС индукции <ε i >, возникающей в соленоиде при уменьшении силы тока до нуля за τ = 5 мкс.. Определим величину магнитного потока через поперечное сечение соленоида Φ = NB. (). Средняя величина ЭДС индукции определится как 3 ΔΦ NB,5 < εi >= = = = 3 B. () τ τ 5 Экстратоки замыкания и размыкания Пример. В цепи, содержащей индуктивность L =, Гн, с активным сопротивлением R = Ом течёт постоянный ток =5 A. При отключении индуктивности от источника и замыкании концов катушки ток уменьшается до величины i за время τ = мс. Определить значение силы тока i.. Кода перемычка находится в положении, в цепи индуктивности течёт постоянный ток силой. При коммутации концы катушки замыкаются, при этом сила тока за время τ по экспоненциальному закону уменьшается до нуля i = e L = 5 e,, = 5 e 6,8 A. () Пример. Источник тока замкнули на катушку с индуктивностью L = Гн и активным сопротивлением R = Ом. Определить, за какое время сила тока в цепи достигнет величины,9 первоначального значения.. Запишем уравнение изменения силы тока в функции времени для цепи, содержащей индуктивность L с активным сопротивлением R для заданных условий i () t = e L, () i(t) = e L L, (),9 = e, (3) 76

7 откуда L ln,,3 τ = = =,3c. (4) R Пример. В цепи, состоящей из индуктивности L = Гн с активным сопротивлением R = Ом, источник тока отключается без разрыва цепи (схема к примеру ). Найти время τ, в течение которого сила тока в цепи уменьшится до 3 первоначального значения.. Используя уравнение () примера и заданные условия, получим i(t) L = e, () откуда L, = e, () ln, τ =,69c. (3) Пример. Цилиндрическая катушка диаметром D =, м состоит из однослойной обмотки медного провода (ρ =,7 8 Ом/м) диаметром d = 4 м. По обмотке пропускают постоянный ток силой = А. Какое количество электричества Q протечёт через обмотку при замыкании её концов?. В начальном состоянии переключатель находится в положении, т.е. через обмотку протекает постоянный ток, сечение катушки пронизывает постоянный по величине и направлению магнитный поток. При переводе переключателя в положение сила тока, вследствие наличия в цепи индуктивности L исчезает не мгновенно, а по экспоненциальному закону ( R L)t i = e, () где R активное сопротивление, t время, в течение которого величина тока изменяется от до.. Количество электричества Q за время t определится как dq = idt, Q = t idt. () 3. Подставим в уравнение () значение силы тока i из уравнения (), с учётом того, что при t = сила тока стремится к нулю, а при t = сила тока составляет ( ) ( ) = R L t ( ) = R L t L = R L t e dt e dt e R Q. (3) 4. Подставим в уравнение (3) пределы интегрирования L Q =. ( 4) R 5. Запишем далее уравнения индуктивности и активного сопротивления катушки далее индуктивность катушки N μπd N L = μ l =, (5) l 4l 77

8 ρl R = 4ρl = πd, (6) где ρ удельное сопротивление провода, l длина проводника, сечение провода, d диаметр провода, N число витков соленоида, l длина обмотки, площадь поперечного сечения катушки. 6. Подставим уравнения индуктивности и активного сопротивления в уравнение (4) μn πd πd Q =. (7) 4l 4ρl 7. Выразим длину катушки через её диаметр и число витков l = πdn. (8) 8. Подставим длину катушки в уравнение (7) μn πd d π μπdd Q = =. (9) 6l ρπdn 6ρl 9. Отношение длины катушки к числу витков равно диаметру катушки l N = D, в этом случае уравнение (9) примет вид πμdd πμ Q = = Dd, () 6ρd 6ρ 4,,7 Q 7,45 мкл. () Энергия магнитного поля Пример 3. Найти магнитную энергию W, запасаемую в соленоиде когда по обмотке течёт ток силой = А, который обуславливает магнитный поток Ф = Вб.. Энергия, запасаемая магнитным полем определяется уравнением L W =. (). Выразим далее величину магнитного потока через индуктивность соленоида и силу протекающего по катушке тока Φ Φ = L, L =. () 3. Подставим значение магнитного потока в уравнение энергии Φ Φ W = = = 5 Дж. (3) Пример 4. Соленоид содержит N = 3 витков провода, по которому течёт постоянный ток силой = А. Магнитный поток через поперечное сечение соленоида составляет Ф =, Вб. Определить энергию магнитного поля W.. Каждый виток катушки соленоида будет вносить свой вклад в энергетику магнитного поля, численно определяемый уравнением (3) предыдущей задачи. Энергия, вызванная всеми N витками, запишется следующим очевидным образом Φ 3, W = N = = 5 Дж. () 78

9 Пример 5. Индуктивность в виде железного кольца и N = витков, провода, намотанного в один слой. При силе тока =,5 А магнитный поток в железе составляет Ф =,5 мвб. Определить энергию магнитного поля W.. В соответствие с уравнением () предыдущего примера 4 Φ 5,5 W = N = =,5 Дж. () Пример 6. На цилиндр из немагнитного материала длиной l = м и площадью поперечного сечения = 3 м намотан провод, так что на каждом сантиметре длины уместилось витков в один слой. Определить энергию магнитного поля W, при пропускании по обмотке постоянного тока = A.. Определим индуктивность катушки L = μ n V, () где n = 3 м приведённое число витков, μ = 4π 7 Ф/м магнитная постоянная, V = l объём соленоида.. Запишем уравнение магнитной энергии, запасаемой в соленоиде 6 L μn l,56 W = =,5 мвб. () Пример 7. Соленоид имеет стальной железный сердечник, по обмотке которого пропускается постоянный ток силой = А. На каждом сантиметре длины цилиндрической катушки умещается 5 витков провода. Найти объёмную плотность энергии магнитного поля в сердечнике.. Определим напряжённость магнитного поля H = n = 5 = 5 А / м. (). По приведенной зависимости B = f(h), найдём величину магнитной индукции B,Тл. () 3. Объёмная плотность энергии магнитного поля в железном сердечнике определится уравнением BH 5, МДж ϖ = =. (3) 7 3 μ,56 м Пример 8. Известно, что в железном образце при создании поля с магнитной индукцией В =,3 Тл объёмная плотность энергии составляет ϖ = Дж/м 3. Найти магнитную проницаемость железа.. По графику В = f(h) предыдущей задачи найдём, что напряжённость поля в образце составляет Н 75 А/м.. Используя далее уравнение взаимосвязи индукции и напряжённости магнитного поля, определим проницаемость железа B,3 B = μμh, μ = = 59. () 7 μ H,

10 Пример 9. Индукция магнитного поля в стальном образце равна В = Тл. Определить объёмную плотность энергии магнитного поля в образце.. По приведённому графику зависимости индукции магнитного поля от напряжённости определим величину Н = 85 А/м.. Используя уравнение (3) примера 7 определим объёмную плотность энергии магнитного поля BH 85, МДж ϖ = = 338. () 7 3 μ,56 м Пример 3. Обмотка электромагнита с индуктивностью L = Гн и активным сопротивлением R = Ом подключена к источнику постоянного напряжения. Найти время, в течение которого в обмотке выделится количество тепла, численно равное энергии магнитного поля, сосредоточенного в сердечнике.. Количество тепла, выделяемое при прохождении электрического тока по проводнику, определяется уравнением Q = Rt, () где t время, в течение которого выделяется тепло, сила тока.. Энергия магнитного поля в цепи, содержащей индуктивность, определится уравнением L W =. () 3. Приравняем уравнения () и (), поскольку по условию количество выделившегося тепла численно равно величине энергии поля L L = Rt, t = = = 5мс. R Пример 3. Соленоид длиной l = м с площадью поперечного сечения = 3 м обладает индуктивностью L =, Гн. Объёмная плотность энергии магнитного поля при этом составляет ϖ =, Дж/м 3. Ток, какой силы протекает по обмотке соленоида?. Объём соленоида V = l входит в уравнение плотности энергии магнитного поля W L ϖ = =, () l l откуда ϖl, = = 45мА. () L, Пример 3. По катушке тороида с воздушным сердечником течёт ток силой = А. Объёмная плотность энергии магнитного поля составляет ϖ 3 Дж/м 3. Определить приведённое число витков n, обеспечивающих заданный режим.. Плотность энергии магнитного поля тороида может быть определена уравнением 8

11 B ϖ =, () μ где В индукция магнитного поля, μ = 4π 7 Гн/м магнитная постоянная.. Индукция магнитного поля тороида N B = μ, () l где N число витков катушки, l длина катушки. 3. Подставим значение величины магнитной индукции из уравнения () в уравнение () с учётом того, что (N/l) = n μ n μ n ϖ 3 ϖ = =, n = = 69м. (3) μ μ,56 8

Электромагнитная индукция

Электромагнитная индукция Вариант 1. 1. Определить среднее значение ЭДС индукции в контуре, если магнитный поток, пронизывающий контур, изменяется от 0 до 40мВб за время 2 мс. (20В) 2. На картонный каркас длиной 50см и площадью

Подробнее

КОНТРОЛЬНАЯ РАБОТА 3 ВАРИАНТ 1

КОНТРОЛЬНАЯ РАБОТА 3 ВАРИАНТ 1 КОНТРОЛЬНАЯ РАБОТА 3 ВАРИАНТ 1 1. Три источника тока с ЭДС ξ 1 = 1,8 В, ξ 2 = 1,4 В, ξ 3 = 1,1 В соединены накоротко одноименными полюсами. Внутреннее сопротивление первого источника r 1 = 0,4 Ом, второго

Подробнее

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 МАГНЕТИЗМ

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 МАГНЕТИЗМ ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 МАГНЕТИЗМ 1-1. Определить величину индукции магнитного поля, создаваемого горизонтальным отрезком проводника длиной l = 10 см с током i = 10 А в точке над ним на высоте 5 м. Найти

Подробнее

6.9). Ось вращения проходит через конец

6.9). Ось вращения проходит через конец Индивидуальное задание 4 Электромагнитная индукция Вариант 1 1. В однородном магнитном поле с индукцией 0,05 Тл вращается стержень длиной 1 м с постоянной угловой скоростью 20 рад/с (рис. ω 6.9). Ось вращения

Подробнее

2. 2. Электромагнитная индукция. Справочные сведения

2. 2. Электромагнитная индукция. Справочные сведения .. Электромагнитная индукция Справочные сведения ЭДС индукции, возникающая в контуре при изменении магнитного потока, пронизывающего контур, равна: E инд dφ, где Ф - поток сцепления, т. е. поток, пронизывающий

Подробнее

= μμ0. Поток вектора индукции через элементарную площадку, показанную на рисунке штриховкой, , получим для индуктивности тороидального соленоида:

= μμ0. Поток вектора индукции через элементарную площадку, показанную на рисунке штриховкой, , получим для индуктивности тороидального соленоида: Примеры решения задач Пример Найдите индуктивность тороидальной катушки из N витков, внутренний радиус которой равен b, а поперечное сечение имеет форму квадрата со стороной Пространство внутри катушки

Подробнее

Практическое занятие 9. Электромагнитная индукция.

Практическое занятие 9. Электромагнитная индукция. Практическое занятие 9. Электромагнитная индукция. На занятии: Чертов А.Г. 25.7, 25.13, 25.17, 25.27. На самостоятельную работу: Чертов А. Г. 25.8, 25.16 25. 18, 25.25. 25.7 (Чертов А. Г.) Прямой провод

Подробнее

Физика Электромагнетизм

Физика Электромагнетизм Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет Физика Электромагнетизм Контрольные

Подробнее

Электромагнитная индукция. Самоиндукция. Взаимная индукция

Электромагнитная индукция. Самоиндукция. Взаимная индукция 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ Р Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Кафедра физики Сборник включает вопросы курса физики по разделу ЭЛЕК- ТРОМАГНЕТИЗМ

Подробнее

КОНТРОЛЬНАЯ РАБОТА 3 ВАРИАНТ 1

КОНТРОЛЬНАЯ РАБОТА 3 ВАРИАНТ 1 КОНТРОЛЬНАЯ РАБОТА 3 ВАРИАНТ 1 1. Четыре одинаковых заряда Q 1 = Q 2 = Q 3 = Q 4 = 40 кнл закреплены в вершинах квадрата со стороной а = 10 см. Определить силу F, действующую на каждый из этих зарядов

Подробнее

Домашнее задание по теме: «Электрические колебания» Вариант 1

Домашнее задание по теме: «Электрические колебания» Вариант 1 Домашнее задание по теме: «Электрические колебания» Вариант. В колебательном контуре индуктивность катушки L = 0, Гн. Величина тока изменяется по закону I(t) = 0,8sin(000t + 0,3), где t время в секундах,

Подробнее

Задания для самостоятельной работы студентов Модуль 5

Задания для самостоятельной работы студентов Модуль 5 Задания для самостоятельной работы студентов Модуль 5 Таблица вариантов модуля 5 вар Номера задач 1 1 15 38 53 70 85 165 213 229 257 2 2 16 39 54 71 86 166 214 230 258 3 3 17 40 55 72 87 167 215 231 259

Подробнее

Вариант На расстоянии 90см от центра витка с током 26 А в этой же плоскости расположен прямой бесконечный проводник с током 17А.

Вариант На расстоянии 90см от центра витка с током 26 А в этой же плоскости расположен прямой бесконечный проводник с током 17А. Вариант 1. 1. Бесконечно длинный прямой проводник имеет изгиб в виде перекрещивающейся петли радиусом 90см. Найти ток, текущий в проводнике, если напряженность магнитного поля в центре петли равна 66 А\м.

Подробнее

Найти ток через перемычку АВ. Ответ: J AB 2 A. 6. Электрон влетает в однородное магнитное поле с индукцией B 0,2 Тл под углом

Найти ток через перемычку АВ. Ответ: J AB 2 A. 6. Электрон влетает в однородное магнитное поле с индукцией B 0,2 Тл под углом Вариант 1 1. Два точечных электрических заряда q и 2q на расстоянии r друг от друга притягиваются с силой F. С какой силой будут притягиваться заряды 2q и 2q на расстоянии 2r? Ответ. 1 2 F. 2. В вершинах

Подробнее

3.3. Магнитное поле. Электромагнитная индукция

3.3. Магнитное поле. Электромагнитная индукция 3.3. Магнитное поле. Электромагнитная индукция Основные законы и формулы Электрический ток создает в пространстве, окружающем его, магнитное поле. Силовой характеристикой магнитного поля является вектор

Подробнее

Глава 12 Электромагнитная индукция 100

Глава 12 Электромагнитная индукция 100 Глава Электромагнитная индукция Явления электромагнитной индукции В 83 г. М. Фарадей открыл явление электромагнитной индукции, которое заключается в следующем: В замкнутом проводящем контуре при изменении

Подробнее

4. Электромагнитная индукция

4. Электромагнитная индукция 4 Электромагнитная индукция 41 Закон электромагнитной индукции 1 Электрические токи создают вокруг себя магнитное поле Существует и обратное явление: магнитное поле вызывает появление электрических токов

Подробнее

Задачи для самостоятельной работы

Задачи для самостоятельной работы Задачи для самостоятельной работы Закон Кулона. Напряженность. Принцип суперпозиции для электростатического поля. Потенциал. Работа электрического поля. Связь напряженности и потенциала. 1. Расстояние

Подробнее

Указания к выполнению и выбору варианта задания

Указания к выполнению и выбору варианта задания «УТВЕРЖДАЮ» заведующий кафедрой ОП-3 проф., д.ф.-м.н. Д.Х. Нурлигареев «26» декабря 2014 г. ДОМАШНЯЯ КОНТРОЛЬНАЯ РАБОТА 4 ПО ФИЗИКЕ ЧАСТЬ II (3-хсеместровая программа обучения) Указания к выполнению и

Подробнее

Индивидуальное задание 3 Магнитное поле. Вариант 2

Индивидуальное задание 3 Магнитное поле. Вариант 2 Индивидуальное задание 3 Магнитное поле Вариант 1 1. Два параллельных бесконечно длинных прямых провода, по которым в одном направлении текут токи силой 30 А, расположены на расстоянии 5 см один от другого.

Подробнее

ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. УРАВНЕНИЯ МАКСВЕЛЛА. Индивидуальные задания по физике для студентов всех форм обучения всех специальностей

ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. УРАВНЕНИЯ МАКСВЕЛЛА. Индивидуальные задания по физике для студентов всех форм обучения всех специальностей Федеральное агентство по образованию ГОУ ВПО Уральский государственный технический университет-упи ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. УРАВНЕНИЯ МАКСВЕЛЛА Индивидуальные задания по физике для студентов

Подробнее

Решение задач ЕГЭ части С: Электромагнетизм

Решение задач ЕГЭ части С: Электромагнетизм С1.1. На рисунке приведена электрическая цепь, состоящая из гальванического элемента, реостата, трансформатора, амперметра и вольтметра. В начальный момент времени ползунок реостата установлен посередине

Подробнее

Электромагнитные колебания и волны.

Электромагнитные колебания и волны. Вариант 1. 1. Конденсатор электроемкостью 500 пф соединен параллельно с катушкой длиной 40см и площадью поперечного сечения 5 см 2. Катушка содержит 1000 витков. Сердечник немагнитный. Найти период колебаний

Подробнее

15. Электрические колебания

15. Электрические колебания 5. Электрические колебания Вопросы. Дифференциальное уравнение, описывающее свободные колебания заряда конденсатора в колебательном контуре, имеет вид Aq + Bq = 0, где A и B известные положительные постоянные.

Подробнее

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 2.

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 2. ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ. Вариант 1 1. Два параллельных бесконечно длинных провода, по которым в одном направлении текут токи силой 60 А, расположены на расстоянии 10 см друг от друга. Определите магнитную

Подробнее

Лекция 6. Явление самоиндукции. Индуктивность

Лекция 6. Явление самоиндукции. Индуктивность Лекция 6 Явление самоиндукции. Индуктивность В замкнутом проводящем контуре, находящемся в переменном магнитном поле, благодаря явлению электромагнитной индукции возникает индукционный ток. При этом магнитное

Подробнее

Тема 9. Электромагнетизм

Тема 9. Электромагнетизм 1 Тема 9. Электромагнетизм 01. Магнитное поле создается постоянными магнитами и движущимися зарядами (токами) и изображается с помощью силовых линий линий вектора магнитной индукции. Рис. 9.1 Силовые линии

Подробнее

Контрольная работа по теме Электромагнетизм 11 класс. 1 вариант

Контрольная работа по теме Электромагнетизм 11 класс. 1 вариант Контрольная работа по теме Электромагнетизм 11 класс 1 вариант A1. К магнитной стрелке (северный полюс затемнен, см. рисунок), которая может поворачиваться вокруг вертикальной оси, перпендикулярной плоскости

Подробнее

Контрольная работа 3 ЭЛЕКТРИЧЕСТВО

Контрольная работа 3 ЭЛЕКТРИЧЕСТВО Кафедра физики, контрольные для заочников 1 Контрольная работа 3 ЭЛЕКТРИЧЕСТВО 1. Два одинаково заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол α. Шарики

Подробнее

Электромагнитная индукция

Электромагнитная индукция Электромагнитная индукция Основные теоретические сведения Из школьного курса физики опыты Фарадея хорошо известны, например катушка и постоянный магнит Если подносить магнит к катушке или наоборот, то

Подробнее

Лекц ия 22 Самоиндукция и взаимоиндукция

Лекц ия 22 Самоиндукция и взаимоиндукция Лекц ия Самоиндукция и взаимоиндукция Вопросы. Самоиндукция и взаимоиндукция. Индуктивность соленоида. Работа силы Ампера. Энергия магнитного поля тока. Энергия и плотность энергии магнитного поля... Самоиндукция.

Подробнее

ФИЗИКА. Контрольные материалы, 2 семестр

ФИЗИКА. Контрольные материалы, 2 семестр Модуль 1 «Электрическое поле в вакууме» ФИЗИКА Контрольные материалы, 2 семестр Тема 1. Электрическое поле в вакууме: принцип суперпозиции 1.1. Расстояние между точечными зарядами +2 нкл и 2 нкл равно

Подробнее

ФИЗИКА 11.1 МОДУЛЬ Магнитное поле. Вектор магнитной индукции. Сила Ампера Вариант 1

ФИЗИКА 11.1 МОДУЛЬ Магнитное поле. Вектор магнитной индукции. Сила Ампера Вариант 1 ФИЗИКА 11.1 МОДУЛЬ 2 1. Магнитное поле. Вектор магнитной индукции. Сила Ампера Вариант 1 1. Взаимодействие двух параллельных проводников, по которым протекает электрический ток, называется 1) электрическим

Подробнее

Электричество и магнетизм Расчетно-графическая работа

Электричество и магнетизм Расчетно-графическая работа Электричество и магнетизм Расчетно-графическая работа Таблица вариантов Вар. Номера задач 1 301 311 321 331 341 351 361 371 401 411 421 431 441 451 461 471 2 302 312 322 332 342 352 362 372 402 412 422

Подробнее

ВАРИАНТ 2 1. Два шарика массой m = 0,1 г каждый подвешены в одной точке на нитях длиной l = 20 см каждая. Получив одинаковый заряд, шарики разошлись т

ВАРИАНТ 2 1. Два шарика массой m = 0,1 г каждый подвешены в одной точке на нитях длиной l = 20 см каждая. Получив одинаковый заряд, шарики разошлись т ВАРИАНТ 1 1. Определить силу взаимодействия двух точечных зарядов Q l = Q 2 = 1нКл, находящихся в вакууме на расстоянии r = 1 м друг от друга. 2. Четыре одинаковых заряда Q 1 = Q 2 = Q 3 = Q 4 = 40 нкл

Подробнее

Вариант 1 1. Колебательный контур состоит из катушки индуктивностью 0,2 мгн и конденсатора площадью пластин 155 см 2, расстояние между которыми 1,5

Вариант 1 1. Колебательный контур состоит из катушки индуктивностью 0,2 мгн и конденсатора площадью пластин 155 см 2, расстояние между которыми 1,5 Вариант 1 1. Колебательный контур состоит из катушки индуктивностью 0,2 мгн и конденсатора площадью пластин 155 см 2, расстояние между которыми 1,5 мм. Зная, что контур резонирует на длину волны 630 м,

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к курсу лекций по физике

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к курсу лекций по физике Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Старикова А.Л. МЕТОДИЧЕСКИЕ

Подробнее

9.6. Примеры применения уравнений электродинамики. Закон полного тока. Магнитный поток. Магнитные цепи

9.6. Примеры применения уравнений электродинамики. Закон полного тока. Магнитный поток. Магнитные цепи 9.6. Примеры применения уравнений электродинамики Закон полного тока. Магнитный поток. Магнитные цепи Пример. В плоскости бесконечного проводника с током I А расположена прямоугольная рамка с длинной большей

Подробнее

Сборник задач для специальности АТ 251

Сборник задач для специальности АТ 251 Сборник задач для специальности АТ 251 1 Электрические цепи постоянного тока Задания средней сложности 1. Определить, какими должны быть полярность и расстояние между двумя зарядами 1,6 10 -б Кл и 8 10

Подробнее

Определение индуктивности катушки и ёмкости конденсатора

Определение индуктивности катушки и ёмкости конденсатора МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Ухтинский государственный технический университет» (УГТУ) 34 Определение индуктивности катушки и

Подробнее

ИДЗ-4 / Вариант 1 ИДЗ-4 / Вариант 2

ИДЗ-4 / Вариант 1 ИДЗ-4 / Вариант 2 ИДЗ-4 / Вариант 1 1. Сила тока в проводнике равномерно нарастает от 0 до 3 А в течение 10 с. Определить заряд, прошедший в проводнике за это время. 2. Три батареи аккумуляторов с ЭДС 12 В, 5 В и 10 В и

Подробнее

Министерство образования Российской Федерации ГОУ СПбГПУ Кафедра экспериментальной физики ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ РАСЧЕТНЫХ ЗАДАНИЙ ПО ТЕМЕ МАГНЕТИЗМ

Министерство образования Российской Федерации ГОУ СПбГПУ Кафедра экспериментальной физики ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ РАСЧЕТНЫХ ЗАДАНИЙ ПО ТЕМЕ МАГНЕТИЗМ Министерство образования Российской Федерации ГОУ СПбГПУ Кафедра экспериментальной физики ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ РАСЧЕТНЫХ ЗАДАНИЙ ПО ТЕМЕ МАГНЕТИЗМ Расчет стационарных магнитных полей Проводники с током

Подробнее

Электростатика. 1. Закон Кулона F. где F - сила взаимодействия точечных зарядов q 1 и q 2 ; -

Электростатика. 1. Закон Кулона F. где F - сила взаимодействия точечных зарядов q 1 и q 2 ; - Электростатика Закон Кулона F 4 r ; F r r 4 r где F - сила взаимодействия точечных зарядов q и q ; - E диэлектрическая проницаемость среды; Е напряженность электростатического поля в вакууме; Е напряженность

Подробнее

4. Тонкий прямой стержень заряжен с линейной плотностью λ = λ ( x ) 2. / l, где l длина стержня, x расстояние от конца стержня, λ

4. Тонкий прямой стержень заряжен с линейной плотностью λ = λ ( x ) 2. / l, где l длина стержня, x расстояние от конца стержня, λ Вектор напряженности 1. На единицу длины тонкого однородно заряженного стержня АВ, имеющего форму дуги окружности радиуса R с центром в точке О, приходится заряд λ. Найдите модуль напряженности электрического

Подробнее

3. ЭЛЕКТРОСТАТИКА Закон Кулона. Напряженность электрического поля

3. ЭЛЕКТРОСТАТИКА Закон Кулона. Напряженность электрического поля 3. ЭЛЕКТРОСТАТИКА 3.1. Закон Кулона. Напряженность электрического поля 201. Два шарика по 1 г каждый подвешены на нитях длиной 10 см. Верхние концы нитей соединены. Какие одинаковые заряды надо сообщить

Подробнее

Электричество и магнетизм

Электричество и магнетизм Электричество и магнетизм Электростатическое поле в вакууме Задание 1 Относительно статических электрических полей справедливы утверждения: 1) поток вектора напряженности электростатического поля сквозь

Подробнее

Министерство образования Российской Федерации. Тульский государственный университет. Кафедра физики

Министерство образования Российской Федерации. Тульский государственный университет. Кафедра физики Министерство образования Российской Федерации Тульский государственный университет Кафедра физики Семин В.А. Тестовые задания по электричеству и магнетизму для проведения текущего тестирования на кафедре

Подробнее

Измерение индуктивности катушки и емкости конденсатора на переменном токе

Измерение индуктивности катушки и емкости конденсатора на переменном токе Федеральное агентство по образованию РФ Ухтинский государственный технический университет 34 Измерение индуктивности катушки и емкости конденсатора на переменном токе Методические указания к лабораторной

Подробнее

ЭДС. Данное явление называют самоиндукцией.

ЭДС. Данное явление называют самоиндукцией. 3.16 Явление самоиндукции Если по замкнутому контуру течет ток I, то он создает вокруг себя магнитное поле с индукцией B. С этим магнитным полем связан магнитный поток Ф, пронизывающий сам контур. Если

Подробнее

Рис. 11 расположены заряды q1 5 нкл и

Рис. 11 расположены заряды q1 5 нкл и Электростатика 1. Четыре одинаковых точечных заряда q 10 нкл расположены в вершинах квадрата со стороной a 10 см. Найти силу F, действующую со стороны трех зарядов на четвертый. 2. Два одинаковых положительных

Подробнее

Вариант 1 I 3 I 1 I 2 I 4

Вариант 1 I 3 I 1 I 2 I 4 Вариант 1 1. В некоторой системе отсчета электрические заряды q 1 и q 2 неподвижны. Наблюдатель А находится в покое, а наблюдатель В движется с постоянной скоростью. Одинакова ли по величине сила взаимодействия

Подробнее

Минимум информации по курсу Электричество и магнетизм, необходимый для получения оценки удовлетворительно

Минимум информации по курсу Электричество и магнетизм, необходимый для получения оценки удовлетворительно Минимум информации по курсу Электричество и магнетизм, необходимый для получения оценки удовлетворительно Все формулы и текст должны быть выучены наизусть! 1. Электромагнитное поле характеризуется четырьмя

Подробнее

9.Электродинамика. Магнетизм.

9.Электродинамика. Магнетизм. 9.Электродинамика. Магнетизм. 005 1.Силу Лоренца можно определить по формуле А) F = q υ Bsinα. B) F = I Δ l Bsinα. C) F = qe. D) F = k. E) F = pgv..токи, возникающие в массивных проводниках, называют А)

Подробнее

посередині між провідниками, та B

посередині між провідниками, та B Завдання на контрольну роботу 2 з курсу «Загальна фізика» на тему «Магнетизм». 401. Два однакові круглі витки радіуса R = 15 см з ізольованого дроту мають спільний центр і розміщені у взаємно перпендикулярних

Подробнее

Примеры решения задач

Примеры решения задач 51 Примеры решения задач Задача 1. По прямому проводнику длиной l=8см течет ток I=5A. Определить магнитную индукцию B поля, создаваемого этим током, в точке А, равноудаленной от концов проводника и находящейся

Подробнее

Сборник задач для специальности ОП 251

Сборник задач для специальности ОП 251 Сборник задач для специальности ОП 251 1 Электрическое поле. Задания средней сложности 1. Два точечных тела с зарядами Q 1 =Q 2 = 6 10 11 Кл расположены в воздухе на расстоянии 12 см друг от друга. Определить

Подробнее

8. Электрическое поле создано двумя точечными зарядами q 1 = 4 0 нкл и q 2 = -10

8. Электрическое поле создано двумя точечными зарядами q 1 = 4 0 нкл и q 2 = -10 Индивидуальные задания Электростатика и постоянный ток. Магнетизм Постоянный ток 1. На расстоянии 8 см друг от друга в воздухе находятся два заряда по 1 нкл. Определить напряженность и потенциал поля в

Подробнее

Тема 3. Электромагнитная индукция. Работа и энергия в электростатическом и магнитном полях.

Тема 3. Электромагнитная индукция. Работа и энергия в электростатическом и магнитном полях. 1 Тема 3. Электромагнитная индукция. Работа и энергия в электростатическом и магнитном полях. Задача 3.1. По двум гладким медным шинам, установленным вертикально в однородном магнитном поле, скользит под

Подробнее

Электромагнитная индукция (примеры решения задач) Проводник движется в постоянном магнитном поле. Рис.1

Электромагнитная индукция (примеры решения задач) Проводник движется в постоянном магнитном поле. Рис.1 Пример 1 Электромагнитная индукция (примеры решения задач) Проводник движется в постоянном магнитном поле В однородном магнитном поле с индукцией B расположен П-образный проводник, плоскость которого перпендикулярна

Подробнее

1. Поле создано бесконечной равномерно заряженной нитью с линейной плотностью заряда +τ. Укажите направление градиента потенциала в точке А.

1. Поле создано бесконечной равномерно заряженной нитью с линейной плотностью заряда +τ. Укажите направление градиента потенциала в точке А. Электростатика ТИПОВЫЕ ВОПРОСЫ К ТЕСТУ 1 (ч. 2) 1. Поле создано бесконечной равномерно заряженной нитью с линейной плотностью заряда +τ. Укажите направление градиента потенциала в точке А. 2. Каждый из

Подробнее

Задания А24 по физике

Задания А24 по физике Задания А24 по физике 1. На графике показана зависимость от времени силы переменного электрического тока I, протекающего через катушку индуктивностью 5 мгн. Чему равен модуль ЭДС самоиндукции, действующей

Подробнее

Нижегородская государственная сельскохозяйственная академия ЭЛЕКТРОМАГНЕТИЗМ. КОЛЕБАНИЯ И ВОЛНЫ. ВОЛНОВЫЕ ПРОЦЕССЫ. Тематические задания

Нижегородская государственная сельскохозяйственная академия ЭЛЕКТРОМАГНЕТИЗМ. КОЛЕБАНИЯ И ВОЛНЫ. ВОЛНОВЫЕ ПРОЦЕССЫ. Тематические задания Нижегородская государственная сельскохозяйственная академия Кафедра физики ЭЛЕКТРОМАГНЕТИЗМ. КОЛЕБАНИЯ И ВОЛНЫ. ВОЛНОВЫЕ ПРОЦЕССЫ Тематические задания для контроля уровня знаний студентов по физике Ч А

Подробнее

Тема 2.3. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Тема 2.3. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ Тема 2.3. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ 1. Явление электромагнитной индукции (опыты Фарадея) 2. Закон Фарадея 3. Вихревые токи (токи Фуко) 4. Индуктивность контура. Самоиндукция 5. Взаимная индукция 1. Явление

Подробнее

6.12. Примеры расчётов магнитных полей

6.12. Примеры расчётов магнитных полей 6.. Примеры расчётов магнитных полей Магнитное поле постоянного тока Пример. Напряжённость магнитного поля Н 79,6 ка/м. Определить магнитную индукцию этого поля в вакууме В.. Магнитная индукция В связана

Подробнее

и q 2 находятся в точках с радиус-векторами r 1 и радиус-вектор r 3

и q 2 находятся в точках с радиус-векторами r 1 и радиус-вектор r 3 1. Два положительных заряда q 1 и q 2 находятся в точках с радиус-векторами r 1 и r 2. Найти отрицательный заряд q 3 и радиус-вектор r 3 точки, в которую его надо поместить, чтобы сила, действующая на

Подробнее

Ч. II. ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ

Ч. II. ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ (СИБСТРИН) ФИЗИКА Кафедра физики Ч. II. ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ ТОК. ЭЛЕКТРОМАГНЕТИЗМ

Подробнее

ЗАДАНИЙ ЧАСТЬ «МАГНИТНОЕ ПОЛЕ».

ЗАДАНИЙ ЧАСТЬ «МАГНИТНОЕ ПОЛЕ». ФИЗИКА 11.1 класс. Профиль. БАНК ЗАДАНИЙ ЧАСТЬ 2 «МАГНИТНОЕ ПОЛЕ». 1. Подберите наиболее правильное продолжение фразы «Магнитные поля создаются...»: A. атомами железа. Б. электрическими зарядами. B. магнитными

Подробнее

Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики

Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики «УТВЕРЖДАЮ» Декан ЕНМФ Ю.И. Тюрин г. ИЗМЕРЕНИЕ НАПРЯЖЕННОСТИ МАГНИТНОГО

Подробнее

r r I I B r B r N B r Линии магнитной индукции в каждой точке этих линий вектор магнитной B r B r B r

r r I I B r B r N B r Линии магнитной индукции в каждой точке этих линий вектор магнитной B r B r B r Сафронов В.П. 1 ЭЛЕКТРОМАГНИТНАЯ ИДУКЦИЯ - 1-13.6. ТЕОРЕМА ОСТРОГРАДСКОГО ГАУССА ДЛЯ МАГНИТНОГО ПОЛЯ Линии магнитной индукции в каждой точке этих линий вектор магнитной индукции направлен по касательной.

Подробнее

ФИЗИКА ЗАДАЧИ ДЛЯ ПОДГОТОВКИ К ОКР 2

ФИЗИКА ЗАДАЧИ ДЛЯ ПОДГОТОВКИ К ОКР 2 ФИЗИКА ЗАДАЧИ ДЛЯ ПОДГОТОВКИ К ОКР 2 1.1. По мере удаления от заряда напряженность поля, создаваемого им, А) усиливается; В) не изменяется; Б) ослабевает; Г) однозначного ответа нет. 1.2. Движение каких

Подробнее

Электромагнитная индукция

Электромагнитная индукция И. В. Яковлев Материалы по физике MthUs.ru Электромагнитная индукция Задача 1. Проволочное кольцо радиусом r находится в однородном магнитном поле, линии которого перпендикулярны плоскости кольца. Индукция

Подробнее

Лабораторная работа 2-16 ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ. Т.М. Ахметчина. Цель работы. Теоретическое введение

Лабораторная работа 2-16 ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ. Т.М. Ахметчина. Цель работы. Теоретическое введение Лабораторная работа -6 ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ Т.М. Ахметчина Цель работы Изучение явления электромагнитной индукции в неподвижном проводящем контуре, находящемся в переменном магнитном поле. Исследование

Подробнее

Вариант Расстояние между двумя длинными параллельными проводами d = 50 мм. По проводам в противоположном направлении текут токи силой I = 10 А к

Вариант Расстояние между двумя длинными параллельными проводами d = 50 мм. По проводам в противоположном направлении текут токи силой I = 10 А к Вариант 1. 1. Расстояние между двумя длинными параллельными проводами d = 50 мм. По проводам в одном направлении текут токи силой I = 30 А каждый. Найти индукцию магнитного поля в точке, находящейся на

Подробнее

Электромагнитная индукция

Электромагнитная индукция И. В. Яковлев Материалы по физике MthUs.ru Электромагнитная индукция Задача 1. Проволочное кольцо радиусом r находится в однородном магнитном поле, линии которого перпендикулярны плоскости кольца. Индукция

Подробнее

Работа 3.12 Измерение индукции постоянного магнитного поля

Работа 3.12 Измерение индукции постоянного магнитного поля Работа 3. Измерение индукции постоянного магнитного поля У п р а ж н е н и е. Измерение индукции магнитного поля соленоида. Оборудование: исследуемый и нормальный соленоиды с измерительными катушками,

Подробнее

Глава девятая МАГНИТНЫЕ ЦЕПИ ПРИ ПОСТОЯННЫХ ПОТОКАХ

Глава девятая МАГНИТНЫЕ ЦЕПИ ПРИ ПОСТОЯННЫХ ПОТОКАХ Глава девятая МАГНИТНЫЕ ЦЕПИ ПРИ ПОСТОЯННЫХ ПОТОКАХ ВВЕДЕНИЕ Магнитные цепи совокупность устройств, содержащих ферромагнитные тела, электромагнитные процессы в которых могут быть описаны с помощью понятий

Подробнее

Электромагнитная индукция. Уравнения Максвелла Вопросы для программированного контроля по физике

Электромагнитная индукция. Уравнения Максвелла Вопросы для программированного контроля по физике Федеральное агентство по образованию ОУ ВПО Уральский государственный технический университет-упи Электромагнитная индукция. Уравнения Максвелла Вопросы для программированного контроля по физике Екатеринбург

Подробнее

ВАРИАНТ На рисунке ε 1 = 10 В, ε 2 = 20 В, ε 3 = 40 В, а сопротивления

ВАРИАНТ На рисунке ε 1 = 10 В, ε 2 = 20 В, ε 3 = 40 В, а сопротивления ВАРИАНТ 1 1 1. Сила гравитационного притяжения двух водяных одинаково заряженных капель радиусами 0,1 мм уравновешивается кулоновской силой отталкивания. Определить заряд капель. Плотность воды равна 1

Подробнее

2 =0,1 мккл/м 2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.

2 =0,1 мккл/м 2. Определить напряженность электрического поля, созданного этими заряженными плоскостями. Задачи для подготовки к экзамену по физике для студентов факультета ВМК Казанского госуниверситета Лектор Мухамедшин И.Р. весенний семестр 2009/2010 уч.г. Данный документ можно скачать по адресу: http://www.ksu.ru/f6/index.php?id=12&idm=0&num=2

Подробнее

Электромагнитные колебания

Электромагнитные колебания И. В. Яковлев Материалы по физике MathUs.ru Электромагнитные колебания Задача 1. (МФО, 2014, 11 ) Заряженный конденсатор начинает разряжаться через катушку индуктивности. За две миллисекунды его электрический

Подробнее

Решение задач по теме «Электродинамика» Захарова В.Т., учитель физики МАОУ СОШ 37

Решение задач по теме «Электродинамика» Захарова В.Т., учитель физики МАОУ СОШ 37 Решение задач по теме «Электродинамика» Захарова В.Т., учитель физики МАОУ СОШ 37 Задание 14. Пять одинаковых резисторов с сопротивлением 1 Ом соединены в электрическую цепь, через которую течёт ток I

Подробнее

4. Электромагнитная индукция

4. Электромагнитная индукция 1 4 Электромагнитная индукция 41 Закон электромагнитной индукции Правило Ленца В 1831 г Фарадей открыл одно из наиболее фундаментальных явлений в электродинамике явление электромагнитной индукции: в замкнутом

Подробнее

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем 4.4. Электромагнитная индукция. Правило Ленца. Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом

Подробнее

Электромагнитная индукция. Явление самоиндукции. Лекция 7

Электромагнитная индукция. Явление самоиндукции. Лекция 7 Электромагнитная индукция. Явление самоиндукции Лекция 7 Содержание лекции: Явление электромагнитной индукции Правило Ленца Токи Фуко (вихревые токи) Явление самоиндукции 2 Явление электромагнитной индукции

Подробнее

Тема 1. Электростатика

Тема 1. Электростатика Домашнее задание по курсу общей физики для студентов 3-го курса. Варианты 1-9 - Задача 1.1 Варианты 10-18 - Задача 1.2 Варианты 19-27 - Задача 1.3 Тема 1. Электростатика По результатам проведённых вычислений

Подробнее

m cos(ω 0 t + φ), где Q m амплитуда заряда, ω 0

m cos(ω 0 t + φ), где Q m амплитуда заряда, ω 0 ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ Закон, по которому в электрической цепи происходят колебания, и характеристики колебательного процесса зависят от параметров цепи и начальных условий колебаний (см пример

Подробнее

где пределы интегрирования соответствуют положению на оси r длинный сторон прямоугольника. Работа Φзам зам

где пределы интегрирования соответствуют положению на оси r длинный сторон прямоугольника. Работа Φзам зам 8 РАБОТА СИЛ АМПЕРА Работ сил Ампера равна A = I Φ Здесь Φ имеет смысл модуля магнитного потока через поверхность, заметенную проводником с постоянным током I при его перемещении: Φ = Φ зам Знак работы

Подробнее

Лабораторная работа 12 Исследование магнитного поля соленоида

Лабораторная работа 12 Исследование магнитного поля соленоида Ярославский государственный педагогический университет им. К. Д. Ушинского Лабораторная работа 12 Исследование магнитного поля соленоида Ярославль 2007 Оглавление 1. Краткая теория...........................

Подробнее

Лабораторная работа 2.26 ИЗМЕРЕНИЕ ВЗАИМНОЙ ИНДУКТИВНОСТИ ДВУХ КАТУШЕК М.В. Козинцева, Т.Ю. Любезнова

Лабораторная работа 2.26 ИЗМЕРЕНИЕ ВЗАИМНОЙ ИНДУКТИВНОСТИ ДВУХ КАТУШЕК М.В. Козинцева, Т.Ю. Любезнова Лабораторная работа 2.26 ИЗМЕРЕНИЕ ВЗАИМНОЙ ИНДУКТИВНОСТИ ДВУХ КАТУШЕК М.В. Козинцева, Т.Ю. Любезнова Цель работы: измерение взаимной индуктивности двух коаксиально расположенных катушек. Задание: определить

Подробнее

С1 «ЭЛЕКТРОМАГНЕТИЗМ», «ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ»

С1 «ЭЛЕКТРОМАГНЕТИЗМ», «ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ» С1 «ЭЛЕКТРОМАГНЕТИЗМ», «ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ» Прямой горизонтальный проводник висит на двух пружинках. По проводнику протекает электрический ток в направлении, указанном на рисунке. В некоторый момент

Подробнее

2.3. Электромагнитные колебания. Справочные сведения

2.3. Электромагнитные колебания. Справочные сведения 3 Электромагнитные колебания Справочные сведения Задачи настоящего раздела посвящены собственным электромагнитным колебаниям Действующие значения тока и напряжения определяются из выражения i dt, 4 u dt,

Подробнее

Лабораторная работа 10 Определение индуктивности соленоида 1. Цель работы: ознакомление с одним из методов определения индуктивности соленоида.

Лабораторная работа 10 Определение индуктивности соленоида 1. Цель работы: ознакомление с одним из методов определения индуктивности соленоида. Лабораторная работа 10 Определение индуктивности соленоида 1 Цель работы: ознакомление с одним из методов определения индуктивности соленоида. Приборы и принадлежности: мультиметр шт. 1 амперметр, вольтметр

Подробнее

Лабораторная работа 2.20 ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ ТОКА В КАТУШКЕ В.А. Давыдов, Н.А. Экономов

Лабораторная работа 2.20 ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ ТОКА В КАТУШКЕ В.А. Давыдов, Н.А. Экономов Лабораторная работа 2.20 ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ ТОКА В КАТУШКЕ В.А. Давыдов, Н.А. Экономов Цель работы: Экспериментальная проверка закона изменения силы тока в катушке индуктивности при включении и выключении

Подробнее

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ 3

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ 3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ 3 В контрольную работу 3 включены задачи по разделам: «Электромагнетизм» и «Колебания и волны». 1. Решая задачи по разделу «Электромагнетизм» прежде

Подробнее

Министерство образования Республики Беларусь. Министерство образования и науки Российской Федерации

Министерство образования Республики Беларусь. Министерство образования и науки Российской Федерации Министерство образования Республики Беларусь Министерство образования и науки Российской Федерации Государственное учреждение высшего профессионального образования "БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ" Кафедра

Подробнее

11. Магнетизм дополнительные задачи.

11. Магнетизм дополнительные задачи. . Оглавление 11.01. Сила Ампера.... 11.03. Сила Лоренца.... 4 11.04. Немного теории о магнитном поле.... 7 11.05. Магнитный поток. Электромагнитная индукция.... 11 11.06.П. Движение проводника в магнитном

Подробнее

- + А3. Имеем виток с током. Индукция магнитного поля в точке О имеет направление: Краевая диагностическая работа по ФИЗИКЕ ВАРИАНТ 1 2 О 4

- + А3. Имеем виток с током. Индукция магнитного поля в точке О имеет направление: Краевая диагностическая работа по ФИЗИКЕ ВАРИАНТ 1 2 О 4 ФИЗИКА, класс, УМК Вариант, Октябрь 0 ФИЗИКА, класс, УМК Вариант, Октябрь 0 Краевая диагностическая работа по ФИЗИКЕ ВАРИАНТ Часть При выполнении заданий А А7 в бланке ответов под номером выполняемого

Подробнее

Часть А. n n A A 3) A

Часть А. n n A A 3) A ЭЛЕКТРОДИНАМИКА Кириллов А.М., учитель гимназии 44 г. Сочи (http://kirilladrey7.arod.ru/) Данная подборка тестов сделана на основе учебного пособия «Веретельник В.И., Сивов Ю.А., Толмачева Н.Д., Хоружий

Подробнее

I, А 0 1, ,4 U, В

I, А 0 1, ,4 U, В На схеме нелинейной цепи сопротивления линейных резисторов указаны в Омах; ток J = 0,4 А; характеристика нелинейного элемента задана таблично. Найти напряжение и ток нелинейного элемента. I, А 0 1,8 4

Подробнее

Отложенные задания (23)

Отложенные задания (23) Отложенные задания (23) Виток провода находится в магнитном поле, перпендикулярном плоскости витка, и своими концами замкнут на амперметр. Магнитная индукция поля меняется с течением времени согласно графику

Подробнее