ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Размер: px
Начинать показ со страницы:

Download "ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ"

Транскрипт

1 ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Понятие непрерывной случайной величины. Функция распределения, плотность распределения, их взаимосвязь и свойства. Математическое ожидание непрерывной случайной величины и его свойства. Дисперсия и среднее квадратическое отклонение непрерывной случайной величины. Виды распределений. Нормальный закон распределения. Кривая Гаусса и ее вид в зависимости от параметров распределения. Если множество значений случайной величины содержит целый отрезок числовой оси, то такие случайные величины называются непрерывными. Интегральной функцией распределения непрерывной случайной величины (НСВ) Х называется функция переменной, выражающая вероятность того, что Х в результате испытания примет значение, меньшее, чем число. Заметим, что если вероятность того, что случайная величина Х примет значение, меньшее чем, обозначить через ( X ) <, то интегральная функция распределения есть функция () переменной, определенная равенством ( ) ( X < ). Перечислим основные свойства интегральной функций распределения:. lim ( ) ;. lim ( ) ; +. Функция () монотонно неубывающая;. Вероятность ( X < ) того, что случайная величина Х примет значение в полуинтервале [, ) равна ( ) ( ) ( X < ) ) ( ) (рис. ), т.е. (. (9) Производная () интегральной функции распределения называется дифференциальной функцией распределения (дифференциальным законом распределения) непрерывной случайной величины Х, а значения функции называются плотностью вероятности случайной величины Х. 6

2 Геометрический смысл дифференциальной функции распределения иллюстрирует рисунок : вероятность ( a X < b) численно равна площади заштрихованной криволинейной трапеции. () ( ) a b Рис.. График интегральной функции распределения Рис.. График дифференциальной функции распределения свойства: Дифференциальная функция распределения имеет следующие основные. Если существует (), то ( ) ;. Справедливо равенство ( a X < b) ( ) d ; +. Справедливо равенство ( ) d. b a Математическим ожиданием НСВ Х называется число [ ] + X M ) d Дисперсией НСВ Х называется число (. () + [ X ] ( M [ X ] ) D ( ) d Начальным моментом v q порядка q НСВ Х называется число () + q q ( ) α d. () Центральным моментом порядка q НСВ Х называется число 6

3 + ( [ ] ) q q M X ( ) µ d. () Коэффициентом асимметрии А НСВ Х называют отношение центрального момента третьего порядка к кубу среднего квадратичного отклонения: µ A. () σ Если коэффициент асимметрии () отрицателен (положителен), то говорят, что имеет место левосторонняя (правосторонняя) асимметрия (рис. ). Отметим, что коэффициент () распределения симметричного относительно математического ожидания равен нулю. Эксцессом Е называют уменьшенное на единицы отношение центрального момента четвертого порядка к четвертой степени среднего квадратичного отклонения, т.е. µ E. (5) σ За стандартное значение эксцесса принимают нуль эксцесс так называемой нормальной кривой. Кривые, у которых эксцесс отрицательный по сравнению с нормальной, менее крутые, имеют более плоскую вершину и называются «плавновершинными». Кривые с положительным эксцессом более крутые по сравнению с нормальной кривой, имеют более острую вершину и называются «островершинными» (рис. 5) () () E > E A > A < E < M [ X ] Рис.. Асимметрия распределения случайной величины Рис. 5. Эксцесс распределения случайной величины 6

4 Распределение НСВ Х, заданное дифференциальной функцией распределения ( ) называется нормальным распределением. ( m) σ 65 e (6) σ π Укажем смысл параметров распределения: параметр m нормального распределения равен математическому ожиданию случайной величины; параметр σ нормального распределения совпадает со средним квадратическим отклоне- нием, а σ с дисперсией случайной величины. График функции (6) изображен на рисунке 6. Кривая симметрична относительно прямой m. Зависимость графика от параметров такова: m является абсциссой максимума функции; малым σ соответствует крутой горб кривой, большим σ пологий горб. Точки с абсциссами перегиба. m ± σ являются точками Функция (6) быстро убывает при +. Площадь под всей кривой равна единице. Площади криволинейных трапеций над интервалами [ m σ, m + σ ), [ m σ, m + σ ), [ σ, m + σ ) m равны соответственно,687;,955;,997. Поскольку площадь криволинейной трапеции численно равна вероятности того, что случайная величина примет значение в соответствующем интервале, имеем ( m σ X < m + σ ), 997. Это утверждение составляет содержание правила «трех сигм» для нормального распределения. Интегральный закон распределения, соответствующий дифференциальному закону (6) имеет вид ( ) ( t m) σ σ π e Последний интеграл нельзя вычислить по формуле Ньютона Лейбница, поскольку подынтегральная функция не выражается через элементарные dt.

5 функции. Однако удобно выразить ( ) через (табулированную) функцию Лапласа следующим образом m σ ( ) + Ф График функции (7) изображен на рисунке 7.. (7) () ( ),5 m σ m m + σ m Рис. 6. Дифференциальный закон нормального распределения Рис. 7. Интегральный закон нормального распределения Распределение НСВ величины, заданное дифференциальной функцией распределения называется равномерным распределением., a b; ( ) b a (8), < a или > b. График функции (8) изображен на рисунке 8. Равномерно распределенная на отрезке [ a, b] случайная величина принимает значения только в данном отрезке. Интегральный закон равномерного распределения имеет следующий вид:, < a; a ( ), a b;. (9) b a, > b. График функции (9) изображен на рисунке 9. 66

6 () () b a a b a b Рис. 8. Дифференциальный закон равномерного распределения Рис. 9. Интегральный закон равномерного распределения Распределение НСВ Х, заданное функцией распределения ( ), λ e λ, < ;. называется показательным (экспоненциальным) распределением; λ > некоторый параметр. График функции () изображен на рисунке ; функция ( ) убывает. Величина Х принимает только неотрицательные значения. () y быстро Интегральная функция распределения ( ) показательной случайной величины Х имеет вид ( ), e а её график изображен на рисунке. λ, < ;, () λ () Рис.. Дифференциальный закон показательного распределения Рис.. Интегральный закон показательного распределения В таблице приведены значения числовых характеристики для основных законов распределений НСВ. Таблица 67

7 Значения основные числовых характеристик распределений НСВ Распределение M [ X ] D [ X ] σ [ X ] Равномерное a + ( b a) b 68 a b Нормальное m σ σ Показательное λ Пример 7.. Величина Х распределена нормально с параметрами m 5, σ. Найти вероятность того, что Х примет значение в интервале [, 7). Решение. Вероятность попадания в интервал [а, b) случайной величины X, подчиненной нормальному закону, определяется через интегральную и дифференциальную функции распределения следующим образом: b λ ( a X < b) ( ) d ( b) ( a). a Выражая правую часть через функции табулированные функции, получим: b m a m ( a X < b) Ф Ф. σ σ Подставляя данные из условия, имеем ( X < 7) Ф Ф Ф( ) Ф( ) Ф( ) + Ф( ),775 +,,886. Пример 7.. Дана функция распределения случайной величины Х: ( ),, 6, х, х <, >. а) Найдите плотность вероятности (); б) постройте графики () и (); в) докажите, что Х непрерывная случайная величина; г) найдите вероятности ( X ), ( X < ), ( X < ) и покажите их на графиках () и (); д) вычислите математическое ожидание и дисперсию. λ

8 Решение. а) Плотность вероятности находим по определению, х, >, ( ) ( ),5, < х. б) Графики () и () (отрезок прямой и «полупарабола» соответственно) изображены на рисунках и. в) Случайная величина Х непрерывная, так как функция распределения () непрерывна, а ее производная плотность вероятности () непрерывна во всех точках, кроме одной ( ) ; г) ( X ) как вероятность отдельно взятого значения непрерывной случайной величины. (),5 Q (),5 A B m X R ( X < ) ( X < ) Рис.. График функции плотности вероятности к примеру 7. Рис.. График функции распределения к примеру 7. Вероятность ( X < ) можно найти либо по определению функции распределения, либо через плотность вероятности (): ( X < ) ( ) (ордината графика ( ) на рисунке ) или ( X ) ( ) 6 6 < + d d d (площадь под кривой распределения () (треугольник AB) рис. ). Вероятность ( X < ) можно найти либо как приращение функции распределения по формуле (9) 6 69

9 ( X ) ( ) ( ) (приращение ординаты графика ( X ) на промежутке [ ; ) через плотность вероятности (): ( X ) d рис. ), либо (площадь под кривой распределения () (трапеция ABRQ) на промежутке [ ; ) рис. ). д) По формуле () математическое ожидание m X [ ] ( ) + + M X d d d d 8 +, Если представить распределение случайной величины Х в виде единичной массы, распределенной по треугольнику QR (рис. ), то значение M [ X ] означает абсциссу центра массы треугольника. По формуле () вычислим дисперсию. В начале найдем M [ X ] ( ) d + d Окончательно получаем [ X ] D 8. 9 Упражнение 7.. Случайная величина Х задана интегральной функцией распределения вероятностей ( ), х,, х,5;,5 х ; х >. Найдите вероятность того, что: а) в результате испытания случайная величина Х примет значение, заключённое в интервале (,75; ); б) в результате двух независимых испытаний случайная величина Х оба раза примет значение из интервала (,7;,9). 8.

10 Упражнение 7.. Интегральная функция распределения вероятностей случайной величины Х имеет вид: ( ). A + B arcctg, < < Найдите параметры А и В. Упражнение 7.. Дана интегральная функция случайной величины X: π ( ) arctg +. Найдите плотность вероятности () и постройте ее график. Исследуя график функции y(), докажите, что: а) вероятности принятия случайной величиной положительных и отрицательных значений равны между собой; б) математическое ожидание Х равно нулю. Упражнение 7.. Дана интегральная функция случайной величины X: ( ),, х ; х >. Найдите плотность вероятности (). Вычислите вероятность того, что случайная величина попадет в интервал (,5; ): а) используя свойства интегральной функции; б) используя свойства функции y(). Упражнение 7.5. Плотность вероятности случайной величины Х имеет вид: ( ),, a, ; < х a; > a. Найдите параметр а ( а > ). Постройте график функции y(). Используя свойства графика, найдите вероятность того, что в результате испытания случайная величина примет значение в интервале (; ). Упражнение 7.6. Дана плотность вероятности случайной величины X: ( ), ;,5, <, >. х ; 7

11 Найдите математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X. Определите вероятность того, что в результате испытания: а) случайная величина примет значение в интервале (,5; ); б) примет значение в интервале (,5; ) или в интервале (;,5); в) в результате пяти независимых испытаний случайная величина три раза примет значение в интервале (; ). Упражнение 7.7. Дана плотность вероятности случайной величины X:, ; ( ), < х ;, >. Найдите математическое ожидание и дисперсию случайной величины Y X. Упражнение 7.8. Случайная величина Х задана плотностью вероятности: ( ),, < х ; х или >. Найдите математическое ожидание и дисперсию случайной величины Y X. Упражнение 7.9. Случайная величина Х имеет равномерное распределение вероятностей на интервале (; ). Найдите ее математическое ожидание, дисперсию и среднее квадратическое отклонение. Упражнение 7.. Закон равномерного распределения вероятностей случайной величины Х задан плотностью вероятности, х ; ( ), < х 8; 5, > 8. Найдите интегральную функцию случайной величины X. Вычислите начальные и центральные моменты до третьего порядка включительно. 7

12 Упражнение 7.. Случайная величина Х имеет, равномерное распределение вероятностей. Найдите плотность вероятности, если математическое ожидание случайной величины Х равно 8, а дисперсия равна. Упражнение 7.. Внутри шара радиуса R некоторым способом наудачу выбирается точка. Необходимо найти () и () случайной величины X, выражающей расстояние точки до центра шара. Упражнение 7.. В круге радиуса R наудачу проведена хорда параллельно заданному направлению. Найдите интегральную функцию случайной величины X, выражающей длину хорды. Упражнение 7.. Плотность вероятности случайной величины X, подчиненной нормальному закону распределения, задана функцией ( ) ( ) 8 Ae. Найдите коэффициент А и определите вероятность того, что в результате испытания случайная величина примет значение в интервале (; 5). Упражнение 7.5. Во сколько раз уменьшится максимальное значение ординаты нормальной кривой, если дисперсия случайной величины увеличится в 9 раз? Упражнение 7.6. Максимальное значение плотности вероятности случайной величины X, подчиненной нормальному закону распределения, равно. π Найдите среднее квадратическое отклонение и дисперсию этой случайной величины. Упражнение 7.7. Используя свойства кривой плотности вероятности случайной величины X, подчиненной нормальному закону распределения, найдите ее математическое ожидание, если известно, что ( < X < ) ( 7 < X < + ). Упражнение 7.8. Случайная величина Х имеет плотность вероятности ( ) e,5 π ( ) 5,5. 7

13 Найдите вероятность того, что при двух независимых испытаниях случайная величина Х хотя бы один раз примет значение вне интервала (; 6). Упражнение 7.9. Случайная величина Х отклонение размера детали от стандарта имеет нормальное распределение вероятностей со средним квадратическим отклонением, равным,. Систематическая ошибка отсутствует. Найдите вероятность изготовления детали, отвечающей требованиям стандарта, если задан допуск ±,5. Упражнение 7.. При измерении детали ее длина Х является случайной величиной, распределенной по нормальному закону с параметрами M[X] см и σ[x], см. Найдите интервал, в который с вероятностью,95 попадает X. 7


Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема3. «Функция распределения вероятностей случайной величины» Кафедра теоретической и прикладной

Подробнее

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности.

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. 1 ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика»

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Теория вероятностей» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева Е.Г. Основные определения и

Подробнее

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины Практическая работа 7 Функция плотность распределения и числовые характеристики непрерывной случайной величины Цель работы: Нахождение функции и плотности распределения числовых характеристик непрерывной

Подробнее

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить функции плотности и числовые характеристики случайных величин имеющих равномерное показательное нормальное и гамма-распределение

Подробнее

Теория вероятностей и математическая статистика. Случайные величины

Теория вероятностей и математическая статистика. Случайные величины Теория вероятностей и математическая статистика Случайные величины 1 Содержание Случайные величины Основные законы распределения 2 Случайные величины Понятие случайной величины и закона ее распределения

Подробнее

)? (Вероятность попадания непрерывной СВ

)? (Вероятность попадания непрерывной СВ Случайные величины. Определение СВ ( Случайной называется величина, которая в результате испытания может принимать то или иное значение, заранее не известное).. Какие бывают СВ? ( Дискретные и непрерывные.

Подробнее

Математическое ожидание

Математическое ожидание Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X px ( ) xp( x) dx.

Подробнее

Числовые характеристики непрерывных случайных величин

Числовые характеристики непрерывных случайных величин Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X + = px ( ) xp( x)

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ)

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ) Лекция 5 Тема Непрерывные случайные величины (НСВ) Содержание темы Способы задания: интегральный закон распределения, плотность распределения. Связь между ними. Свойства плотности распределения. Применение

Подробнее

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ 1 ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Одним из важнейших понятий теории вероятностей является понятие случайной величины. Случайной величиной называется переменная, которая

Подробнее

Измерения и обработка результатов измерений Случайные погрешности

Измерения и обработка результатов измерений Случайные погрешности В теории вероятностей изучаются различные законы распределения, каждому из которых соответствует определенная функция плотности вероятности Они получены путем обработки большого числа наблюдений над случайными

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

8. Канонические непрерывные законы распределения Определения и формулы для решения задач

8. Канонические непрерывные законы распределения Определения и формулы для решения задач 8 Канонические непрерывные законы распределения 8 Определения и формулы для решения задач Определение Математическим ожиданием непрерывной случайной величины называется интеграл M x f ( x) dx Этот интеграл

Подробнее

Лекция 7. Непрерывные случайные величины. Плотность вероятности.

Лекция 7. Непрерывные случайные величины. Плотность вероятности. Лекция 7. Непрерывные случайные величины. Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения 53 Глава 4. Основные законы распределения непрерывной случайной величины. 4.. Равномерный закон распределения Определение. Непрерывная случайная величина Х имеет равномерное распределение на промежутке

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Понятие случайной величины Современная теория вероятностей предпочитает где только возможно оперировать не случайными событиями а случайными величинами

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Т А Матвеева В Б Светличная С А Зотова ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

1. Срединная формула прямоугольников

1. Срединная формула прямоугольников Срединная формула прямоугольников Введем обозначение I d Пусть -непрерывны на [ ] Разделим отрезок [ ] равных частичных отрезков [ ] где на Введем обозначения ( ) ( ) ( ) интеграл I в виде Представим где

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

Глава 3. Непрерывные случайные величины

Глава 3. Непрерывные случайные величины Глава 3. Непрерывные случайные величины. Функция распределения. Если множество значений случайной величины X не конечно и не счетно, то такая случайная величина не может характеризоваться вероятностью

Подробнее

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω)

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω) Понятие и её закона Одномерные дискретные случайные Определение случайной Случайной величиной (СВ) называется функция (ω), определённая на пространстве элементарных событий Ω, со значениями в одномерном

Подробнее

1.18. Непрерывная одномерная случайная величина

1.18. Непрерывная одномерная случайная величина .8. Непрерывная одномерная случайная величина def Случайная величина называется непрерывной, если ее возможные значения сплошь заполняют некоторый промежуток (; b) (или несколько промежутков) и на всей

Подробнее

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г.

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г. Перечень Основных контрольных вопросов для зачета (экзамена) по дисциплине Физика, математика, модуль М атематика, для студентов 1 курса медикопрофилактического факультета 1. Понятие функции. Способы задания

Подробнее

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания:

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания: МВДубатовская Теория вероятностей и математическая статистика Лекция 8 Числовые характеристики случайных величин При изучении случайных величин важную роль играют их числовые характеристики Математическим

Подробнее

Непрерывные случайные величины.

Непрерывные случайные величины. Тема Непрерывные случайные величины. Случайная величина, значения которой заполняют некоторый промежуток, называется непрерывной. В частных случаях это может быть не один промежуток, а объединение нескольких

Подробнее

Непрерывная случайная величина

Непрерывная случайная величина Непрерывная случайная величина Непрерывная случайная величина принимает бесконечное количество значений из определенного интервала числовой прямой. 0 6 месяцев Срок службы лампочки 2 Пример. Рост человека

Подробнее

«ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН»

«ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН» Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема4. «ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН» Кафедра теоретической и прикладной математики. разработана

Подробнее

14. Нормальный закон распределения

14. Нормальный закон распределения 4. Нормальный закон распределения Номер: 4..B Задача: Правило трех сигм относится к закону распределения Ответы: ). Пуассона ). геометрическому 3). экспоненциальному 4). биномиальному 5). нормальному Номер:

Подробнее

2.6. Эксцесс и асимметрия

2.6. Эксцесс и асимметрия Лекция 9 План лекции.5.6. Распределение Симпсона (треугольное распределение)..6 Эксцесс и асимметрия.7 Теорема Ляпунова и её следствия 3. Системы случайных величин (случайные векторы) 3.1 Закон распределения

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте  Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Пример решения типового расчета по теории вероятностей Вариант 16 Задача 1. Из двух орудий поочередно ведется стрельба по цели до первого попадания одним из орудий. Вероятность попадания в цель

Подробнее

Математический минимум

Математический минимум Математический минимум Показательная функция при Чаще всего встречается экспонента при Логарифмы Если число есть логарифм числа по основанию то. Область допустимых значений аргумента. Натуральный логарифм

Подробнее

Случайные величины. Дискретная и непрерывная случайные величины

Случайные величины. Дискретная и непрерывная случайные величины Случайные величины Дискретная и непрерывная случайные величины Наряду с понятием случайного события в теории вероятности используется другое более удобное понятие случайной величины Случайной величиной

Подробнее

Примеры распределений дискретных случайных величин

Примеры распределений дискретных случайных величин Примеры распределений дискретных случайных величин 1 Биномиальное распределение = μ ( ) Рассмотрим случайную величину равную числу появлений события A в серии n независимых испытаний. Распределение вероятностей

Подробнее

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ 1 Случайная величина X называется непрерывной, если она принимает более, чем счётное число значений. Случайная величина X называется

Подробнее

3 0,1 0,2 0,7 a) Найдите функцию распределения случайной величины X

3 0,1 0,2 0,7 a) Найдите функцию распределения случайной величины X Задачи по курсу ТВиМС для самостоятельного решения Часть II 1) Числовые характеристики и законы дискретного распределения вероятностей 1 Имеются десять билетов в театр, 4 из которых на места первого ряда

Подробнее

Непрерывные случайные величины.

Непрерывные случайные величины. Непрерывные случайные величины. Случайная величина, значения которой заполняют некоторый промежуток, называется непрерывной. В частных случаях это может быть не один промежуток, а объединение нескольких

Подробнее

, - вероятность того, что из n бросков t раз выпадет «пятерка»,

, - вероятность того, что из n бросков t раз выпадет «пятерка», .6 Бросают три игральных кубика. Найти ряд и функцию распределения числа выпавших «пятерок» Х, а также M(X), D(X) и вероятность того, что Х>. Решение: Пусть Х число выпавших «пятерок». Перечислим все возможные

Подробнее

Определенный интеграл Несобственные интегралы

Определенный интеграл Несобственные интегралы Математический анализ Тема: Определенный интеграл Несобственные интегралы Лектор Пахомова Е.Г. 2017 г. ГЛАВА II. Определенный интеграл и его приложения 1. Определенный интеграл и его свойства 1. Задачи,

Подробнее

2.4. Непрерывные случайные величины

2.4. Непрерывные случайные величины Лекции по ТВ и МС Олейник ТА 6-7 4 Непрерывные случайные величины Непрерывная случайная величина Плотность распределения Математическое ожидание, дисперсия, среднеквадратичное отклонение, мода, медиана

Подробнее

Тема 5. Непрерывные случайные величины.

Тема 5. Непрерывные случайные величины. Тема 5. Непрерывные случайные величины. Цель и задачи. Цель контента темы 5 дать определение непрерывной случайной величины, ее функции распределения и функции распределения; рассмотреть особенности задания

Подробнее

Нормальный закон распределения.

Нормальный закон распределения. Тема Нормальный закон распределения. Если плотность распределения случайной величины определяется формулой e π σ a σ, () где а произвольное число, а положительное число, то говорят, что распределена по

Подробнее

x i Эта сумма выражает площадь ступенчатой фигуры, состоящей из прямоугольников, и приближенно заменяет криволинейную трапецию.

x i Эта сумма выражает площадь ступенчатой фигуры, состоящей из прямоугольников, и приближенно заменяет криволинейную трапецию. Задача о площади криволинейной трапеции =f() B A f(ξ i ) ξ 1 ξ 2 ξ 3 ξ i ξ 1 2 i-1 i S k 1 f ( ) k Эта сумма выражает площадь ступенчатой фигуры, состоящей из прямоугольников, и приближенно заменяет криволинейную

Подробнее

9. Двумерная случайная величина. Законы распределения Определения и формулы для решения задач

9. Двумерная случайная величина. Законы распределения Определения и формулы для решения задач 9 Двумерная случайная величина Законы распределения 9 Определения и формулы для решения задач Определение Двумерной случайной величиной называется упорядоченная пара (, ) одномерных случайных величин и

Подробнее

Случайные величины и законы их распределения.

Случайные величины и законы их распределения. Случайные величины и законы их распределения. Одним из основных понятий теории вероятностей является понятие случайной величины. Сначала рассмотрим примеры. Число вызовов, поступивших от абонентов в течение

Подробнее

Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН. . Производящей функцией для случайной величины X называется функция вида

Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН. . Производящей функцией для случайной величины X называется функция вида Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить производящую функцию и вычислить параметры биномиального, пуассоновского, геометрического и гипергеометрического распределений;

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЗАНЯТИЕ 4 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Понятие случайной величины одно из важнейших понятий теории вероятностей. Под случайной величиной понимается величина,

Подробнее

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск 018 018 Кафедра высшей

Подробнее

Приближенное вычисление определенных интегралов. 1. Формула трапеций.

Приближенное вычисление определенных интегралов. 1. Формула трапеций. ЛЕКЦИЯ N 7. Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов..... Формула трапеций.....формула парабол.... Несобственные интегралы....

Подробнее

Глава 3. Случайные величины (продолжение) Основные распределения непрерывных случайных величин. Нормальное распределение...

Глава 3. Случайные величины (продолжение) Основные распределения непрерывных случайных величин. Нормальное распределение... Глава. Случайные величины продолжение..... Основные распределения непрерывных случайных величин. Нормальное распределение.... Интеграл Пуассона.... Определение нормального распределения.... Свойства плотности

Подробнее

2.5.3 Закон Пуассона (закон редких явлений)

2.5.3 Закон Пуассона (закон редких явлений) Лекция 8 План лекции 53 Закон Пуассона 54 Показательный закон распределения 55 Нормальный (гауссов) закон распределения вероятностей 53 Закон Пуассона (закон редких явлений) Дискретная случайная величина

Подробнее

Найти х из уравнений:

Найти х из уравнений: Методические указания для обучающихся по освоению дисциплины (модуля) Планы практических занятий Матрицы и определители, системы линейных уравнений Матрицы Операции над матрицами Обратная матрица Элементарные

Подробнее

Практическая работа 3 Тема 4 Дискретные случайные величины

Практическая работа 3 Тема 4 Дискретные случайные величины Практическая работа Тема 4 Дискретные случайные величины Дискретной называют случайную величину X, принимающую конечное или счетное (можно перенумеровать) число значений: 1,,. Значение принимается с некоторой

Подробнее

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины.

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Лекция 3. Основные характеристики и законы распределения случайных величин Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Время: часа. Вопросы: 1. Характеристики

Подробнее

Тема7. «Численное интегрирование.»

Тема7. «Численное интегрирование.» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема7. «Численное интегрирование.» Кафедра теоретичской и прикладной математики. разработана доц.

Подробнее

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение ГЛАВА СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Биномиальное распределение Пусть эксперимент проводится по схеме Бернулли Определение Дискретная случайная величина имеет биномиальное распределение с параметрами

Подробнее

8. Вероятность попадания в цель для двух стрелков равна соответственно 0.7 и 0.8. Тогда вероятность поражения цели равна

8. Вероятность попадания в цель для двух стрелков равна соответственно 0.7 и 0.8. Тогда вероятность поражения цели равна Тема: Теория вероятностей Дисциплина: Математика Авторы: Нефедова Г.А. Дата: 9.0.0. Вероятность случайного события может быть равна. 0.5. 3. 0. 0.7 5..5 6. - 7. 0.3. Вероятность достоверного события равна.

Подробнее

Краткий конспект лекций по теории вероятностей и математической статистике

Краткий конспект лекций по теории вероятностей и математической статистике Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Владимирский государственный университет имени

Подробнее

Учебное пособие. Основы теории вероятностей. Раздел 2. Случайные величины. Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК

Учебное пособие. Основы теории вероятностей. Раздел 2. Случайные величины. Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК Учебное пособие Основы теории вероятностей Раздел 2. Случайные величины для студентов специальности 2305 «Программирование в компьютерных

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

Функции многих переменных

Функции многих переменных Функции многих переменных Задача 7 Найти все производные второго порядка функции f ( x, y) : f ( x, y) y x Искомые производные: Задача 9 Найти полный дифференциал и градиент функции А: 3 4 f ( x, y) ln

Подробнее

Числовые характеристики дискретных случайных величин

Числовые характеристики дискретных случайных величин 1 Числовые характеристики дискретных случайных величин Математическое ожидание Expected Value (i.e. Mean) - характеризует среднее весовое значение случайной величины с учётом вероятности появлений значений

Подробнее

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i . ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Основные понятия теории вероятностей Многие объекты в математике определяются указанием операций которые можно выполнять над объектами и перечислением свойств которым удовлетворяют

Подробнее

Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики положения и моменты непрерывных и дискретных случайных величин Числовые характеристики положения Закон

Подробнее

М.П. Харламов Конспект

М.П. Харламов  Конспект М.П. Харламов http://vlgr.ranepa.ru/pp/hmp Конспект Теория вероятностей и математическая статистика Краткий конспект первого раздела (вопросы и ответы) Доктор физ.-мат. наук профессор Михаил Павлович Харламов

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

М. М. Попов Теория вероятности Конспект лекций

М. М. Попов Теория вероятности Конспект лекций 2009 М. М. Попов Теория вероятности Конспект лекций Выполнил студент группы 712 ФАВТ А. В. Димент СПбГУКиТ Случайное событие всякий факт, который в результате опыта может произойти или не произойти, и

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Предварительный письменный опрос. Список вопросов.

Предварительный письменный опрос. Список вопросов. ТЕОРИЯ ВЕРОЯТНОСТЕЙ. ВЕСНА 2018 г. Предварительный письменный опрос. Список вопросов. В вариантах вопросов на экзамене возможны изменения по сравнению с предложенным списком: могут быть изменены численные

Подробнее

Сборник тестовых заданий

Сборник тестовых заданий федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» КАФЕДРА «МАТЕМАТИКА» А.И. ФРОЛОВИЧЕВ, М.В.

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Основные понятия и определения

Основные понятия и определения 1 Основные понятия и определения Вспомним основные понятия и определения, которые употреблялись в курсе теории вероятностей. Вероятностный эксперимент (испытание) эксперимент, результат которого не предсказуем

Подробнее

. Предполагается, что эта величина аддитивна, т. е. точкой с [ a,

. Предполагается, что эта величина аддитивна, т. е. точкой с [ a, Лекция 0 Приложения определённого интеграла Приложения определённого интеграла Метод интегральной суммы Пусть требуется найти значение какой-либо геометрической или физической величины A (площадь фигуры,

Подробнее

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им ВС Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ ЕФ КАЛИНИЧЕНКО ЛЕКЦИИ ПО ВЫЧИСЛЕНИЮ ОПРЕДЕЛЕННЫХ

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СЛУЧАЙНЫЕ И ГРУБЫЕ ПОГРЕШНОСТИ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СЛУЧАЙНЫЕ И ГРУБЫЕ ПОГРЕШНОСТИ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СЛУЧАЙНЫЕ И ГРУБЫЕ ПОГРЕШНОСТИ Погрешность В реальных условиях даже очень точные измерения будут содержать погрешность D, которая является отклонением результата измерения x от истинного

Подробнее

Тема6. «Определенный интеграл»

Тема6. «Определенный интеграл» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема6. «Определенный интеграл» Кафедра теоретической и прикладной математики. разработана доц. Е.Б.Дуниной

Подробнее

Модели постепенных отказов. Начальное значение выходного параметра равно нулю (A=X(0)=0)

Модели постепенных отказов. Начальное значение выходного параметра равно нулю (A=X(0)=0) Модели постепенных отказов Начальное значение выходного параметра равно нулю (A=X(0)=0) Рассматриваемая модель (рис47) также будет соответствовать случаю, когда начальное рассеивание значений выходного

Подробнее

Числовые характеристики случайной величины

Числовые характеристики случайной величины Числовые характеристики случайной величины Числовые характеристики случайной величины Применяются вместо закона распределения случайной величины В сжатой форме выражают наиболее существенные особенности

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Понятие случайной величины

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Понятие случайной величины СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Понятие случайной величины Мы переходим к изучению еще одного важного понятия теории вероятностей, к понятию случайная величина. Чтобы лучше понять это, приведем несколько примеров.

Подробнее

Одномерные случайные величины

Одномерные случайные величины МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им Н.И. Лобачевского» Факультет

Подробнее

Применение производной к исследованию функций

Применение производной к исследованию функций Применение производной к исследованию функций 1. На рисунке изображен график производной функции, определенной на интервале Найдите промежутки возрастания функции В ответе укажите сумму целых точек, входящих

Подробнее

1 Первичная обработка статистических данных

1 Первичная обработка статистических данных Первичная обработка статистических данных Абстрактная и конкретная выборки Основные числовые характеристики выборки Вариационные ряды выборки Гистограмма частот 5 Эмпирическая функция распределения Пусть

Подробнее

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ Случайные векторы. Закон распределения. Условные распределения случайных величин. Числовые характеристики случайных векторов. Условные математические

Подробнее

25 найдите вероятность P X 10,7

25 найдите вероятность P X 10,7 Самостоятельная работа 2. Вариант 1 1. Для нормальной случайной величины с математическим ожиданием M 5 и дисперсией D 25 найдите вероятность P 10,7. 2. Случайные величины 1,..., 5 независимы и распределены

Подробнее

1. Основные понятия теории вероятностей: пространство элементарных событий, алгебра событий, классическая вероятность.

1. Основные понятия теории вероятностей: пространство элементарных событий, алгебра событий, классическая вероятность. билет 1 1. Основные понятия теории вероятностей: пространство элементарных событий, алгебра событий, классическая вероятность. 2. Свойства математического ожидания. Вывести формулу для дисперсии D( ξ )

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Тема. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Содержание Предельные теоремы теории вероятности 2 Неравенство Чебышева

Подробнее

1. Биномиальный закон распределения

1. Биномиальный закон распределения Лекция 4 Тема: Законы распределения СВ 1. Биномиальный закон распределения Опр. Дискретная СВ Х имеет биномиальный закон распределения, если выполнены следующие условия: 1) эксперимент заключается в последовательном

Подробнее

ЛЕКЦИЯ 2. Основные статистические характеристики показателей надёжности ЭТО

ЛЕКЦИЯ 2. Основные статистические характеристики показателей надёжности ЭТО ЛЕКЦИЯ. Основные статистические характеристики показателей надёжности ЭТО Математический аппарат теории надёжности основывается главным образом на теоретико-вероятностных методах, поскольку сам процесс

Подробнее

Е. В. Морозова. Теория вероятностей

Е. В. Морозова. Теория вероятностей Е. В. Морозова Теория вероятностей 0 МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

Случайные величины и законы их распределения

Случайные величины и законы их распределения Случайные величины и законы их распределения 9. Дискретные и непрерывные случайные величины Случайной называют величину, которая в результате опыта примет одно и только одно из возможных значений, заранее

Подробнее

x 2 > x 1 следует, что f(x 2 ) > f(x 1 ). f = f(x 2 ) f(x 1 ) > 0. Значит,

x 2 > x 1 следует, что f(x 2 ) > f(x 1 ). f = f(x 2 ) f(x 1 ) > 0. Значит, Тема 38 «Возрастание и убывание функций». (без вычисления производной) В данном разделе рассмотрим задачи на возрастание и убывание функции, в которых не надо вычислять производные. Функцию у = f(x) называют

Подробнее

16.2.Н. Производная.

16.2.Н. Производная. 6..Н. Производная 6..Н. Производная. Оглавление 6..0.Н. Производная Введение.... 6..0.Н. Производная сложной функции.... 5 6..0.Н. Производные от функций с модулями.... 7 6..0.Н. Возрастание и убывание

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

10. Определенный интеграл

10. Определенный интеграл 1. Определенный интеграл 1.1. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x 1,..., x n 1, x n } [, b], что = x < x 1 < < x n 1

Подробнее

Предварительный письменный опрос. Список вопросов.

Предварительный письменный опрос. Список вопросов. ТЕОРИЯ ВЕРОЯТНОСТЕЙ. ВЕСНА 2016 г. Предварительный письменный опрос. Список вопросов. Основы теории множеств, аксиоматические свойства вероятности и следствия из них. 1. Записать свойства ассоциативности

Подробнее

ЛЕКЦИЯ 6. Непрерывные случайные величины

ЛЕКЦИЯ 6. Непрерывные случайные величины ЛЕКЦИЯ 6 Непрерывные случайные величины 6.. Определение непрерывной случайной величины Понятие закона распределения имеет смысл только в том случае, когда случайная величина принимает конечное или счётное

Подробнее