Лекция3. 3. Метод Ньютона (касательных).

Размер: px
Начинать показ со страницы:

Download "Лекция3. 3. Метод Ньютона (касательных)."

Транскрипт

1 Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим линеаризованное уравнение f( + f '( ( - =, трактуя его решение как первое приближение к корню = - f( /f '(. Продолжая этот процесс, приходим к формуле Ньютона + = - f( /f '( (6, которую можно считать итерационным процессом с итерирующей функцией φ(х= - f(/f '(. Геометрическая интерпретация этого процесса показана на рис. Уравнение (5 является уравнением линии касательной к кривой f( в точке, поэтому этот метод называют методом касательных. Формулу (6 можно легко вывести также из геометричеcких соображений. Рис. Если нулевое приближение выбрано достаточно близко к корню, ньютоновские итерации сходятся. Скорость сходимости квадратичная, то есть на каждом шаге погрешность пропорциональна квадрату предыдущей. Следует отметить, что улучшение сходимости этого метода по сравнению с предыдущими достигается увеличением затрат на выполнение каждого шага, так как в каждом шаге требуется вычислять не только значение функции f(, но и ее производной f '(. Практический критерий окончания расчета при заданной точности ε - выполнение неравенства - - < ε. Для нахождения корней произвольной дифференцируемой функции чаще всего применяют метод Ньютона, особенно если известны разумные начальные приближения для корней. Пример. Рассмотрим решение уравнения f( =. Формула метода Ньютона принимает вид: Мы получили формулу, которая позволяет очень быстро находить квадратный корень только с помощью умножения и деления. Вот, например 5, найденный по этой формуле. N итерации 3

2 , ,3895 4,3669 5,3668 6,3668 7, Метод хорд. Пусть f(f(b <. Проведем через точки М (, f( и N(b, f(b прямую линию (хорду. Ее уравнение запишется в виде: y f. f b f b Точка пересечения с осью абсцисс y = f b. f b f Таким образом, за первое приближенное значение корня примем f b b f. f Далее этот прием применяем к одному из отрезков [, ] или [, b], на концах которого функция f( имеет противоположные знаки. Аналогично находим второе приближение и т.д. (см. рис... Геометрически этот способ эквивалентен замене кривой y = f( хордой, проходящей через точки А(, f( и B(b, f(b. y f(b y f(b ξ b b ξ f( f( b Рис.. Уточнение корня уравнения методом хорд Пусть также вторая производная функции f''( на отрезке [, b] сохраняет знак. (График функции либо выпуклый, либо вогнутый. В этом случае приближенное значение корня лежит между точным его значением и тем концом отрезка, в котором знаки f( и f''( противоположны. То есть эта точка остается неподвижной во время итерационного

3 уточнения и чтобы найти ное приближение корня нужно знать ( ное приближение и неподвижную точку.. Из рис., видно, что неподвижна точка а, а точка b приближается к корню, то есть f ( (. f ( f ( Преобразовав выражение (5, окончательно получим f ( (. (6 f ( f (. Из рис.,b видно, что точка b остается неподвижной, а точка а приближается к корню, тогда вычислительная формула примет вид f ( ( b. f ( b f ( Какую точку брать за неподвижную? Рекомендуется в качестве неподвижной выбирать ту точку, в которой выполняется соотношение f( f ( >. На практике вычисление приближенных значений продолжают до тех пор, пока два последовательных приближения и - не будут удовлетворять условию. Но из этого неравенства не следует, что *. Более надежным критерием окончания счета является неравенство. Решение систем линейных уравнений. Пусть дана система линейных алгебраических уравнений с неизестными.... b... b ( b и пусть deta (определитель матрицы системы. В этом случае система имеет единственное решение. Тогда в матричной форме АX = B. На практике кроме существования и единственности решения важна еще устойчивость относительно погрешностей правой части и элементов матрицы. Иногда небольшое изменение исходных данных может сильно изменить решение. В этом случае систему называют плохо обусловленной. Очевидно, у плохо обусловленных систем det A. Геометрически плохо обусловленная система из -х уравнений соответствует почти параллельным прямым. Пример. 5 7y Рассмотрим систему уравнений:. Эта система имеет единственное 7 y 7 решение = и y =. Теперь возьмем значения неизвестных =,45 и y =. Подставим эти значения в исходную систему.

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 5 7y, 75 7 y 6, 95 Если округлить правые части этой системы до двух знаков, то она будет совпадать с исходной. И если исходные данные будут заданы с такой точностью, то это решение так же хорошо отвечает условиям поставленной задачи как и = и y =. На графике видно, что прямые линии заданные уравнениями системы практически параллельны.,5,5,5,5,5 3 -,5 Это пример плохо обусловленной системы. В этом случае найти численное решение системы трудно. Методы решения систем делятся на прямые (точные и итерационные. Прямыми методами называются методы, позволяющие получить решение системы ( за конечное число арифметических операций. К этим методам относятся метод Крамера, метод Гаусса, LU-метод и т.д. Следует заметить, что реализация прямых методов на компьютере приводит к решению с погрешностью, т.к. все арифметические операции над переменными с плавающей точкой выполняются с округлением. Точные методы применяются если размер системы не очень велик до 3 уравнений. Метод Гаусса. Метод Гаусса метод последовательных исключений неизвестных, это один из самых распространенных методов решения линейных алгебраических уравнений. Он известен в различных вариантах уже более лет. Вычисления по методу Гаусса состоят из двух основных этапов: прямого хода и обратного хода. Прямой ход последовательное исключение неизвестных из системы для преобразования ее к эквивалентной системе с верхней треугольной матрицей. Вычисления значений неизвестных производят на этапе обратного хода. Самый простой вариант метода Гаусса это схема единственного деления. Прямой ход. -й шаг. Целью этого шага является исключение неизвестного из уравнений =, 3. Предположим, что а. а главный (или ведущий элемент первой строки. Найдем множители первого шага

5 m. Последовательно умножая первое уравнение на m и складывая с -м уравнением, исключим из всех уравнений кроме первого. Получим систему... b... b b неизвестное исключено из всех уравнений кроме первого. Формулы для расчета новых коэффициентов системы: m, b b m b (, j =, 3, j j j эквивалентную исходной в которой первое шаг. Исключаем неизвестное из уравнений с номерами = 3, 4,,. Аналогичным образом, считаем главным элементом. Множители второго шага m ( = 3, 4,, Умножаем второе уравнение на m и складывая с -м уравнением, исключим из всех уравнений кроме первого b... b 3 3 ( ( b... ( ( ( b Коэффициенты рассчитываются по формулам: m, b b m b (, j = 3, 4, j j j 3 Все остальные шаги выполняются аналогично. Таким образом на k том шаге расчета новые коэффициенты системы рассчитываются по формулам k k k k k k k m, b b m b, где m (, j = k+, j j k kj k k После - шага вычисления прямого хода заканчиваются и, последовательно исключив все неизвестные, получим систему треугольного вида: b,... k k k k (, (, ( b b b ( ( (l Заметим, что выполнение прямого хода было возможно при условии, что все, l,... m не равны нулю. Если условие не выполняется, то необходимо переставить строки так, чтобы оно выполнялось. Обратный ход. ( b Из последнего уравнения системы легко найти. ( Выполняя последовательные подстановки в системе можно получить все значения неизвестных -, -,, по формулам: ( ( ( b j j ( = -, -,, ( j Эта процедура получила название обратный ход метода Гаусса. Пример. k k kk

6 7,, 5 3, 544, 3,47, 67 3, 34, 5 -,, , 4 7, -,55, 43, 363 4, 9 Решение: Запишем в таблицу расширенную матрицу системы, с которой будем производить действия.,7,5,54,3,47,67 -,3,5 -,,35 -,74,7 -,55,43,36,9 Последовательно умножим первую строку на,47, -, и, 55 и отнимем соответственно из, 3 и 4 строки. Преобразованная матрица:,7,5,54,3,9,555 -,5738,359,3687,75 -,686,733,535,4975,97,65 Вторую строку разделим на,9 и получим множители второй строки,6478 -,6363,3975 Далее последовательно умножаем эту строку на, 36 и,5 и вычитаем из 3-й и 4-й строк.,7,5,54,3,6478 -,6363,3975,864 -,4567,5894,835,63469,86743 Множители третьей строки: -,5597,7385 Эту строку умножаем на,83 и вычитаем из 4-й строки.,7,5,54,3,6478 -,6363,3975 -,5597,7385,75863,76888 Теперь разделим элементы 4-й строки на,7 и получаем матрицу треугольного вида:,7,5,54,3,6478 -,6363,3975 -,5597,7385,474 Осуществляем обратный ход метода Гаусса. =,8; =,75; 3 =,966; 4 =,4 Метод Гаусса может быть легко реализован на компьютере. При выполнении вычислений, как правило, не интересуют промежуточные значения матрицы А. Поэтому численная реализация метода сводится к преобразованию элементов массива размерности ( (+, где + столбец содержит элементы правой части системы. Один из основных недостатков метода Гаусса связан с тем, что при его реализации накапливается вычислительная погрешность. Для того, чтобы уменьшить рост вычислительной погрешности применяются различные модификации метода Гаусса. Например, метод Гаусса с выбором главного элемента по столбцам, в этом случае на каждом этапе прямого хода строки матрицы переставляются таким образом, чтобы диагональный угловой элемент был максимальным. При исключении соответствующего неизвестного из других строк деление будет производиться на наибольший из возможных коэффициентов и следовательно относительная погрешность будет наименьшей.

7 Существует метод Гаусса с выбором главного элемента по всей матрице. В этом случае переставляются не только строки, но и столбцы. Использование модификаций метода Гаусса приводит к усложнению алгоритма увеличению числа операций и соответственно к росту времени счета. Модифицированные методы Гаусса предлагается изучить самостоятельно, как дополнительный материал. Выполняемые в методе Гаусса преобразования прямого хода, приведшие матрицу А системы к треугольному виду позволяют вычислить определитель матрицы det A m m ( m m, m Метод Гаусса также позволяет найти обратную матрицу. ( m m, m.

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

Численные методы решения алгебраических уравнений и систем уравнений

Численные методы решения алгебраических уравнений и систем уравнений Краевой конкурс учебно-исследовательских и проектных работ учащихся «Прикладные вопросы математики» Алгебра Численные методы решения алгебраических уравнений и систем уравнений Булычев Сергей, МОУ «Лицей

Подробнее

Численные методы линейной и нелинейной алгебры

Численные методы линейной и нелинейной алгебры ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского» А.И. Зинина В.И. Копнина Численные методы линейной и нелинейной алгебры Учебное пособие Саратов

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных) уравнений f = ) заключается в нахождении значений,

Подробнее

Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Пусть дано нелинейное уравнение ( 0, (3.1 где ( функция, определенная и непрерывная на некотором промежутке. В некоторых случаях

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

Требуется найти неизвестные величины x 1, x2,...,

Требуется найти неизвестные величины x 1, x2,..., . Решение систем линейных алгебраических уравнений (СЛАУ).. Метод Гаусса Цель: формирование практических навыков нахождения корней система линейных алгебраических уравнений (СЛАУ) методом Гаусса (схема

Подробнее

Численное решение нелинейных уравнений

Численное решение нелинейных уравнений Постановка задачи Метод половинного деления Метод хорд (метод пропорциональных частей 4 Метод Ньютона (метод касательных 5 Метод итераций (метод последовательных приближений Постановка задачи Пусть дано

Подробнее

Решение уравнения с одним неизвестным

Решение уравнения с одним неизвестным 1 Решение уравнения с одним неизвестным Дано уравнение в виде f(x)=0, где f(x) некоторая функция переменной x. Число x * называется корнем или решением данного уравнения, если при подстановке x=x * в уравнение

Подробнее

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности.

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности. Methods.doc Методы приближенных вычислений Стр.1 из 6 Общее условие задачи: Двумя заданными численными методами вычислить приближенное значение корня 1 функционального уравнения вида f()=0 для N значений

Подробнее

Лекция 3 Решение систем алгебраических уравнений в средах. MS Excel и Mathcad. Лектор. Ст. преподаватель Купо А.Н.

Лекция 3 Решение систем алгебраических уравнений в средах. MS Excel и Mathcad. Лектор. Ст. преподаватель Купо А.Н. Лекция Решение систем алгебраических уравнений в средах Лектор MS Ecel и Mthcd Ст. преподаватель Купо А.Н. .Понятие системы линейных алгебраических уравнений (СЛАУ). Постановка задачи..методы решения СЛАУ.(Метод

Подробнее

СРАВНЕНИЕ ПРОСТЫХ И ИТЕРАЦИОННЫХ МЕТОДОВ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

СРАВНЕНИЕ ПРОСТЫХ И ИТЕРАЦИОННЫХ МЕТОДОВ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ СРАВНЕНИЕ ПРОСТЫХ И ИТЕРАЦИОННЫХ МЕТОДОВ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Сенина А. С., Межаков А. В. Белгородский государственный национальный исследовательский университет Белгород, Россия

Подробнее

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика»

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика» Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники ТУСУР Кафедра

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

Система линейных алгебраических уравнений (СЛАУ). В общем виде СЛАУ можно записать в следующем виде......

Система линейных алгебраических уравнений (СЛАУ). В общем виде СЛАУ можно записать в следующем виде...... (С) ИиКП РХТУ февраль г. Калинкин Владимир Николаевич Система линейных алгебраических уравнений (СЛАУ). В общем виде СЛАУ можно записать в следующем виде. b.... m m m m... mm b Совокупность коэффициентов

Подробнее

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 4.0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных

Подробнее

2.1.3 Методы решений системы линейных алгебраических уравнений

2.1.3 Методы решений системы линейных алгебраических уравнений Методы решений системы линейных алгебраических уравнений Метод обратной матрицы Рассмотрим частный случай системы ) когда число уравнений равно числу неизвестных те m Система уравнений имеет вид: ì ) î

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений ) Понятие СЛАУ ) Правило Крамера решения СЛАУ ) Метод Гаусса 4) Ранг матрицы, теорема Кронекера-Капелли 5) Решение СЛАУ обращением матриц, понятие обусловленности матриц ) Понятие СЛАУ О. СЛАУ система

Подробнее

Лимонникова Е.В. ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА. Методические указания по выполнению курсовой работы

Лимонникова Е.В. ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА. Методические указания по выполнению курсовой работы Министрество образования Российской Федерации Филиал Санкт-Петербургского государственного морского Технического университета СЕВМАШВТУЗ Кафедра «Прикладной математики» Лимонникова Е.В. ВЫЧИСЛИТЕЛЬНАЯ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» Методические указания к лабораторной работе «Вычисления корней трансцендентных уравнений»

Подробнее

Лекция 3 АНАЛИЗ ЛИНЕЙНЫХ ЦЕПЕЙ В УСТАНОВИВШЕМСЯ РЕЖИМЕ

Лекция 3 АНАЛИЗ ЛИНЕЙНЫХ ЦЕПЕЙ В УСТАНОВИВШЕМСЯ РЕЖИМЕ Лекция АНАЛИЗ ЛИНЕЙНЫХ ЦЕПЕЙ В УСТАНОВИВШЕМСЯ РЕЖИМЕ План Введение Решение систем линейных уравнений методом исключения Гаусса Метод LU- разложения 4 Анализ линейных цепей в установившемся синусоидальном

Подробнее

Недосекин Ю.А. Полисистемный метод решения неоднородной системы линейных алгебраических уравнений

Недосекин Ю.А. Полисистемный метод решения неоднородной системы линейных алгебраических уравнений Математика Серия: МАТЕМАТИКА Недосекин ЮА Полисистемный метод решения неоднородной системы линейных алгебраических уравнений Аннотация Предложен новый метод решения неоднородной системы линейных алгебраических

Подробнее

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Методические

Подробнее

СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОЛИЧЕСТВА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ ПРИ РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ РАЗЛИЧНЫМИ МЕТОДАМИ

СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОЛИЧЕСТВА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ ПРИ РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ РАЗЛИЧНЫМИ МЕТОДАМИ СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОЛИЧЕСТВА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ ПРИ РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ РАЗЛИЧНЫМИ МЕТОДАМИ Протасеня Александр Анатольевич Рогожина Регина Григорьевна Ветохина Валентина Евгеньевна

Подробнее

Лекция 2. Решение нелинейных уравнений. Постановка задачи: Найти коэффициент погрешности прибора σ при проведении геодезических измерений из

Лекция 2. Решение нелинейных уравнений. Постановка задачи: Найти коэффициент погрешности прибора σ при проведении геодезических измерений из Лекция 2. Решение нелинейных уравнений. Постановка задачи: Найти коэффициент погрешности прибора σ при проведении геодезических измерений из уравнения: δ cos σ υ σ 2 + η = 0 Значения δ = 0,186, υ = 4,18,

Подробнее

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. И.

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. И. МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им Н И ЛОБАЧЕВСКОГО Механико-математический факультет Кафедра теоретической механики Лабораторная

Подробнее

Решение типового варианта: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Решение типового варианта: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1. Найдите произведение матриц ABC: Решение типового варианта: Так как произведение матриц не перестановочно, то найти данное произведение можно двумя способами: Для определенности воспользуемся вторым

Подробнее

А. П. Иванов. Методические указания. Тема 2: решение систем алгебраических уравнений. факультет ПМ ПУ СПбГУ 2007 г.

А. П. Иванов. Методические указания. Тема 2: решение систем алгебраических уравнений. факультет ПМ ПУ СПбГУ 2007 г. А. П. Иванов Методические указания Тема 2: решение систем алгебраических уравнений факультет ПМ ПУ СПбГУ 2007 г. Оглавление 1. Нормы векторов и матриц.............................. 2 2. Некоторые специальные

Подробнее

НЕЛИНЕЙНЫЕ УРАВНЕНИЯ

НЕЛИНЕЙНЫЕ УРАВНЕНИЯ Г Л А В А НЕЛИНЕЙНЫЕ УРАВНЕНИЯ. Понятия и определения. Постановка задачи. Решение нелинейных уравнений с одним неизвестным является одной из важных математических задач, возникающих в различных разделах

Подробнее

2 Численные методы решения уравнений.

2 Численные методы решения уравнений. 2 Численные методы решения уравнений. 2.1 Классификация уравнений, их систем и методов решения. Уравнения и системы уравнений делятся на: 1) алгебраические: уравнение называется алгебраическим, если над

Подробнее

Численные методы решения прикладных задач. Учебно-методические указания к выполнению лабораторных работ по курсу Информатика.

Численные методы решения прикладных задач. Учебно-методические указания к выполнению лабораторных работ по курсу Информатика. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ

Подробнее

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1)

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Тема 1. Линейная алгебра Задача 1 Необходимо решить систему уравнений, представленную в задании в виде Постоянные параметры

Подробнее

Глава 1. Начала линейной алгебры

Глава 1. Начала линейной алгебры Глава Начала линейной алгебры Системы линейных уравнений Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: + + + + n n = + + + + nn = m + m + m + + mnn = m () Здесь n неизвестные

Подробнее

Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы Иванов И.И. Вариант 1.

Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы Иванов И.И. Вариант 1. Задание: Вариант #1 x 11x + 36x 36 = 0 Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы 04-06 Иванов И.И. Вариант 1 Этап 5. Тема: Методы решения алгебраических

Подробнее

Лабораторная работа по теме «Тема 1.2. Методы решения нелинейных уравнений»

Лабораторная работа по теме «Тема 1.2. Методы решения нелинейных уравнений» Лабораторная работа по теме «Тема.. Методы решения нелинейных уравнений» Перейти к Теме. Теме. Огл.... Вопросы, подлежащие изучению. Постановка задачи численного решения нелинейных уравнений.. Этапы численного

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ

ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ Методические указания к выполнению лабораторных работ ПЕНЗА 7 Приведена методика и

Подробнее

ГЛАВА: Введение в численные методы. Лекция 2: Алгебраические уравнения и системы (19 слайдов)

ГЛАВА: Введение в численные методы. Лекция 2: Алгебраические уравнения и системы (19 слайдов) ГЛАВА: Введение в численные методы Лекция 2: Алгебраические уравнения и системы (19 слайдов) Слайд 1: Одно алгебраическое уравнение: геометрическая интерпретация задачи Общий вид уравнения Например, f(x)

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

Итерационные методы решения СЛАУ.

Итерационные методы решения СЛАУ. 4 Итерационные методы решения СЛАУ Метод простых итераций При большом числе уравнений прямые методы решения СЛАУ (за исключением метода прогонки) становятся труднореализуемыми на ЭВМ прежде всего из-за

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ Практикум

ЧИСЛЕННЫЕ МЕТОДЫ Практикум Алексеева О.А. ЧИСЛЕННЫЕ МЕТОДЫ Практикум Челябинск УДК 59.6 ББК.9 А-47 Алексеева О.А. Численные методы: практикум. Челябинск: НОУВПО РБИУ,. 77 с. Рассматриваются наиболее распространенные методы численного

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЁТА, МОДЕЛИРОВАНИЯ И ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ОБОРУДОВАНИЯ

ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЁТА, МОДЕЛИРОВАНИЯ И ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ОБОРУДОВАНИЯ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет»

Подробнее

РАЗДЕЛ 1. Линейная алгебра.

РАЗДЕЛ 1. Линейная алгебра. -й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду:

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду: Пример Вычислить определитель Решение типовых задач 5 5 7, разложив его по 9 9 элементам первой строки 7 5 7 5 5 6 9 9 9 9 Пример Вычислить определитель, приведя его к треугольному виду: 5 7 Обозначим

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

Линейная алгебра Лекция 2. Определители квадратных матриц

Линейная алгебра Лекция 2. Определители квадратных матриц Линейная алгебра Лекция. Определители квадратных матриц Введение Определитель или детерминант одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

1. При каких значениях ранг матрицы. Решение:

1. При каких значениях ранг матрицы. Решение: . При каких значениях ранг матрицы равен двум? Решение: Ранг матрицы равен порядку базисного минора. Поскольку требуется, чтобы ранг матрицы был равен двум, то базисным должен быть какой-либо минор второго

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине «Информатика» семестр 3

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине «Информатика» семестр 3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине «Информатика» семестр 3 НОВОСИБИРСК 008 Министерство науки и образования РФ Новосибирский технологический институт Московского государственного

Подробнее

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры МОДУЛЬ Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Леция Понятие матрицы и определителя Свойства определителей Аннотация: В лекции указывается на применение определителей для

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 1 Линейная алгебра Решить матричное уравнение ( ( 3 1 2 1 X + 2 4 2 3 3 ( 1 0 = 3 2 3 Выполним вначале умножение матриц на

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

Экзамен по ЛА для бакалавров экономики в уч. году, ДЕМОвариант 01

Экзамен по ЛА для бакалавров экономики в уч. году, ДЕМОвариант 01 Ne Экзамен по ЛА для бакалавров экономики в 04-0 уч году, Найдите вектор Ne (6 4 ; 6 8 ) и Ne ДЕМОвариант 0 (x ; y )(у которого Ne и x < 0) такой, чтобы система векторов (x ; y ) образовывала бы ортогональный

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных исследований

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7.

Если в качестве базисных переменных выбрать x, x, то общее решение: x R, x = x, x = x ; базисное решение: x = 0, x = 8 7, x = 58 7. 01 1. Найдите общее и базисное решения системы уравнений: x + x + 3x = 26, 2x 12x x = 22, x + 3x + 2x = 20, выбрав в качестве базисных переменных x и x. Ответ: Если в качестве базисных переменных выбрать

Подробнее

Линейная алгебра Лекция 3. Обратная матрица. Ранг матрицы

Линейная алгебра Лекция 3. Обратная матрица. Ранг матрицы Линейная алгебра Лекция Обратная матрица Ранг матрицы Обратная матрица Определение Матрица А - называется обратной по отношению к квадратной матрице если при умножении этой матрицы на данную матрицу как

Подробнее

Нижегородский государственный университет им. Н.И. Лобачевского. Национальный исследовательский университет

Нижегородский государственный университет им. Н.И. Лобачевского. Национальный исследовательский университет Нижегородский государственный университет им НИ Лобачевского Национальный исследовательский университет Учебно-научный и инновационный комплекс «Модели методы и программные средства» Игумнов ЛА Литвинчук

Подробнее

Итеративные методы решения уравнений. Метод Ньютона.

Итеративные методы решения уравнений. Метод Ньютона. 1 Материалы к установочной лекции Вопрос 37. Итеративные методы решения уравнений. Метод Ньютона. 1. Решение скалярных уравнений. Метод Чебышева Рассмотрим уравнение f(x) =0,x [a, b], и пусть на указанном

Подробнее

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством Пусть дана квадратная матрица второго порядка ( ) a11 a A = 12 a 21 a 22 (1) Определитель второго порядка, соответствующий матрице (1), определяется равенством a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

2 5 8 A = a) A = 2 3. ; b) B =

2 5 8 A = a) A = 2 3. ; b) B = Занятие 1 Определители 11 Матричные обозначения Основные определения Матрицей размера m n, или m n-матрицей, называется таблица чисел (или других математических выражений с m строками и n столбцами Матрица

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени ВН КАРАЗИНА ЮМ ДЮКАРЕВ, ИЮ СЕРИКОВА ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений Учебно-методическое

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра прикладной математики М.В. Лукина МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

Подробнее

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа 46 Глава 9. Регрессионный анализ 9.. Задачи регрессионного анализа Во время статистических наблюдений как правило получают значения нескольких признаков. Для простоты будем рассматривать в дальнейшем двумерные

Подробнее

Coa Компьютерная алгебра

Coa Компьютерная алгебра 6. Быстрые алгоритмы деления Деление чисел методом Ньютона Для определенности будем считать, что делимое a = ( a,, am) и делитель b = ( b,, b ) записаны в позиционной системе счисления по основанию ( ).

Подробнее

1. ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ В разделе «Численные методы линейной алгебры» рассматриваются численные методы решения систем линейных алгебраических уравнений (СЛАУ) и численные методы решения задач

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

Государственное бюджетное образовательное учреждение среднего профессионального образования

Государственное бюджетное образовательное учреждение среднего профессионального образования Государственное бюджетное образовательное учреждение среднего профессионального образования «Владимирский авиамеханический колледж» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине ЧИСЛЕННЫЕ

Подробнее

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет Министерство образования и науки Российской Федерации Федеральное агентство по образованию Пензенский государственный университет Руденко АК, Руденко МН, Семерич ЮС СБОРНИК ЗАДАЧ С РЕШЕНИЯМИ ДЛЯ ПОДГОТОВКИ

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ. ЛАБОРАТОРНЫЙ ПРАКТИКУМ

ЧИСЛЕННЫЕ МЕТОДЫ. ЛАБОРАТОРНЫЙ ПРАКТИКУМ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

A ij (или Ad ij) элемента a ij матрицы A называется

A ij (или Ad ij) элемента a ij матрицы A называется 1) Найти все дополнительные миноры определителя 1 9 11 0 0 0 56 18 2. Пусть дана квадратная матрица порядка n. Дополнительным минором a матрицы называется определитель на единицу меньшего M ij элемента

Подробнее

Тема 12 «Системы двух уравнений с двумя неизвестными».

Тема 12 «Системы двух уравнений с двумя неизвестными». Тема 1 «Системы двух уравнений с двумя неизвестными». Системой уравнений называется некоторое количество уравнений, которые должны выполняться одновременно. Решением системы уравнений с двумя переменными

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю.

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Широкое использование математических методов в современном

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Практическое занятие 3 Решение систем линейных алгебраических уравнений итерационными методами Продолжительность работы - 2 часа Цель работы:

Практическое занятие 3 Решение систем линейных алгебраических уравнений итерационными методами Продолжительность работы - 2 часа Цель работы: 20 Практическое занятие 3 Решение систем линейных алгебраических уравнений итерационными методами Продолжительность работы - 2 часа Цель работы: закрепление знаний о методах простой итерации и Гаусса-Зейделя;

Подробнее

«Ивановский государственный политехнический университет» ТЕКСТИЛЬНЫЙ ИНСТИТУТ

«Ивановский государственный политехнический университет» ТЕКСТИЛЬНЫЙ ИНСТИТУТ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный политехнический университет» ТЕКСТИЛЬНЫЙ ИНСТИТУТ Текстильный институт

Подробнее

А.П.Попов. Методы оптимальных решений. Пособие для студентов экономических специальностей вузов

А.П.Попов. Методы оптимальных решений. Пособие для студентов экономических специальностей вузов А.П.Попов Методы оптимальных решений Пособие для студентов экономических специальностей вузов Ростов-на-Дону 01 1 Введение В прикладной математике имеется несколько направления, нацеленных в первую очередь

Подробнее

3. Определители высших порядков

3. Определители высших порядков Определители высших порядков Понятие определителя п-го порядка и его основные свойства Понятие определителя п-го порядка вводится на основе изучения структуры определителей -го и -го порядков Так например

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ

ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ Министерство образования и науки Российской Федерации Федеральное агентство по образованию Дальневосточный государственный университет А.Г. КОЛОБОВ, Л.А. МОЛЧАНОВА ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ Методические

Подробнее

Исследование областей сходимости численных методов второго порядка

Исследование областей сходимости численных методов второго порядка Электронный научный журнал «Вестник Омского государственного педагогического университета» Выпуск 6 www.oms.edu А.Т. Когут, Н.Ю. Безбородова Омский государственный университет путей сообщения Исследование

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

Лекция 4 АНАЛИЗ НЕЛИНЕЙНЫХ РЕЗИСТИВНЫХ ЦЕПЕЙ

Лекция 4 АНАЛИЗ НЕЛИНЕЙНЫХ РЕЗИСТИВНЫХ ЦЕПЕЙ 3 Лекция 4 АНАЛИЗ НЕЛИНЕЙНЫХ РЕЗИСТИВНЫХ ЦЕПЕЙ План 1. Введение. Численное решение уравнений нелинейных резистивных цепей 3. Дискретные схемы замещения нелинейных резистивных цепей 4. Выводы 1. Введение

Подробнее

Тема 3: Определители

Тема 3: Определители Тема 3: Определители А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров Начало

Подробнее

А. П. Иванов. Методические указания. Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений. факультет ПМ ПУ СПбГУ 2007 г.

А. П. Иванов. Методические указания. Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений. факультет ПМ ПУ СПбГУ 2007 г. А. П. Иванов Методические указания Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений факультет ПМ ПУ СПбГУ 2007 г. Оглавление 1. Решение скалярных уравнений...........................

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Контрольная работа T=3. Задание 1. [1, стр. 2]

Контрольная работа T=3. Задание 1. [1, стр. 2] Дана матрица Контрольная работа A 0 T= Задание [, стр ] Определите ее размерность Выпишите характеристики этой матрицы: прямоугольная, квадратная, симметричная, единичная, нулевая, треугольная, диагональная,

Подробнее

4. Численные методы решения обыкновенных дифференциальных уравнений

4. Численные методы решения обыкновенных дифференциальных уравнений . Численные методы решения обыкновенных дифференциальных уравнений.. Решение задачи Коши... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши для одного дифференциального

Подробнее