5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА"

Транскрипт

1 Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб 0 и (или) 0 Q = Q = N =0 T = 0. 0, Q 0 и (или) 0, Q 0. Q Прямой изгиб Косой изгиб Балка прогибается в плоскости действия нагрузки Плоский изгиб. Изогнутая ось стержня лежит в одной плоскости. Балка прогибается не в плоскости действия нагрузки Пространственный изгиб. Изогнутая ось стержня пространственная кривая

2 ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКЕ Расчетная схема балки изображается линией, представляющей собой ось стержня. Для наглядного представления характера изменения внутренних силовых факторов по длине балки строят эпюры. ПРАВИЛА ЗНАКОВ: а) для поперечной силы Q б) для изгибающего момента Q Q + d Поворот элемента по часовой стрелке d Q Q Поворот элемента против часовой d + Сжатые верхние волокна d Сжатые нижние волокна

3 ПОСТРОЕНИЕ ЭПЮР ПОПЕРЕЧНЫХ СИЛ И ИЗГИБАЮЩИХ МОМЕНТОВ ДЛЯ БАЛКИ Пример. Построить эпюры ВСФ в балке. Z = 0 R = 0,6P 0,6P 0,6P P l,5l Q P P ЭQ 0,6P Э 0,6Pl Q Q P l R,5l 0 P,5l R,5l 0 R 0, P R 0,6 P. Разобьем балку на два участка: R =0,P 0,P 0,P -й участок (0 < < l) Q = 0,6P = R 0,6P -й участок (l < <,5l) Q = 0,6P P 0,P = 0,6 P P ( l) = Pl 0, P 0, 5l Q = =

4 ДИФФЕРЕНЦИАЛЬНЫЕ ЗАВИСИМОСТИ МЕЖДУ ВНУТРЕННИМИ СИЛОВЫМИ ФАКТОРАМИ И ИНТЕНСИВНОСТЬЮ РАСПРЕДЕЛЕННОЙ ПОПЕРЕЧНОЙ АГРУЗКИ Зависимости для прямого стержня (балки). Балка находится в равновесии под действием системы внешних сил (активных и реактивных) А R q() d P R Q +d C Q +dq q() d q(), Q и положительные. q Q Условия равновесия для выделенного элемента d: Y Q C q d Q dq Q d q d Дифференциальные зависимости: dq d Q d d q Интегральные зависимости: d d 0 d Q0 qd 0 Qd d Здесь Q(0) и (0) постоянные интегрирования поперечная сила и изгибающий момент в начале участка (при = 0).

5 ПОСТРОЕНИЕ ЭПЮР ПОПЕРЕЧНЫХ СИЛ И ИЗГИБАЮЩИХ МОМЕНТОВ ДЛЯ БАЛКИ Пример. ЭQ Э R q 0 l q l q Q l R 8 ma 9 Z =0 q l l l R l 0 R l q l l l 0 R R Проверка: Y q l 0 -й участок (0 < < l) Q q q а) 0 Q 0 б) l Q 8 Q 0 q0 0 0 l ma l q l l 9

6 ПОСТРОЕНИЕ ЭПЮР С ИСПОЛЬЗОВАНИЕМ ДИФФЕРЕНЦИАЛЬНЫХ ЗАВИСИМОСТЕЙ 0 l ЭQ q 5 l l 0 l 8 ma 9 q Э dq d Q d d q d. d ) q = 0 Q() = const () = a + b ) q = const Q() = a + b () = a + b + c ) q = a + b Q() = a + b + c () = a + b + c + d Участок -: q() = q Q 0 Q q l l q l l Участок -: q() = 0 Q Q 0 l 8 5 ma l q l l 9..

7 ПОСТРОЕНИЕ ЭПЮРЫ ПЕРЕРЕЗЫВАЮЩИХ СИЛ И ИЗГИБАЮЩИХ МОМЕНТОВ (Самостоятельно) Пример. q 0,5 q l l,5l q = = 0 q 0,5 q l 0,5l l q l l l 0,5,5l 0 = 0 Проверка: q l q l 0.

8 Пример = q q l l l q q = l l,5 l 0 Проверка: q l q l 0.

9 ПРЯМОЙ ЧИСТЫЙ ИЗГИБ l P P l l R = P R = P 5 6 P P Z = 0 P ЭQ Э + P Pl Pl Q = Q = P Q = Q = 0 Q 5 = Q 6 = P = 0 = = Pl (сжаты нижние волокна) = 5 = Pl 6 = 0 Участок находится в условиях прямого чистого изгиба. Q = Q = 0 = = Pl = const.

10 Вопросы для самопроверки.что такое изгибающий момент, поперечная сила (дайте определение)?.перечислите виды изгиба..правила знаков для изгибающих моментов и поперечных сил..запишите дифференциальные и интегральные зависимости при изгибе и укажите их геометрический смысл. 5.Проверьте построенные выше эпюры перерезывающих сил и изгибающих моментов с помощью интегральных зависимостей.

11 ОПРЕДЕЛЕНИЕ КРИВИЗНЫ ИЗОГНУТОЙ ОСИ И НАПРЯЖЕНИЙ В ПОПЕРЕЧНОМ СЕЧЕНИИ ПРИ ПРЯМОМ ЧИСТОМ ИЗГИБЕ Постановка задачи: l Дано:, l h, b, E??? h b деформирования) Механизм деформирования: а) до нагружения (до d б) в деформированном виде (после нагружения) растяжение + сжатие нейтральный слой н.о а) б) в) C C C C C C C C

12 ОСНОВНЫЕ ДОПУЩЕНИЯ И ОПРЕДЕЛЕНИЯ. Сечения плоские и жесткие.. Продольные волокна не давят друг на друга.. Сечение имеет ось симметрии.. Нагрузка действует в плоскости симметрии (содержит оси симметрии сечений). 5. При чистом изгибе продольные волокна имеют постоянную кривизну дуги окружностей разного радиуса. 6. Нейтральный слой недеформированный слой. 7. Радиус кривизны линии 8. Кривизна линии 9.

13 ГЕОМЕТРИЧЕСКИЕ УСЛОВИЯ Рассмотрим элемент длиной d до и после деформации: O O OO нейтральный слой (длиной d) радиус кривизны нейтрального слоя d угол взаимного поворота сечений O d d O OO d d d кривизна нейтрального слоя d OO d d d d d d d d 0. ()

14 ЗАКОН ГУКА Для решения задачи используем зависимость между напряжениями и деформациями (в пределах упругости закон Гука) = E = G () E = E(, ) = const G = G(, ) = const. Подставим выражение () в (): E 0. () E и постоянные для сечения. = Э ma h н.о. Э (н.о.) ц.т. (н.о.)

15 = УРАВНЕНИЯ РАВНОВЕСИЯ нейтральная ось d (н.о.) d ) ) ) X 0 ) Y 0 5) 0 6) Z d 0 d 0 d 0 () Решение уравнений () (): Подставим выражение () в уравнение равновесия: d E E d E 0 0 = 0, следовательно нейтральная ось проходит через центр тяжести сечения. E E d d 0 = 0. Ось является главной осью. При прямом изгибе главная центральная ось перпендикулярна плоскости действия изгибающего момента. E E d d E E жесткость сечения стержня при изгибе. Если дуге окружности. const и E Подстановка выражения (5) в () дает: E E E. (5) const, то стержень изгибается по

16 Э ma ma (н.о.) = 0 = 0 ma ma W момент сопротивления W ma сечения изгибу (относительно оси ) W ma. По аналогии: н.о. ma ma W момент сопротивления сечения изгибу (относительно оси ) ma Э ma ma ma

17 ОПРЕДЕЛЕНИЕ ОСЕВОГО МОМЕНТА СОПРОТИВЛЕНИЯ а) круглое поперечное сечение: 6 ma d W ma d d W W б) прямоугольное поперечное сечение: ma bh W ma h. 6 6 hb W bh W d h b

18 Вопросы для самопроверки. Укажите границы применимости формулы.. Как определяется знак напряжений при расчете по этой формуле?. Назовите три группы соотношений, используемых для решения задач об определении нормальных напряжений и кривизны при чистом изгибе и запишите эти соотношения.

19 НАПРЯЖЕНИЯ ПРИ ПОПЕРЕЧНОМ ИЗГИБЕ d P d d Q d В поперечном сечении балки отличны от нуля и. Касательные напряжения сопровождаются угловыми деформациями. При Q const искривление поперечных сечений const не влияет на величину продольной деформации стержня ( = ). При Q const формулы чистого изгиба дают для погрешность порядка l h по сравнению с единицей. В дальнейшем будем считать: ) гипотеза плоских сечений выполняется ) формулы для определения нормальных напряжений и кривизны оси стержня, выведенные при чистом изгибе, применимы и для поперечного изгиба: ma. E W

20 КАСАТЕЛЬНЫЕ НАПРЯЖЕНИЯ ПРИ ПОПЕРЕЧНОМ ИЗГИБЕ СТЕРЖНЯ ПРЯМОУГОЛЬНОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ (Вывод формулы Журавскго) P h d + d ЭQ Э Q d d l +d Q + d P Pl b h d d + d τ τ b h b d d

21 Основные допущения: ) касательные напряжения в точках сечения направлены параллельно поперечной силе Q ) касательные напряжения в точках сечения, расположенных на одном уровне ( = const), по величине равны между собой: h > b h = const Q b d d b d d d 0 Z d b d d d d d d d b d d d d b Q М d d d d

22 Q формула Журавского b Q поперечная сила статический момент ечённой части относительно оси (н.о.) момент инерции поперечного сечения b ширина поперечного сечения площадь ечённой части. Для прямоугольного сечения получим: Q Э h C ma b Q bh b h h C b b h 6Q h Q ma. bh bh

23 Для круглого сечения: b c Q n = 0 n ma t d Q d b 6 ma Q d C 6 Q ma d. d d d

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A Лекция 05 Изгиб Проверка прочности балок Опыт показывает, что при нагружении призматического стержня с прямой осью силами и парами сил, расположенными в плоскости симметрии, наблюдаются деформации изгиба

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

Подробнее

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления.

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления. Лекция 14 Сложное сопротивление. Косой изгиб. Определение внутренних усилий, напряжений, положения нейтральной оси при чистом косом изгибе. Деформации при косом изгибе. 14. СЛОЖНОЕ СОПРОТИВЛЕНИЕ. КОСОЙ

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Деформации и перемещения Метод сечений Частные случаи нагружения

Подробнее

Указания к выполнению контрольной работы 3

Указания к выполнению контрольной работы 3 Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ

ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ ПЕРЕМЕЩЕНИЯ ПРИ ИЗГИБЕ Задача 1 Однопролетная балка длиной l, высотой h нагружена равномерно распределенной нагрузкой. Радиус кривизны нейтрального слоя балки в середине пролета равен. Жесткость поперечного

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 14 Деформация плоский изгиб балки с прямолинейной продольной осью. Расчет на прочность Напомним, что деформация «плоский изгиб» реализуется в

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

8. ИЗГИБ ПРЯМЫХ БРУСЬЕВ Основные понятия и определения. Брус с прямой осью, как мы уже знаем, называется стержнем.

8. ИЗГИБ ПРЯМЫХ БРУСЬЕВ Основные понятия и определения. Брус с прямой осью, как мы уже знаем, называется стержнем. 15 8. ИЗГИБ ПРЯМЫХ БРУСЬЕВ 8.1. Основные понятия и определения Брус с прямой осью, как мы уже знаем, называется стержнем. Изгиб это такой вид нагружения (деформации) бруса, при котором в его поперечных

Подробнее

Лекция 10. Касательные напряжения при изгибе

Лекция 10. Касательные напряжения при изгибе Лекция 10. Касательные напряжения при изгибе 1. Формула Журавского для касательных напряжений. 2. Касательные напряжения в тонкостенных сечениях. 3. Центр изгиба. 1 Рассмотрим прямой изгиб балки с выпуклым

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1.1. Статически неопределимые стержневые системы Статически неопределимыми системами называются системы, для которых, пользуясь только условиями статики, нельзя определить

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

Внецентренное действие продольных сил

Внецентренное действие продольных сил Внецентренное действие продольных сил C C Центральное сжатие (растяжение) Внецентренное сжатие (растяжение) Внецентренное сжатие (растяжение) это случай нагружения, когда линия действия сжимающей (растягивающей

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА Часть I Методические указания и контрольные задания Пенза 00 УДК 5. (075) И85 Методические указания

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней Задача 1 Для внецентренно сжатого короткого стержня с заданным поперечным сечением по схеме (рис.7.1) с геометрическими размерами

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ АСТРАХАНСКОЙ ОБЛАСТИ Государственное автономное образовательное учреждение Астраханской области высшего профессионального образования «АСТРАХАНСКИЙ ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ

Подробнее

Механические испытания на изгиб Рис.6.3 Рис.6.4

Механические испытания на изгиб Рис.6.3 Рис.6.4 Лекция 8. Плоский изгиб 1. Плоский изгиб. 2. Построение эпюр поперечной силы и изгибающего момента. 3. Основные дифференциальные соотношения теории изгиба. 4. Примеры построения эпюр внутренних силовых

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Сопротивление материалов

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ. Сопротивление материалов ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Проектирование и управление в технических системах» МЕТОДИЧЕСКИЕ

Подробнее

Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ»

Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» 1. Цель и задачи освоения дисциплины Для студентов направления подготовки 08.03.01. «Строительство» сопротивление материалов является одной

Подробнее

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях Содержание РГР. Растяжение сжатие.... Определение усилий в стержнях и расчет их на прочность..... Определение усилий в стержнях..... Определение диаметра стержней.... Расчет ступенчатого бруса на прочность

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

Задание 1 Построение эпюр при растяжении-сжатии

Задание 1 Построение эпюр при растяжении-сжатии Задание 1 Построение эпюр при растяжении-сжатии Стальной двухступенчатый брус, длины ступеней которого указаны на рисунке 1, нагружен силами F 1, F 2, F 3. Построить эпюры продольных сил и нормальных напряжений

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

1. Цели и задачи дисциплины Цель дисциплины

1. Цели и задачи дисциплины Цель дисциплины 1.1. Цель дисциплины 1. Цели и задачи дисциплины Дисциплина «Сопротивление материалов» относится к общетехническому циклу и имеет своей целью усвоение будущими специалистами основ инженерной подготовки

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов»

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» 1. Историческое развитие учения о сопротивлении материалов. Диаграмма стального образца Ст 3. 2. Диаграмма Ф.Ясинского. 3. Основные понятия курса

Подробнее

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение)

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) В.Ф. ДЕМЕНКО. МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) 1 Правила знаков при построении эпюр поперечных

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

Виды нагружения стержня

Виды нагружения стержня Виды нагружения стержня 1. Схема нагружения стержня внешними силами представлена на рисунке. Длины участков одинаковы и равны l. Третий участок стержня испытывает деформации 1) чистый изгиб и кручение;

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им НЕ Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии

Подробнее

Домашняя работа Задание 8 Определение допускаемой силы при изгибе Работа 8

Домашняя работа Задание 8 Определение допускаемой силы при изгибе Работа 8 Определение допускаемой силы при изгибе Работа 8 Требуется по заданной схеме нагружения балки, размерам и допускаемым напряжением определить допускаемую величину нагрузки (рис.8). Материал балки чугун

Подробнее

1. Определим недостающие геометрические параметры, необходимые для дальнейшего расчета.

1. Определим недостающие геометрические параметры, необходимые для дальнейшего расчета. b Методические рекомендации к практической подготовке по дисциплине "Сопротивление материалов" для студентов-заочников специальности -70 0 0 "Водоснабжение, водоотведение и охрана водных ресурсов" Отмена

Подробнее

Рис.6.26 (2) Рис. 6.27

Рис.6.26 (2) Рис. 6.27 Лекция 9. Плоский изгиб (продолжение) 1. Напряжение при чистом изгибе. 2. Касательные напряжения при поперечном изгибе. Главные напряжения при изгибе. 3. Рациональные формы поперечных сечений при изгибе.

Подробнее

КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов»

КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Тольяттинский государственный университет Кафедра «Материаловедение и механика материалов» КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов» Часть Модульная

Подробнее

Расчет элементов стальных конструкций.

Расчет элементов стальных конструкций. Расчет элементов стальных конструкций. План. 1. Расчет элементов металлических конструкций по предельным состояниям. 2. Нормативные и расчетные сопротивления стали 3. Расчет элементов металлических конструкций

Подробнее

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие Задача 1 Для бруса прямоугольного сечения (рис. 1) определить несущую способность и вычислить перемещение свободного конца бруса. Дано: (шифр 312312) схема 2; l=0,5м; b=15см; h=14см; R p =80МПа; R c =120МПа;

Подробнее

Предельная нагрузка для стержневой системы

Предельная нагрузка для стержневой системы Л е к ц и я 18 НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ Ранее, в первом семестре, в основном, использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной

Подробнее

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика»

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика» Вопросы к вступительным экзаменам в аспирантуру по специальности «05.23.17 Строительная механика» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Основные понятия 1. Задачи сопротивления материалов. Стержень. Основные гипотезы

Подробнее

К ВОПРОСУ ОБ ИЗГИБЕ СТЕРЖНЕЙ

К ВОПРОСУ ОБ ИЗГИБЕ СТЕРЖНЕЙ УДК 539.3/.6 162 К ВОПРОСУ ОБ ИЗГИБЕ СТЕРЖНЕЙ к.т.н. 1 Якубовский Ч.А., к.т.н. 2 Якубовский А.Ч. 1 Белорусский национальный технический университет, Минск 2 Морская академия, г. Щецин, Польша Изгиб является

Подробнее

ОП. 02.«Техническая механика»

ОП. 02.«Техническая механика» КОМИТЕТ ОБРАЗОВАНИЯ И НАУКИ КУРСКОЙ ОБЛАСТИ ОБЛАСТНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РЫЛЬСКИЙ АГРАРНЫЙ ТЕХНИКУМ» РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП. 0.«Техническая

Подробнее

Дисциплина «Сопротивление материалов»

Дисциплина «Сопротивление материалов» Дисциплина «Сопротивление материалов» 1. Цель и задачи дисциплины Место дисциплины в структуре основной профессиональной образовательной программы Дисциплина «Сопротивление материалов» относится к вариативной

Подробнее

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ и НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ - Российский государственный технологический

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана»

Подробнее

ОП. 02 «Техническая механика»

ОП. 02 «Техническая механика» КОМИТЕТ ОБРАЗОВАНИЯ И НАУКИ КУРСКОЙ ОБЛАСТИ ОБЛАСТНОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «РЫЛЬСКИЙ АГРАРНЫЙ ТЕХНИКУМ» РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП. 0 «Техническая механика»

Подробнее

Лабораторная работа 5.2 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА

Лабораторная работа 5.2 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Глава 5. Упругие деформации Лабораторная работа 5. ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Цель работы Определение модуля Юнга материала равнопрочной балки и радиуса кривизны изгиба из измерений стрелы

Подробнее

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ Профессор, д.т.н. Богус Ш.Н., студент КубГАУ Лысов Д.С., Пономарев Р.В. Кубанский государственный аграрный университет Краснодар, Россия При увеличении пропускной способности

Подробнее

МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КИНО И

Подробнее

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ УТВЕРЖДАЮ Декан факультета сервиса к.т.н., доцент Сумзина Л.В ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ Материаловедение основной образовательной программы высшего образования программы специалитета по направлению

Подробнее

В.С. ГЛУХОВ А.А. ДИКОЙ И.В. ДИКАЯ ОСНОВЫ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

В.С. ГЛУХОВ А.А. ДИКОЙ И.В. ДИКАЯ ОСНОВЫ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ В.С. ГЛУХОВ А.А. ДИКОЙ И.В. ДИКАЯ ОСНОВЫ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ АРМАВИР 2014 В.С. ГЛУХОВ А.А. ДИКОЙ И.В. ДИКАЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ АРМАВИРСКАЯ ГОСУДАРСТВЕННАЯ ПЕДАГОГИЧЕСКАЯ АКАДЕМИЯ

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 6. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ИЗОГНУТОЙ ОСИ И УСТОЙЧИВОСТЬ

Подробнее

1. Цели и задачи дисциплины Цель дисциплины

1. Цели и задачи дисциплины Цель дисциплины 2 1.1. Цель дисциплины 1. Цели и задачи дисциплины Дисциплина «Сопротивление материалов» относится к общетехническому циклу и имеет своей целью усвоение будущими специалистами основ инженерной подготовки

Подробнее

Основные соотношения, полученные для них, приведены в таблице 7.1. Таблица 7.1 Виды нагружения Напряжения Деформации. . Условие прочности:

Основные соотношения, полученные для них, приведены в таблице 7.1. Таблица 7.1 Виды нагружения Напряжения Деформации. . Условие прочности: Лекция 11 Сложное сопротивление 1 Расчет балки, подверженной косому или пространственному изгибу 2 Определение внутренних усилий при косом изгибе 3 Определение напряжений при косом изгибе 4 Определение

Подробнее

Сопротивление материалов ОПД. 001 (шифр и наименование дисциплины)

Сопротивление материалов ОПД. 001 (шифр и наименование дисциплины) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСТПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

Итоговый тест, Прикладная механика (сопромат) (2579) 9. (70c.) Под прочностью элемента конструкции понимается (несколько ответов) 1)

Итоговый тест, Прикладная механика (сопромат) (2579) 9. (70c.) Под прочностью элемента конструкции понимается (несколько ответов) 1) Итоговый тест, Прикладная механика (сопромат) (2579) 9. (70c.) Под прочностью элемента конструкции понимается 1) сопротивление 2) внешнему воздействию 3) вплоть до 4) возникновения больших деформаций 5)

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Н. Б. ЛЕВЧЕНКО СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ЧАСТЬ Санкт-Петербург 001 Министерство образования Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет Кафедра сопротивления

Подробнее

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1.

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1. Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 4а ГОСТ 8509-86) и швеллера 4 (ГОСТ 840-89), требуется: 1. Вычертить сечение в масштабе 1: и указать на нем все оси и

Подробнее

7. СОДЕРЖАНИЕ ТЕСТОВЫХ ЗАДАНИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ «ПРИКЛАДНАЯ МЕХАНИКА» (СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ) Вопрос Ответ Правильный

7. СОДЕРЖАНИЕ ТЕСТОВЫХ ЗАДАНИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ «ПРИКЛАДНАЯ МЕХАНИКА» (СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ) Вопрос Ответ Правильный . Прочность это. Жесткость это. Устойчивость это 4. К допущениям о свойствах материала элементов конструкций не относится 5. Пластина это способность материала сопротивляться действию нагрузок, не разрушаясь

Подробнее

Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения

Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения Расчет стержней при внецентренном сжатии-растяжении Пример 1. Чугунный короткий стержень сжимается

Подробнее

Для данной балки из условия прочности подобрать номер двутавра. Решение

Для данной балки из условия прочности подобрать номер двутавра. Решение Задача 1 Для данной балки из условия прочности подобрать номер двутавра. Решение Дано: M = 8 кн м P = 4 кн q = 18 кн м L = 8 м a L = 0.5 b L = 0.4 c L = 0.3 [σ] = 160 МПа 1.Находим реакции опор балки:

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

Тезисы курса сопротивления материалов Часть 2. wb(x) x L

Тезисы курса сопротивления материалов Часть 2. wb(x) x L Тезисы курса сопротивления материалов Часть Глава 7. Перемещения при изгибе При действии внешних сил балка изменяет кривизну. При этом каждое сечение получает два перемещения: линейное - прогиб и угловое

Подробнее

Тезисы курса сопротивления материалов Часть 1

Тезисы курса сопротивления материалов Часть 1 Тезисы курса сопротивления материалов Часть 1 1 Глава 1. Введение 1.1.Основные понятия Прочность- способность материала конструкции сопротивляться внешним воздействиям. Жесткость- способность элементов

Подробнее

СЛОЖНОЕ СОПРОТИВЛЕНИЕ

СЛОЖНОЕ СОПРОТИВЛЕНИЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Подробнее

Лекция Продольно поперечный изгиб Концентрация напряжений Продольно поперечный изгиб.

Лекция Продольно поперечный изгиб Концентрация напряжений Продольно поперечный изгиб. Лекция 3 3 Продольно поперечный изгиб 3 Концентрация напряжений 3 Продольно поперечный изгиб Рассмотрим случай одновременного действия на стержень, например с шарнирно закрепленными концами, осевой сжимающей

Подробнее

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ)

РАСЧЕТНО-ПРОЕКТИРОВОЧНЫЕ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ (для студентов ЗВФ) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИ- ПЛИНЫ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИ- ПЛИНЫ 1 Министерство образования и науки Республики Казахстан Павлодарский государственный университет им. С. Торайгырова Кафедра «Промышленное и гражданское строительство» МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ

Подробнее

1. Предмет сопротивления материалов. Реальный объект и расчетная схема.

1. Предмет сопротивления материалов. Реальный объект и расчетная схема. 1. Предмет сопротивления материалов. Реальный объект и расчетная схема. Методами со противления материалов выполняются расчеты, на основании кото рых определяются необходимые размеры деталей машин и конструкций

Подробнее

Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я.

Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я. www.ychina.pro Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я. Вспоминаем: Оболочка это тело, один из размеров которого много меньше двух других. Этот наименьший размер

Подробнее

I. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ, МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

I. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ, МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО I. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ, МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО Цель преподавания дисциплины: создание базы для дальнейшей инженерной подготовки студентов; формирование понимания роли сопротивления

Подробнее

ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ОСНОВНЫЕ ПОЛОЖЕНИЯ, МЕТОД СЕЧЕНИЙ, НАПРЯЖЕНИЯ Вариант 1.1 1. Прямой брус нагружается внешней силой F. После снятия нагрузки его форма и размеры полностью восстанавливаются.

Подробнее

Клевцова Людмила Владимировна - преподаватель Ф.И.О, должность. Рекомендована методическим советом по ГБОУ ПО «САСК» Председатель Диденко Я.В.

Клевцова Людмила Владимировна - преподаватель Ф.И.О, должность. Рекомендована методическим советом по ГБОУ ПО «САСК» Председатель Диденко Я.В. Программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования Организация-разработчик: ГБОУ ПО «САСК»

Подробнее

Прикладная механика. Учебное пособие. Санкт-Петербург

Прикладная механика. Учебное пособие. Санкт-Петербург Прикладная механика Учебное пособие Санкт-Петербург 2015 Министерство образования и науки Российской Федерации УНИВЕРСИТЕТ ИТМО А.С. Алышев, А.Г. Кривошеев, К.С. Малых, В.Г. Мельников, Г.И. Мельников ПРИКЛАДНАЯ

Подробнее

ОСНОВЫ ТЕОРИИ СОПРОТИВЛЕНИЯ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ. ПРОСТЕЙШИЕ СЛУЧАИ НАГРУЖЕНИЯ

ОСНОВЫ ТЕОРИИ СОПРОТИВЛЕНИЯ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ. ПРОСТЕЙШИЕ СЛУЧАИ НАГРУЖЕНИЯ Глава 4 ОСНОВЫ ТЕОРИИ СОПРОТИВЛЕНИЯ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ. ПРОСТЕЙШИЕ СЛУЧАИ НАГРУЖЕНИЯ Как уже говорилось выше, железобетон это анизотропный материал сложной структуры, характеризующийся нелинейной

Подробнее

Институт архитектуры и строительства. Кафедра механики деформируемого твердого тела. А.И. Ярмолинский Ю.Г. Иванищев

Институт архитектуры и строительства. Кафедра механики деформируемого твердого тела. А.И. Ярмолинский Ю.Г. Иванищев ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» Институт архитектуры и строительства

Подробнее

Методические указания

Методические указания Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

ЗАДАЧА 1. I-швеллер 36, II-уголок 90 х 90 х 8.

ЗАДАЧА 1. I-швеллер 36, II-уголок 90 х 90 х 8. ЗДЧ.. Определить положение центра тяжести сечения.. Найти осевые (экваториальные и центробежные моменты инерции относительно случайных осей, проходящих через центр тяжести ( c и c.. Определить направление

Подробнее

ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ И ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК СЕЧЕНИЙ

ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ И ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК СЕЧЕНИЙ Министерство образования и науки Российской Федерации Саратовский государственный технический университет Балаковский институт техники, технологии и управления ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ И

Подробнее

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН. по предмету «Прикладная механика»

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН. по предмету «Прикладная механика» МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Кафедра: «Машины и оборудование пищевой промышленности основы механики» РЕФЕРАТ

Подробнее

УДК 539.3/6 А 66 Прямой поперечный изгиб. Расчеты на прочность: Методические указания/ И.Н.Андронов, В.П.Власов, Р.А. Вербаховская. - Ухта: УГТУ, 003.

УДК 539.3/6 А 66 Прямой поперечный изгиб. Расчеты на прочность: Методические указания/ И.Н.Андронов, В.П.Власов, Р.А. Вербаховская. - Ухта: УГТУ, 003. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Прямой поперечный изгиб. Расчеты на прочность. МЕТОДИЧЕСКИЕ УКАЗАНИЯ УХТА 003 УДК 539.3/6 А 66 Прямой поперечный

Подробнее

О расчете несущих железобетонных конструкций в стержневом приближении Д.т.н. Кантур О.В., Лоскутов И.С., Глотов Д.А. ООО «ПКБ Катриэль», г. Москва.

О расчете несущих железобетонных конструкций в стержневом приближении Д.т.н. Кантур О.В., Лоскутов И.С., Глотов Д.А. ООО «ПКБ Катриэль», г. Москва. О расчете несущих железобетонных конструкций в стержневом приближении Д.т.н. Кантур О.В., Лоскутов И.С., Глотов Д.А. ООО «ПКБ Катриэль», г. Москва. В общем случае задача расчета любой конструкции, в наиболее

Подробнее

Кафедра Мосты и транспортные тоннели

Кафедра Мосты и транспортные тоннели ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уральский государственный университет путей сообщения»

Подробнее

Прямой поперечный изгиб Расчёты на прочность

Прямой поперечный изгиб Расчёты на прочность МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) Прямой поперечный изгиб

Подробнее

СОДЕРЖАНИЕ. Введение Расчет вала на прочность и жесткость Краткие теоретические сведения 13

СОДЕРЖАНИЕ. Введение Расчет вала на прочность и жесткость Краткие теоретические сведения 13 Татьянченко А.Г. «Пособие для расчетных работ по сопротивлению материалов» 1 СОДЕРЖАНИЕ Введение.... 1. Расчет вала на прочность и жесткость.... 1.1. Краткие теоретические сведения. 1.. Пример расчета

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее