Системы линейных алгебраических уравнений

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Системы линейных алгебраических уравнений"

Транскрипт

1 Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны нулю; если хотя бы один из свободных членов b b b m отличен от нуля то система называется неоднородной В системе () число уравнений может быть меньше равно или больше числа неизвестных Решением системы () называется такая совокупность чисел c c c что каждое из уравнений системы () обращается в тождество после замены в нём неизвестных соответствующими числами c ( ) Система () может не иметь ни одного решения может иметь одно решение число решений может быть и бесконечно много Система уравнений () называется совместной если она имеет хотя бы одно решение и несовместной если у неё не существует ни одного решения Совместная система () называется определённой если она имеет единственное решение и неопределённой если у неё существует по крайней мере два решения Две системы называются эквивалентными если любое решение одной из них является решением и другой системы Заметим что все несовместные системы являются эквивалентными Решение системы линейных алгебраических уравнений в матричном виде Возьмём систему вида () и введём в рассмотрение следующие матрицы: b b b p X b B m m m m m m b m b m Матрица называется матрицей коэффициентов системы () называется расширенной матрицей коэффициентов системы () одностолбцовая матрица B называется матрицей свободных членов одностолбцовая матрица X - матрицей неизвестных Найдём произведение X p

2 X m m m m m m Очевидно что в силу системы () получившуюся матрицу можно приравнять матрице B Следовательно вместо систем () мы можем рассматривать матричное уравнение X B () Рассмотрим линейную систему у которой число неизвестных совпадает с числом уравнений b b b Матрица коэффициентов этой системы квадратная те Допустим что det 0 тогда у матрицы существует обратная Запишем систему в матричном виде X B Умножив левую и правую части этого уравнения слева на получим X B => E X B Итак решение системы () в матричном виде X B Заметим что это решение единственное Пример Найти решение системы в матричном виде: z 3 z 0 z Решение Обозначим через матрицу коэффициентов данной матрицы систему B - матрицу столбец из свободных членов X - искомую матрицу столбец Ясно что 3 B 0 X z Данная система в матричном виде X B её решение X B Найдём обратную матрицу Прежде всего

3 det ( ) ( ) ( )( ) 4 3 Найдём алгебраические дополнения матрицы 3 ( ) ( ) 3 ( ) 3 ( ) 3 ( ) 3 3 ( ) 3 ( ) ( ) ( ) 33 3 Получаем обратную матрицу Вычислим X B X z 3 0 Итак получим решение данной системы в матричном виде 0 z От такой записи решения можно перейти к более привычной форме записи: 0 z

4 Правило Крамера Для простоты выкладок рассмотрим систему линейных алгебраических уравнений с неизвестными положив 3 b b b Пусть определитель этой системы отличен от нуля те det 0 Тогда можно записать решение этой системы в матричном виде положив det 3 b b b b3 3 3 b b b b b 3 b 3 b 3 b3 33 Следовательно 3 b b b b b b b b b b b b 3 33 Полученные формулы для вычисления 3 называются формулами Крамера а соответствующее правило правилом Крамера Итак если определитель системы линейных алгебраических уравнений с неизвестными отличен от нуля то по формулам Крамера: ( ) где определитель получается из определителя системы путём замены -го столбца столбцом из свободных членов Пример Найти решение системы z 3 z 0 z по формулам Крамера * Крамер Г (704 75) швейцарский математик

5 Решение Вычислим определители и z z z 3 Имеем ; 0; z 3 3 Итак решение данной системы: 0 z


ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений ЗАНЯТИЕ Метод Крамера и матричный метод решения систем линейных уравнений Сведения из теории Уравнение называется линейным, если оно содержит неизвестные только в первой степени и не содержит произведений

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера:

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: D, D1, D2, D3 это определители Определителем третьего

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51

Системы линейных уравнений. Методы решения систем линейных уравнений. Линейная алгебра (лекция 5) / 51 Системы линейных уравнений Системы линейных уравнений. Методы решения систем линейных уравнений Линейная алгебра (лекция 5) 06.10.2012 2 / 51 Система m линейных уравнений с n неизвестными имеет вид: Линейная

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений ) Понятие СЛАУ ) Правило Крамера решения СЛАУ ) Метод Гаусса 4) Ранг матрицы, теорема Кронекера-Капелли 5) Решение СЛАУ обращением матриц, понятие обусловленности матриц ) Понятие СЛАУ О. СЛАУ система

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством Пусть дана квадратная матрица второго порядка ( ) a11 a A = 12 a 21 a 22 (1) Определитель второго порядка, соответствующий матрице (1), определяется равенством a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21

Подробнее

Лекция 1.5. Действия над матрицами. Обратная матрица. Ранг матрицы

Лекция 1.5. Действия над матрицами. Обратная матрица. Ранг матрицы Лекция 5 Действия над матрицами Обратная матрица Ранг матрицы Аннотация: Вводятся операции алгебры матриц Доказывается что всякая невырожденная матрица имеет обратную Выводится формула решения СЛАУ с помощью

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

2. Решение произвольных систем линейных алгебраических уравнений

2. Решение произвольных систем линейных алгебраических уравнений Решение произвольных систем линейных алгебраических уравнений Выше рассматривались в основном квадратные системы линейных уравнений число неизвестных в которых совпадает с числом уравнений В настоящем

Подробнее

Решение типового варианта: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Решение типового варианта: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1. Найдите произведение матриц ABC: Решение типового варианта: Так как произведение матриц не перестановочно, то найти данное произведение можно двумя способами: Для определенности воспользуемся вторым

Подробнее

ЛЕКЦИЯ 2. Определители II-го и III-го порядков. Свойства определителей. Пусть дана система двух линейных уравнений с двумя неизвестными

ЛЕКЦИЯ 2. Определители II-го и III-го порядков. Свойства определителей. Пусть дана система двух линейных уравнений с двумя неизвестными ЛЕКЦИЯ. Определители II-го и III-го порядков. Свойства определителей. Пусть дана система двух линейных уравнений с двумя неизвестными ) коэффициенты которого составляют квадратную матрицу второго порядка

Подробнее

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Метод окаймляющих миноров нахождения ранга матрицы A = m m m минора Минором k порядка k матрицы А называется любой определитель k-го порядка этой матрицы,

Подробнее

Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера

Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера Тема 1.4. Решение систем двух (трех) линейных уравнений формулы Крамера Габриель Крамер (1704 1752) швейцарский математик. Данный метод применим только в случае систем линейных уравнений, где число переменных

Подробнее

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида...

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида... Системы линейных алгебраических уравнений Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида a a a, a a a,, a a a Ее можно представить в виде матричного уравнения

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

Математика (БкПл-100, БкК-100)

Математика (БкПл-100, БкК-100) Математика (БкПл-100, БкК-100) М.П. Харламов 2009/2010 учебный год, 2-й семестр Лекция 7. Определители, системы линейных уравнений и формулы Крамера 1 Тема 1: Определители 1.1. Понятие определителя Определитель

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры МОДУЛЬ Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Леция Понятие матрицы и определителя Свойства определителей Аннотация: В лекции указывается на применение определителей для

Подробнее

2.1.3 Методы решений системы линейных алгебраических уравнений

2.1.3 Методы решений системы линейных алгебраических уравнений Методы решений системы линейных алгебраических уравнений Метод обратной матрицы Рассмотрим частный случай системы ) когда число уравнений равно числу неизвестных те m Система уравнений имеет вид: ì ) î

Подробнее

АЛГЕБРА И ГЕОМЕТРИЯ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. Электронные методические указания

АЛГЕБРА И ГЕОМЕТРИЯ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. Электронные методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

РАЗДЕЛ 1. Линейная алгебра.

РАЗДЕЛ 1. Линейная алгебра. -й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Подробнее

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40 Линейная алгебра Матрицы и определители Ранг матрицы Линейная алгебра (лекция 4) 2 / 40 Выберем в матрице A размера m n произвольные k строк и k столбцов, k min(m, n). Линейная алгебра (лекция 4) 3 / 40

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

1. При каких значениях ранг матрицы. Решение:

1. При каких значениях ранг матрицы. Решение: . При каких значениях ранг матрицы равен двум? Решение: Ранг матрицы равен порядку базисного минора. Поскольку требуется, чтобы ранг матрицы был равен двум, то базисным должен быть какой-либо минор второго

Подробнее

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа

Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа Министерство образования и науки Российской Федерации Дальневосточный федеральный университет Инженерная школа РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Методическое пособие по проведению практических

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение.

B ; б) указать какой-либо ее базисный минор и соответствующие ему в) базисные строки и г) базисные столбцы. Решение. Т е м а : «Л и н е й н а я з а в и с и м о с т ь с и с т е м ы в е к т о р о в» ( т и п о в ы е п р и м е р ы с р е ш е н и я м и ) Пример. Путем приведения элементарными преобразованиями исходной матрицы

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Терминология, определения и задачи теории систем линейных уравнений. Детерминант (определитель) квадратной матрицы.

Терминология, определения и задачи теории систем линейных уравнений. Детерминант (определитель) квадратной матрицы. Лекция Терминология, определения и задачи теории систем линейных уравнений Детерминант (определитель) квадратной матрицы В первых лекциях излагаются вопросы, связанные с теорией систем линейных алгебраических

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 1 Линейная алгебра Решить матричное уравнение ( ( 3 1 2 1 X + 2 4 2 3 3 ( 1 0 = 3 2 3 Выполним вначале умножение матриц на

Подробнее

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы.

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы. .4. Ранг матрицы. В матрице А выделим k строк и столбцов из элементов, стоящих на их пересечении составим определитель. Будем называть его минором k-того порядка. Если минор k-того порядка отличен от нуля,

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 1 ОПРЕДЕЛИТЕЛИ. СИСТЕМЫ УРАВНЕНИЙ 0. План лекции 1. Определитель второго порядка. 1.1 Система двух уравнений. 1.2. Метод исключения переменных. 1.3. Матрица 2 2. 1.4.

Подробнее

Теорема Кронекера-Капелли

Теорема Кронекера-Капелли Установить совместность и решить систему линейных уравнений 5xx x xx 5x 0 x4x x 0 а) по формулам Крамера, б) матричным способом, в) методом Гаусса Совместность Совместность системы можно установить: а)

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 3. Элементы линейной алгебры (матрицы, определители, системы линейных уравнений и формулы Крамера) 1 Тема 1: Матрицы 1.1. Понятие

Подробнее

Решение задач по линейной алгебре. Шульц Денис Сергеевич

Решение задач по линейной алгебре. Шульц Денис Сергеевич Решение задач по линейной алгебре. Шульц Денис Сергеевич План занятия. Содержание раздела ВМ «Линейная алгебра» Практические советы по решению задач Типовые задачи Линейная алгебра (содержание). Матрицы

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени ВН КАРАЗИНА ЮМ ДЮКАРЕВ, ИЮ СЕРИКОВА ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений Учебно-методическое

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра М и ММЭ 2 Направление подготовки Бизнес-информатика Общий профиль 3 Дисциплина

Подробнее

ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ MS EXCEL ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ КРАМЕРА

ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ MS EXCEL ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ КРАМЕРА Ревчук И.Н. Пчельник В.К. УО «Гродненский государственный университет имени Янки Купалы» г. Гродно Республика Беларусь ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ MS EXCEL ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ

Подробнее

Матрицы, определители и системы линейных уравнений

Матрицы, определители и системы линейных уравнений Федеральное агентство по образованию Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Матрицы определители и системы линейных уравнений Методические указания к решению задач Санкт-Петербург

Подробнее

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En 4 Обратная матрица Понятие обратной матрицы Существование и единственность обратной матрицы Присоединенная матрица Определение 4 Пусть А квадратная матрица порядка п Матрица B называется правой обратной

Подробнее

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет ОБРАТНАЯ МАТРИЦА ОПРЕДЕЛЕНИЕ, СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ ОБРАТНОЙ МАТРИЦЫ Рассмотрим проблему определения операции, обратной умножению матриц Пусть квадратная матрица порядка n Матрица, удовлетворяющая

Подробнее

Глава 1. Начала линейной алгебры

Глава 1. Начала линейной алгебры Глава Начала линейной алгебры Системы линейных уравнений Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: + + + + n n = + + + + nn = m + m + m + + mnn = m () Здесь n неизвестные

Подробнее

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a Лекция 5 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными: a x + a x + + a nx n = b, a x + a x + + a nx n = b, a m x + a m x + + a m n x n = b m Сокращенно

Подробнее

a 1 1 a 1 2 a 1 n a 2 1 a 2 2 a 2 n a m 1 a m 2 a m n a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn

a 1 1 a 1 2 a 1 n a 2 1 a 2 2 a 2 n a m 1 a m 2 a m n a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Лекция 8 Матрицы Системы линейных уравнений Алгоритм Гаусса МАТРИЦЫ Основные определения Матрица размера m n прямоугольная таблица из чисел (элементов матрицы), состоящая из m строк и n столбцов Нумерация

Подробнее

Математики и математических методов в экономике 2. Направление подготовки

Математики и математических методов в экономике 2. Направление подготовки 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра Математики и математических методов в экономике 2 Направление подготовки 380301

Подробнее

Лекция 1: Определители второго и третьего порядков

Лекция 1: Определители второго и третьего порядков Лекция 1: Определители второго и третьего порядков Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы начинаем

Подробнее

Управление дистанционного обучения и повышения квалификации. Линейная алгебра ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Управление дистанционного обучения и повышения квалификации. Линейная алгебра ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Математика» Набор тестов для студентов очной формы обучения всех специальностей Автор

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

Глава 2. Системы линейных равнений

Глава 2. Системы линейных равнений Глава истемы линейных равнений Метод Гаусса решения систем линейных алгебраических уравнений истема m линейных алгебраических уравнений (ЛАУ) с неизвестными имеет вид a a a b a a a b () am am am bm Здесь

Подробнее

Матрицы и определители. Линейная алгебра

Матрицы и определители. Линейная алгебра Матрицы и определители Линейная алгебра Определение матрицы Числовой матрицей размера mxn называется совокупность чисел, расположенных в виде таблицы, содержащей m строк и n столбцов 11 21... m1 12......

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Семинар 7. Линейная алгебра

Семинар 7. Линейная алгебра 1 Семинар 7. Линейная алгебра Теоретические вопросы для самостоятельного изучения: 1. Определители и их свойства. 2. Матрица. Виды матриц. 3. Действия над матрицами 4. Обратная матрица. Решение матричных

Подробнее

9. Крамеровские системы линейных уравнений

9. Крамеровские системы линейных уравнений 9. Крамеровские системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение крамеровской системы Определение

Подробнее

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E,

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E, 31 Обратная матрица Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы 1 Критерий существования и свойства обратной матрицы Определение Пусть A квадратная

Подробнее

ОПРЕДЕЛИТЕЛИ. МАТРИЦЫ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

ОПРЕДЕЛИТЕЛИ. МАТРИЦЫ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» ОПРЕДЕЛИТЕЛИ МАТРИЦЫ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Подробнее

... a n1 x 1 + a n2 x a nn x n = b n.

... a n1 x 1 + a n2 x a nn x n = b n. 5. КРАМЕРОВСКИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ В этом параграфе будем рассматривать системы линейных уравнений, у которых количество неизвестных равно числу уравнений. В самом общем виде эта система может

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ,

Подробнее

Лекция 11: Обратная матрица

Лекция 11: Обратная матрица Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение обратной матрицы Определение Пусть A произвольная матрица. Матрица B называется

Подробнее

ЛЕКЦИЯ N6. Линейная алгебра. Определители. 1.Определители, свойства, вычисление.

ЛЕКЦИЯ N6. Линейная алгебра. Определители. 1.Определители, свойства, вычисление. ЛЕКЦИЯ N6. Линейная алгебра. Определители..Определители, свойства, вычисление. 2.Определители высших порядков... 4 Рассмотрим таблицу вида:.определители, свойства, вычисление. A = Эта таблица, состоящая

Подробнее

Казанский (Приволжский) федеральный университет

Казанский (Приволжский) федеральный университет Казанский (Приволжский) федеральный университет МС МАЛАКАЕВ ЛР СЕКАЕВА ОН ТЮЛЕНЕВА ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Учебно-методическое пособие Казань 2013 УДК 510 Печатается по решению учебно-методической комиссии

Подробнее

МАТЕМАТИКА ЛИНЕЙНАЯ АЛГЕБРА

МАТЕМАТИКА ЛИНЕЙНАЯ АЛГЕБРА ООО «Резольвента», wwwresolventru, resolvent@listru, (95) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( )

ЗАДАЧИ. для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса. 1. Найдите функцию ( ) ЗАДАЧИ для самостоятельного решения Системы линейных уравнений и их решение методом Гаусса x bx + c f x = +, если известны ее значения в трех указанных x точках: Найдите функцию ( ) а) f ( ) f ( ) f (

Подробнее

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ ДК Агишева СА Зотова ВБ Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ Волгоград Тема Матрицы Основные действия над ними Обратная матрица Матричный способ решения систем линейных

Подробнее

Задача 1 Вычислить определитель матрицы

Задача 1 Вычислить определитель матрицы Задача Вычислить определитель матрицы 4 4 A 4 4 Решение Для вычисления определителя приведем матрицу к треугольному виду. После этого определитель будет равен произведению элементов главной диагонали.

Подробнее

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1)

Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Примеры выполнения контрольных работ при заочном обучении Контрольная работа 1 (КР-1) Тема 1. Линейная алгебра Задача 1 Необходимо решить систему уравнений, представленную в задании в виде Постоянные параметры

Подробнее

ФГОУ ВПО «Волгоградская академия государственной службы» ЭКОНОМИЧЕСКИЙ ФАКУЛЬТЕТ Специальность «Финансы и кредит»

ФГОУ ВПО «Волгоградская академия государственной службы» ЭКОНОМИЧЕСКИЙ ФАКУЛЬТЕТ Специальность «Финансы и кредит» Образец выполнения контрольной работы ФГОУ ВПО «Волгоградская академия государственной службы» ЭКОНОМИЧЕСКИЙ ФАКУЛЬТЕТ Специальность «Финансы и кредит» Кафедра информационных систем и математического моделирования

Подробнее

УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ

УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ Как изменится произведение B матриц и B если: а переставить -ю и j -ю строки матрицы? б переставить -й и j -й столбцы матрицы B? в к -й строке матрицы прибавить ее j -ю строку

Подробнее

Семинар 1. Однородные СЛАУ (ОСЛАУ)

Семинар 1. Однородные СЛАУ (ОСЛАУ) Семинар Однородные СЛАУ ОСЛАУ) Рассмотрим систему, состоящую из m однородных линейных уравнений с n неизвестными: a x + a x + + a n x n =, a { x + a x + + a n x n =, a m x + a m x + + a mn x n =. Введём

Подробнее

Лекция 6: Крамеровские системы линейных уравнений

Лекция 6: Крамеровские системы линейных уравнений Лекция 6: Крамеровские системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю.

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Широкое использование математических методов в современном

Подробнее

Лекция V. V.1. Системы линейных уравнений. x

Лекция V. V.1. Системы линейных уравнений. x Лекция V V Системы линейных уравнений a x +a ++a n b a x +a ++a n b a m x +a m ++a mn b m () Запишем систему m линейных уравнений с n неизвестными в несколько необычном виде: a a a m x + a a a m ++ a n

Подробнее

Линейная алгебра Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Линейная алгебра Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА АНАЛИТИЧЕСКОЙ ЭКОНОМИКИ И ЭКОНОМЕТРИКИ Линейная алгебра Конспект лекций и практикум для студентов экономических

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Системы линейных уравнений

Системы линейных уравнений Министерство образования и науки РФ Уральский государственный экономический университет Ю. Б. Мельников Системы линейных уравнений Раздел электронного учебника для сопровождения лекции Изд. 4-е, испр.

Подробнее

Алгебра и аналитическая геометрия

Алгебра и аналитическая геометрия Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Алтайская государственная педагогическая академия»

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 3 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Основные определения Рассмотрим следующую систему m уравнений относительно n неизвестных в поле K: a x + a 2 + + a nx n b, a 2 x + a 2 2 + + a2 nx

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Скалярное произведение в арифметическом пространстве 1.1 Определение. Основные свойства Скалярное произведение (X, Y ) векторов X = (x 1, x 2,..., x n ), Y =

Подробнее

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия 8 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ 8 Основные понятия Линейным дифференциальным уравнением -го порядка с переменными коэффициентами называется уравнение

Подробнее

Практикум по линейной алгебре

Практикум по линейной алгебре Министерство образования и науки РФ Нижегородский государственный университет им. Н.И. Лобачевского В.К. Вильданов Практикум по линейной алгебре Учебно-методическое пособие Нижний Новгород Издательство

Подробнее

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО ВЫСШЕЙ МАТЕМАТИКЕ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования и науки Российской Федерации РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени ИМ ГУБКИНА ИН Мельникова, ТС Соболева, НО Фастовец МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКИМ

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее