Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений"

Транскрипт

1 Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии и изгибе

2 191 Формула Мора Пусть требуется определить угол поворота сечения в точке приложения силы P (рис191,а) Однако в точке С не приложено никакой силы Поэтому в этой точке Ф надо приложить фиктивную пару сил M, настолько малую, чтобы она не изменила перемещения от других сил (рис191,б) Тогда изгибающий момент в произвольном сечении равен сумме изгибающих моментов от внешних сил и от фиктивной пары: P ф P ф M M M M M m, где m - изгибающий момент от единичной пары сил, приложенной по направлению искомого перемещения Рис 191 К определению угла поворота сечения в точке С Тогда перемещение точки приложения фиктивной пары сил будет равно: P Ф 2 P Ф ( M M m ) ( M M m ) m d 2 Ф Ф 2 2 U d M M EJ EJ (191) Поскольку реально фиктивной силы нет, то в выражении для перемещения надо Ф положить M С учетом последнего равенства получим: P M EJ m d (192) Если балка имеет несколько участков, то в формуле (192) надо интегрировать по длине каждого участка, а затем результаты интегрирования просуммировать: P (193) M m d EJ Выражение (193) есть частный случай интеграла Мора для изгиба балок По аналогии: N N N n, где n - продольное усилие при растяжении продольное усилие P Ф от единичной силы, приложенной по направлению P Ф (искомого перемещения), P ф при кручении крутящий момен M M M m, где m - крутящий момент в произвольном сечении стержня от единичной пары сил, приложенной по направлению M (искомого перемещения) ф

3 Проделав описанные выше преобразования, получаем выражения для расчета перемещений при растяжении и при кручении Nn d, (194) EA Mm d (195) GJ В общем случае действия шести внутренних усилий N, Q, Q, M, M, M перемещение в точке, где приложена фиктивная сила (пара) определяется по формуле: u Nn d EA, Mm EJ Qq V, d k d GA w,, Mm Qq EJ GA d k d, Mm d GJ (196) (197) (198) (199) где k, k - коэффициенты формы, зависящие от вида сечения (табличные данные) и учитывающие неравномерный характер распределения касательных напряжений по сечению; u - линейное перемещение точки оси стержня в направлении оси (перемещение обусловленное деформацией растяжения-сжатия); V, - линейное перемещение точки оси стержня в направлении оси (прогиб) и угол поворота сечения относительно (перемещения в плоскости o, обусловленные деформацией изгиба и сдвига); w, - линейное перемещение точки оси стержня в направлении оси (прогиб) и угол поворота сечения относительно оси (перемещения в плоскости o, обусловленные деформацией изгиба и сдвига); - угол поворота сечения относительно оси (перемещение обусловленное деформацией кручения); N,Q,Q,M,M,M - внутренние усилия в произвольном сечении стержня (эпюры) от действия заданной нагрузки n, q, q, m, m, m - внутренние усилия в произвольном сечении стержня (эпюры) от действия единичной силы (пары сил) Выражения (196)- (199) представляют собой интегралы Мора для определения перемещений в самом общем случае нагружения (при сложном сопротивлении стержня) Qуq Q q В формулах (197) и (198) выражения: kу d, k d GF учитывают GF добавку к прогибу, обусловленную деформацией сдвига J J Эта добавка зависит от отношения высоты сечения стержня к его длине h Влияние поперечных сил на прогиб

4 h тем меньше, чем меньше отношение Так для стержня прямоугольного сечения, при h 1 2, доля вклада поперечной силы в прогиб составляет 3, 75 Поэтому при 4 определении прогибов вторым членом в формулах (197) и (198) пренебрегают и формулы принимают вид: V, w, Mm d, EJ Mуmу d EJ у 192 Вычисление интеграла Мора по правилу Верещагина (191) (1911) Определение перемещений с помощью формулы (196)- (1911) производится в следующем порядке: 1) находится выражение для усилий: N,Q,Q,M,M,M от заданной нагрузки как функции координаты произвольного сечения; 2) по направлению искомого перемещения прикладывается соответствующая ему единичная сила (при линейном перемещении сосредоточенная сила, при угле поворота сосредоточенный момент); 3) определяются усилия n, q, q, m, m, m от сосредоточенной единичной силы как функции координаты произвольного сечения; 4) найденные выражения усилий подставляются в формулы (196)-(1911) и интегрированием по участкам в пределах всего стержня определяют искомое перемещение Если (положительно), то перемещение совпадает с направлением единичной силы, а если отрицательно, то противоположно этому направлению Пример 191 Рассмотрим балку постоянного сечения свободно лежащую на двух опорах (рис191,а) и нагруженную сосредоточенной силой P Определим прогиб балки под силой с учетом всех членов формулы Мора (197) Решение Наряду с заданным состоянием (рис191,а) рассмотрим единичное состояние, приложив единичную силу по направлению искомого перемещения (рис191,б) В заданном состоянии: опорные реакции RA RB P /2; выражение для изгибающего момента и поперечной силы в сечении с координатой имеют вид: M ( ) (P/ 2), Q ( ) P/ 2 В единичном состоянии: опорные реакции R R,5; выражение для изгибающего момента и поперечной силы в сечении с координатой имеют вид: m ( ) / 2, q ( ),5 A B

5 Рис191 К вычислению прогиба в середине пролета Вычисляем перемещение с учетом симметрии при перемножении эпюр на участках /2 /2 1 k V ( / 2) 2[ (P/ 2) (1/ 2) d (P/ 2) (1/ 2)d] EJ GA P k P P k P P k P 2[ ] 2[ ] 4EJ 3 8GA 4EJ 38 8G A 48EJ 4G A Таким образом, /2 3 P k P V ( / 2) M Q 48EJ 4GA Предположим, что балка имеет прямоугольное сечение со сторонами b и h,1, тогда Q P k 48 E J 12 k E J 3 2 4G A P G А M 3 3 bh b b Подставляем в последнюю формулу J, А bh, k 1,2, приняв Q 3 G,4E, получим, те прогиб, вызванный деформацией сдвига, составляет M 1 3% от прогиба, вызванного деформацией изгиба 3 P Прогиб V ( ) M совпадает с известным результатом, полученным в 2 48EJ результате решения дифференциального уравнения изгиба стержня

6 192 Правило Верещагина вычисления интеграла Мора Определение перемещений на участках стержня постоянной жесткости можно значительно упростить путем применения специального приема вычисления интеграла вида M md, (т к EJ const ) В связи с тем, что в подынтегральное выражение входит произведение усилий M и m, являющихся ординатами эпюр, построенных для единичного и заданного (действительного) состояний, этот прием называют способом перемножения эпюр Так как, m строится от единичной силы или пары сил, закон изменения m может быть либо линейный, либо константа (рис192) Будем считать, что m - линейная функция, а M - криволинейная Рис192 Тогда ордината эпюры от единичной силы в точке с координатой m ( ) ( ) tg( ) a a, следовательно a равна M ( ) m ( ) d tg( ) ( a) M () d tg( ) ( a) d, где d M( ) d Интеграл ( a) d представляет собой статический момент площади (площади, ограниченной кривой M( )) относительно оси О О Статический момент можно выразить иначе ( a ) d ( a c ), c Тогда (рис192) - координата центра тяжести площади эпюры M ( ) M ( ) m ( ) d ( c a) tg( ) c, где c ( a) tg( ) ( a) tg( ) ордината эпюры M( ), взятая под центром тяжести эпюры m ( ) Таким образом: c - M ( ) m ( ) d c (1912) c

7 Интеграл от произведения нелинейной функции на линейную функцию равен площади нелинейной функции умноженной на ординату линейной функции, взятой под центром тяжести нелинейной функции Заметим, что левая часть выражения (1912) отличается от интеграла Мора множителем (1/ EJ ) Поэтому интеграл Мора вычисляют по правилу Верещагина по формуле M ( ) m( ) d c (1913) E J EJ Интеграл от произведения нелинейной эпюры на линейную равен площади нелинейной эпюры умноженной на ординату линейной, взятой под центром тяжести нелинейной эпюры Техника перемножения эпюр по правилу Верещагина будет рассмотрена на примерах 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии, изгибе Пример 192 Для стержня ступенчато постоянного сечения (рис193,а) определить угол закручивания сечения с, используя формулу Мора Решение Данный пример был рассмотрен в лекции 16, где для стержня были построены эпюра крутящих моментов и углов закручивания, которые представлены на рис193 б, в Рис193 К определению угла закручивания стержня Определим угол закручивания сечения с на участке стержня длиной 2, по формуле Мора Интеграл Мора вычислим по правилу Верещагина По направлению искомого перемещения в сечении с приложим единичную пару сил m 1 Эпюра крутящих моментов от единичной пары представлена на рис193,г Интегралы вычисляем по правилу Верещагина На первом и втором участках имеем:

8 M m 1 1 ( m) m (2 ) (2m 1) ( 1) GJ 2GJ GJ 2 2GJ Величина угла закручивания стержня в сечении с совпадает с соответствующей величиной, полученной в результате интегрирования дифференциального уравнения кручения стержня (см формулу (1613)) Пример 193 Для стержня, нагруженного как показано на рис194,а определить перемещение сечения с, используя формулу Мора Решение Данный пример был рассмотрен в лекции 2, где для стержня были построены эпюра продольных сил и эпюра перемещений поперечных сечений, которые представлены на рис194 б, в Определим перемещение сечения с по формуле Мора Интеграл Мора вычислим по правилу Верещагина По направлению искомого перемещения в сечении с приложим единичную силу n 1 Эпюра продольных сил от единичной силы представлена на рис194,г Используем формулу Мора, интегралы вычисляем по правилу Верещагина 2 На первом и втором участках имеем: Рис194 N n 1 1 4aF u(5a) (2 af ( 1)) ((3 a( 2 F) ( 1) EA EA EA EA Знак плюс в ответе означает, что сечение с перемещается по направлению единичной силы Таким образом, величина перемещения сечения с совпадает с соответствующей величиной, полученной в результате интегрирования дифференциального уравнения растяжения - сжатия стержня (см формулу (211))

9 Пример 194 Для балки, нагруженного как показано на рис195,а определить прогиб в середине пролета, вычисляя интеграл Мора по правилу Верещагина Рис195 С учетом симметрии эпюр изгибающих моментов перемножим эпюры первом участке, а затем результат удвоим: P 2 P V ( ) [( ) ( )] 2 EJ EJ M иm на Таким образом, величина прогиба совпадает с соответствующей величиной, полученной в результате интегрирования дифференциального уравнения изгиба стержня В табл191 приведены площади и координаты центров тяжести наиболее часто встречающихся геометрических фигур Табл191

10 Пример 195 Определить прогиб балки в середине пролета (рис196,а) Рис196 Единичная эпюра моментов имеет два участка (рис196,в) Площадь половины L ql ql параболы эпюры M (см табл191) равна A h Ординату треугольника (эпюры m ) под центром тяжести параболы находим из ( 5L/ 16 ) 5L подобия треугольников, ( L / 4) ( L / 2) 32 Прогиб в середине пролета балки (с учетом симметрии) равен ql 5L 5 ql V( L / 2 ) [ ] EJ EJ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ Лекция 17 Энергетические методы расчета упругих систем. Потенциальная энергия деформации. Обобщенные силы и обобщенные перемещения. Основные энергетические уравнения механики (теорема Кастильяно). Метод

Подробнее

F 1, затем F 2 точка C сначала перемещается на величину 11, затем

F 1, затем F 2 точка C сначала перемещается на величину 11, затем равна нулю: W +U = 0. (9) Возможными являются любые перемещения, которым не препятствуют наложенные связи. В линейно деформируемых системах вместо бесконечно малых можно рассматривать малые конечные перемещения.

Подробнее

Тема 7 Расчет прочности и жесткости простой балки

Тема 7 Расчет прочности и жесткости простой балки Тема 7 Расчет прочности и жесткости простой балки Лекция Перемещения при изгибе. Учет симметрии при определении перемещений... Решение дифференциальных уравнений оси изогнутой балки способом выравнивания

Подробнее

4.4. Секториальные характеристики сечения

4.4. Секториальные характеристики сечения 118 Сопротивление материалов Раздел 4 затем абсолютные ϕ 4 = 0.365 10 3, ϕ 3 = 0.879 + 0.365) 10 3 = 0.515 10 3, ϕ 2 = 4.370 0.879 + 0.365) 10 3 = 3.855 10 3, ϕ 1 = 3.845 + 4.370 0.879 + 0.365) 10 3 =

Подробнее

ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ

ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 ЛЕКЦИЯ Энергетические методы определения перемещений (продолжение) Теорема о взаимности работ Теорема о взаимности работ применима к системам, для которых

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г)

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г) ПРИЛОЖЕНИЕ 1 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Задача 1 Ступенчатый брус из стали Ст нагружен, как показано на рис. П.1.1, а. Из условия прочности подобрать размеры поперечного сечения. Построить эпюру перемещения

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Государственный комитет Российской Федерации по высшему образованию Казанский государственный технологический университет СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к самостоятельной работе студентов

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1 Задача 1 Рассматривается два загружения плоской рамы, состоящей из стержневых элементов квадратного поперечного сечения При загружении распределенными нагрузками q и 2q в точке к указанного на рисунке

Подробнее

Исходные данные по предпоследней цифре

Исходные данные по предпоследней цифре Методическое руководство Задание Статически неопределимые системы Работа Для балки, изображенной на рисунке (рис.) требуется: ) найти изгибающий момент на левой опоре (в долях ); ) построить эпюры Q y

Подробнее

Тычина К.А. О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я.

Тычина К.А. О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я. www.tychin.pro Тычина К.А. VI О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я. П о т е н ц ц и а л ь н а я э н е р г и я с т е р ж н я в о б щ е м с л у ч а е н а г р у ж е н и я Двумя бесконечно

Подробнее

РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ

РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ Министерство путей сообщения Российской федерации Дальневосточный государственный университет путей сообщения Кафедра "Строительная механика" А.В. Хлебородов РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ

Подробнее

Домашняя работа Задание 8 Определение допускаемой силы при изгибе Работа 8

Домашняя работа Задание 8 Определение допускаемой силы при изгибе Работа 8 Определение допускаемой силы при изгибе Работа 8 Требуется по заданной схеме нагружения балки, размерам и допускаемым напряжением определить допускаемую величину нагрузки (рис.8). Материал балки чугун

Подробнее

Часть 1 Сопротивление материалов

Часть 1 Сопротивление материалов Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

Расчет плоской рамы методом сил

Расчет плоской рамы методом сил ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет Расчет плоской рамы методом сил

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА Часть I Методические указания и контрольные задания Пенза 00 УДК 5. (075) И85 Методические указания

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ

Подробнее

Указания к выполнению контрольной работы 3

Указания к выполнению контрольной работы 3 Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов»

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» 1. Историческое развитие учения о сопротивлении материалов. Диаграмма стального образца Ст 3. 2. Диаграмма Ф.Ясинского. 3. Основные понятия курса

Подробнее

18. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Общие понятия и определения

18. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Общие понятия и определения Лекция 18 Статически неопределимые системы: рамы и фермы. Метод сил. Канонические уравнения метода сил. Примеры расчета статически неопределимых систем. Учет симметрии. 18. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

Лабораторная работа 6 Определение перемещений при изгибе балки

Лабораторная работа 6 Определение перемещений при изгибе балки Лабораторная работа 6 Определение перемещений при изгибе балки Цель работы: изучение методов определения перемещений в балках; экспериментальное и расчётное определение прогиба и угла поворота в двухопорной

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

Расчет на жесткость при кручении

Расчет на жесткость при кручении Расчет на жесткость при кручении 1. Для круглого стержня, работающего на кручение, произведение жесткостью называется ОТВЕТ: 1) поперечного сечения на кручение; 2) поперечного сечения на растяжение-сжатие;

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

Расчет статически неопределимой плоской рамы методом сил

Расчет статически неопределимой плоской рамы методом сил МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Расчет статически

Подробнее

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ и НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ - Российский государственный технологический

Подробнее

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1.1. Статически неопределимые стержневые системы Статически неопределимыми системами называются системы, для которых, пользуясь только условиями статики, нельзя определить

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

P 1 = = 0 0,1L1 0,3L1 0, 2L2 0,1L

P 1 = = 0 0,1L1 0,3L1 0, 2L2 0,1L Расчёт статически определимой многопролётной балки на неподвижную и подвижную нагрузки Исходные данные: расстояния между опорами L = 5, м L = 6, м L = 7,6м L4 = 4,5м сосредоточенные силы = 4кН = 6 распределённые

Подробнее

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ ÞÒ ÑÅËÈÂÀÍÎÂ ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ à ñ ò ü II УДК 59/6(075) ББК Ж11я7- С91 ÈÇÄÀÒÅËÜÑÒÂÎ ÒÃÒÓ Р е ц е н з е н т ы: Кандидат технических наук, профессор АГ Ткачев Генеральный директор ООО "Тамбов-Эксперт-Наладка"

Подробнее

Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ»

Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ» Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ» Контрольные задания по дисциплине «Строительная механика» 1 Оглавление Общие

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

Предельная нагрузка для стержневой системы

Предельная нагрузка для стержневой системы Л е к ц и я 18 НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ Ранее, в первом семестре, в основном, использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной

Подробнее

Тезисы курса сопротивления материалов Часть 2. wb(x) x L

Тезисы курса сопротивления материалов Часть 2. wb(x) x L Тезисы курса сопротивления материалов Часть Глава 7. Перемещения при изгибе При действии внешних сил балка изменяет кривизну. При этом каждое сечение получает два перемещения: линейное - прогиб и угловое

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

СЛОЖНОЕ СОПРОТИВЛЕНИЕ

СЛОЖНОЕ СОПРОТИВЛЕНИЕ Глава 6 СЛОЖНОЕ СОПРОТИВЛЕНИЕ 6.. Изогнутый стержень Постановка задачи. Участки изогнутого стержня параллельны осям координат. К стержню приложены сосредоточенные силы. Известны жесткость стержня на изгиб

Подробнее

Расчет прочности тонкостенного стержня открытого профиля

Расчет прочности тонкостенного стержня открытого профиля НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.Алексеева Кафедра «Аэро-гидродинамика, прочность машин и сопротивление материалов» Расчет прочности тонкостенного стержня открытого профиля

Подробнее

РАСЧЕТ БАЛКИ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ

РАСЧЕТ БАЛКИ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ МИНИСТЕРСТВО ОБРЗОВНИЯ И НУКИ РОССИЙСКОЙ ФЕДЕРЦИИ ФЕДЕРЛЬНОЕ ГЕНТСТВО ПО ОБРЗОВНИЮ ГОУ ВПО ТЮМЕНСКИЙ ГОСУДРСТВЕННЫЙ РХИТЕТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ КФЕДР СТРОИТЕЛЬНОЙ МЕХНИКИ РСЧЕТ БЛКИ Н ПРОЧНОСТЬ

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A Лекция 05 Изгиб Проверка прочности балок Опыт показывает, что при нагружении призматического стержня с прямой осью силами и парами сил, расположенными в плоскости симметрии, наблюдаются деформации изгиба

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

Не путать прогиб y с координатой y точек сечения балки! Наибольший прогиб балки называется стрелой прогиба (f=y max );

Не путать прогиб y с координатой y точек сечения балки! Наибольший прогиб балки называется стрелой прогиба (f=y max ); Лекция Деформация балок при изгибе Дифференциальное уравнение изогнутой оси балки Метод начальных параметров Универсальное уравнение упругой линии ДЕФОРМАЦИЯ БАЛОК ПРИ ПЛОСКОМ ИЗГИБЕ Основные понятия и

Подробнее

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие Задача 1 Для бруса прямоугольного сечения (рис. 1) определить несущую способность и вычислить перемещение свободного конца бруса. Дано: (шифр 312312) схема 2; l=0,5м; b=15см; h=14см; R p =80МПа; R c =120МПа;

Подробнее

Примеры решения задач по «Механике» Пример решения задачи 1

Примеры решения задач по «Механике» Пример решения задачи 1 Примеры решения задач по «еханике» Пример решения задачи Дано: схема конструкции (рис) kh g kh / m khm a m Определить реакции связей и опор Решение: Рассмотрим систему уравновешивающихся сил приложенных

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им НЕ Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ

РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ РАСЧЕТ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ, СЖАТИИ, КРУЧЕНИИ И ИЗГИБЕ Омск 008 Федеральное агентство по образованию Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра строительной

Подробнее

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления.

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления. Лекция 14 Сложное сопротивление. Косой изгиб. Определение внутренних усилий, напряжений, положения нейтральной оси при чистом косом изгибе. Деформации при косом изгибе. 14. СЛОЖНОЕ СОПРОТИВЛЕНИЕ. КОСОЙ

Подробнее

Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики

Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики Модуль М-6. ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ В СТЕРЖНЕВЫХ КОНСТРУКЦИЯХ 1.Методические

Подробнее

Статически неопределимые рамы

Статически неопределимые рамы МОСКОВСКИЙ АРХИТЕКТУРНЫЙ ИНСТИТУТ (государственная академия) Кафедра "Высшая математика и строительная механика" Статически неопределимые рамы Методическое пособие. Пример расчета статически неопределимой

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ. Кафедра строительной механики. М.Г.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ. Кафедра строительной механики. М.Г. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра строительной механики М.Г. Ванюшенков ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ УСИЛИЙ И ВЫЧИСЛЕНИЕ ПЕРЕМЕЩЕНИЙ

Подробнее

Тема 12 Дифференциальные уравнения. Вычисление прогиба шарнирно-опертой на двух концах балки c одной сосредоточенной нагрузкой

Тема 12 Дифференциальные уравнения. Вычисление прогиба шарнирно-опертой на двух концах балки c одной сосредоточенной нагрузкой ЗАДАНИЕ Тема Дифференциальные уравнения Вычисление прогиба шарнирно-опертой на двух концах балки c одной сосредоточенной нагрузкой На шарнирно-опертую на двух концах балку длиной действует сила, приложенная

Подробнее

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение)

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) В.Ф. ДЕМЕНКО. МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) 1 Правила знаков при построении эпюр поперечных

Подробнее

Сопротивление материалов

Сопротивление материалов Сопротивление материалов Пособие к решению тестовых заданий Теория, примеры, задания С.Г.Сидорин, Ф.С.Хайруллин 013 Предисловие Одной из важных задач образовательного процесса является совершенствование

Подробнее

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1 Труды международного симпозиума «Надежность и качество 009», Пенза том Горячев ВЯ, Савин АВ ОПРЕДЕЛЕНИЕ СВЯЗИ МЕЖДУ УСКОРЕНИЕМ И ПОПЕРЕЧНОЙ ДЕФОРМАЦИЕЙ УПРУГОГО ЭЛЕМЕНТА ДАТЧИКА Упругий элемент является

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

Подробнее

Лабораторные работы по сопротивлению материалов по теме СЛОЖНЫЕ ДЕФОРМАЦИИ

Лабораторные работы по сопротивлению материалов по теме СЛОЖНЫЕ ДЕФОРМАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

Расчет элементов стальных конструкций.

Расчет элементов стальных конструкций. Расчет элементов стальных конструкций. План. 1. Расчет элементов металлических конструкций по предельным состояниям. 2. Нормативные и расчетные сопротивления стали 3. Расчет элементов металлических конструкций

Подробнее

Внутренние усилия и напряжения

Внутренние усилия и напряжения 1. Внутренние усилия и напряжения Интегральная связь между крутящим моментом Mz и касательными напряжениями имеет вид 2. Если известно нормальное и касательное напряжения в точке сечения, то полное напряжение

Подробнее

Расчет плоской рамы методом перемещений

Расчет плоской рамы методом перемещений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Расчет плоской

Подробнее

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов.

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов. . РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ Усилия в статически неопределимых фермах как правило определяют методом сил. Последовательность расчета такая же как и для рам.. Степень статической неопределимости

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 47 по Сопротивлению материалов 1-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 47 по Сопротивлению материалов 1-й тур 2017 г МИИТ Задача 1 Задача 1 Консольная балка имеет прямоугольное поперечное сечение, но высота балки меняется в соответствии с приведенной на рисунке формулой. Материал балки имеет модуль упругости E. Требуется определить

Подробнее

СТРОИТЕЛЬНАЯ МЕХАНИКА. Часть 1

СТРОИТЕЛЬНАЯ МЕХАНИКА. Часть 1 СТРОИТЕЛЬНАЯ МЕХАНИКА Часть Хабаровск 2003 Министерство общего образования Российской Федерации Хабаровский государственный технический университет СТРОИТЕЛЬНАЯ МЕХАНИКА Часть Методические указания для

Подробнее

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Деформации и перемещения Метод сечений Частные случаи нагружения

Подробнее

УДК Особенности применения балок переменного сечения

УДК Особенности применения балок переменного сечения УДК 624.014.2 Особенности применения балок переменного сечения Врублевский П.С., Специан В.С., Шульга Д.О. (Научный руководитель Башкевич И.В.) Белорусский национальный технический университет Минск, Беларусь

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

290300, , , , ,

290300, , , , , МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Анализ внутренних силовых факторов МЕТОДИЧЕСКИЕ УКАЗАНИЯ УХТА 2002 УДК 539.3/6 А-72 Андронов И. Н. Анализ

Подробнее

КОМПЛЕКТ ТЕСТОВЫХ ЗАДАНИЙ С РЕШЕНИЯМИ ЧАСТЬ 2

КОМПЛЕКТ ТЕСТОВЫХ ЗАДАНИЙ С РЕШЕНИЯМИ ЧАСТЬ 2 Министерство образования и науки Уральский государственный лесотехнический университет Кафедра «Сопротивление материалов и теоретическая механика» С.А. Душинина Л.Т. Раевская А.М. Морозов КОМПЛЕКТ ТЕСТОВЫХ

Подробнее

Кафедра «Динамика и прочность машин" Н.А. Малинина, В.Г. Малинин, Г.В. Малинин СПОСОБЫ ОПРЕДЕЛЕНИЯ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ В БАЛКАХ И РАМАХ

Кафедра «Динамика и прочность машин Н.А. Малинина, В.Г. Малинин, Г.В. Малинин СПОСОБЫ ОПРЕДЕЛЕНИЯ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ В БАЛКАХ И РАМАХ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ НОВЫХ ТЕХНОЛОГИЙ И АВТОМАТИЗАЦИИ ПРОИЗВОДСТВА Кафедра «Динамика и прочность машин" Н.А. Малинина, В.Г. Малинин,

Подробнее

Ключевые слова: консольная неравнобокая балка, тонкостенный открытый профиль, напряжения нормальные и касательные, прочность.

Ключевые слова: консольная неравнобокая балка, тонкостенный открытый профиль, напряжения нормальные и касательные, прочность. УДК 64.07.014.-415.046. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ ТОНКОСТЕННОЙ БАЛКИ ОТ- КРЫТОГО ПРОФИЛЯ Максак Татьяна Васильевна д.т.н., профессор кафедры Агроинженерии Ачинский филиал Красноярского государственного аграрного

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИ- МОЙ СТЕРЖНЕВОЙ СИСТЕМЫ НА ИЗГИБ И УСТОЙЧИВОСТЬ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИ- МОЙ СТЕРЖНЕВОЙ СИСТЕМЫ НА ИЗГИБ И УСТОЙЧИВОСТЬ инистерство образования и науки России Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технологический университет» РАСЧЕТ

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. К. Манжосов РАСЧЕТ СТАТИЧЕСКИ

Подробнее

Государственное образовательное учреждение высшего профессионального образования. «Ивановская государственная текстильная академия» (ИГТА)

Государственное образовательное учреждение высшего профессионального образования. «Ивановская государственная текстильная академия» (ИГТА) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Ивановская государственная текстильная академия» (ИГТА) СМИванов,

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ФЕДЕРЛЬНОЕ ГЕНТСТВО ПО ОБРЗОВНИЮ Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» ПРИМЕРЫ РЕШЕНИЯ ЗДЧ КОНТРОЛЬНЫХ РБОТ ПО СОПРОТИВЛЕНИЮ

Подробнее

КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов»

КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Тольяттинский государственный университет Кафедра «Материаловедение и механика материалов» КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов» Часть Модульная

Подробнее

Внецентренное действие продольных сил

Внецентренное действие продольных сил Внецентренное действие продольных сил C C Центральное сжатие (растяжение) Внецентренное сжатие (растяжение) Внецентренное сжатие (растяжение) это случай нагружения, когда линия действия сжимающей (растягивающей

Подробнее

1. Определим недостающие геометрические параметры, необходимые для дальнейшего расчета.

1. Определим недостающие геометрические параметры, необходимые для дальнейшего расчета. b Методические рекомендации к практической подготовке по дисциплине "Сопротивление материалов" для студентов-заочников специальности -70 0 0 "Водоснабжение, водоотведение и охрана водных ресурсов" Отмена

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. Примеры решения задач

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. Примеры решения задач Федеральное агентство железнодорожного транспорта Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

МОСКОВСКИЙ АРХИТЕКТУРНЫЙ ИНСТИТУТ ( ГОСУДАРСТВЕННАЯ АКАДЕМИЯ) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ Г.М.ЧЕНТЕМИРОВ

МОСКОВСКИЙ АРХИТЕКТУРНЫЙ ИНСТИТУТ ( ГОСУДАРСТВЕННАЯ АКАДЕМИЯ) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ Г.М.ЧЕНТЕМИРОВ МОСКОВСКИЙ АРХИТЕКТУРНЫЙ ИНСТИТУТ ( ГОСУДАРСТВЕННАЯ АКАДЕМИЯ) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ Г.М.ЧЕНТЕМИРОВ МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО СТРОИТЕЛЬНОЙ МЕХАНИКЕ РАСЧЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ

Подробнее

При определении напряжений в качестве вспомогательной единицы измерения используется также кн/см 2 (1 кн/см 2 = 10 МПа).

При определении напряжений в качестве вспомогательной единицы измерения используется также кн/см 2 (1 кн/см 2 = 10 МПа). ПРЕДИСЛОВИЕ Учебное пособие предназначено для оказания помощи студентам строительных специальностей вузов при выполнении расчётно-графических работ по сопротивлению материалов, основам строительной механики

Подробнее

РАСЧЕТ ТОНКОСТЕННЫХ СТЕРЖНЕЙ ОТКРЫТОГО ПРОФИЛЯ

РАСЧЕТ ТОНКОСТЕННЫХ СТЕРЖНЕЙ ОТКРЫТОГО ПРОФИЛЯ РАСЧЕТ ТОНКОСТЕННЫХ СТЕРЖНЕЙ ОТКРЫТОГО ПРОФИЛЯ Омск 8 Федеральное агентство по образованию Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра Строительная механика РАСЧЕТ ТОНКОСТЕННЫХ

Подробнее

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1.

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1. Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 4а ГОСТ 8509-86) и швеллера 4 (ГОСТ 840-89), требуется: 1. Вычертить сечение в масштабе 1: и указать на нем все оси и

Подробнее