F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2)."

Транскрипт

1 Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно рассмотреть функцию = (, ), где = () То есть это сложная d d d функция, производная для которой Так как d d d d (, ) = C, то Отсюда d и Пример Записать уравнение касательной к кривой 7 в точке М(, ) Уравнение касательной к кривой в точке (, ):, 7,,, Искомое уравнение: Запишем уравнение касательной к кривой (, ) = C в точке (, ) в общем виде,, подставим в уравнение касательной,,,,, после преобразований получим: Рассмотрим более сложный случай Пусть функция = (, ) неявно определяется из уравнения (,, ) = C Продифференцируем функцию (,, ) по и по, соответственно, используя правило дифференцирования сложной функции Тогда и Отсюда получаем и Пример: Найти частные производные функции (, ), заданной неявно уравнением,,,,

2 , Частные производные высших порядков Рассмотрим функцию 8 9, можно найти ее частные производные по и по 9 и Они также являются функциями от двух переменных и, которые в свою очередь можно дифференцировать по этим переменным Обозначение:,,, Найдем вторые производные для указанной функции: 8, 8,, 8 Сравнивая выражения для смешанных производных видим, что Оказывается, смешанные производные не зависят от того, в каком порядке производится дифференцирование Это верно для производных любого порядка Так, например, 9 8, 9, 9, 9, 9 Производная функции по направлению Пусть = (, ) функция определенная в области D Рассмотрим точку (, ) D и некоторое направление, определяемое направляющими косинусами α и β (α и β углы, образованные лучом с положительными направлениями O и O) Переместимся по направлению луча в точку (, ) Приращение функции: (, ) (, ) - это приращение функции в данном направлении,,

3 Определение Под производной функции в данном направлении понимается предел отношения приращения функции в этом направлении к величине перемещения, при условии что последнее стремиться к нулю im Таким образом и есть производные функции в направлениях O и O Смысл производной по направлению: дает скорость изменения функции в направлении Выведем формулу дифференцирования Представим полное приращение функции в виде: где α и β при Δ и Δ im Если функция = (,, ) и в пространстве задано направление (α, β, γ) то производная по этому направлению вычисляется аналогично: Пример: Найти производную функции в точке М(, ) в направлении вектора, a Направляющие косинусы:,,

4 Скалярное и векторное поле Градиент Определение Говорят, что в данной области D определено скалярное поле, если каждой точке D ставится в соответствие некоторое скалярное число (скаляр) = () Так как каждому положению точки М отвечает численное значение величины, то это просто числовая функция точки Если для положения точки М в пространстве ввести декартову систему координат, то получим = (,, ) (или = (, )) то есть функцию трех или двух переменных Пример: Распределение температуры в неравномерно нагретом теле, распределение плотностей, концентраций вещества Можно сказать, что понятия скалярного поля есть физическая трактовка функции нескольких переменных Определение Говорят, что в данной области D определено векторное поле, если каждой точке D ставится в соответствие некоторый вектор к координатам,,, или перейдя Пример векторного поля: распределение скоростей в потоке газа или жидкости, распределение сил в деформированном теле Определение Пусть = (, ) плоское скалярное поле, тогда вектор grad или grad i j Аналогично для пространственного поля = (,, ) : grad называется градиентом поля grad То есть скалярное поле порождает векторное поле поле градиентов Примеры, grad В точке с координатами (, ) вектор grad Найти градиент поля в точке М(,, ) grad В точке М: Связь градиента и производной по направлению функции Теорема Пусть дано скалярное поле = (х, у, ) и в этом скалярном поле определено поле градиентов grad i j k Производная по направлению некоторого вектора равняется проекции вектора grad на вектор Доказательство Рассмотрим единичный вектор, соответствующий вектору :

5 i j k Вычислим скалярное произведение векторов grad и : grad, Выражение, стоящее в правой части этого равенства, есть производная от функции по направлению вектора, то есть: grad, Обозначим угол между grad и как φ Тогда grad, grad grad пр grad Из доказанной теоремы следует что производная по направлению достигает наибольшего значения если φ =, то есть если φ = Установим некоторые свойства градиента Таким образом, направление градиента совпадает с направлением, вдоль которого функция (поле) меняется быстрее всего, то есть градиент функции указывает направление наибыстрейшего изменения функции В этом состоит физический смысл градиента Уравнение касательной плоскости и нормали Определение Касательной плоскостью к поверхности в данной ее точке М (точке касания) называется плоскость, в которой лежат касательные в этой точке к всевозможным кривым, проведенным в этой точке на данной поверхности через указанную точку Нормалью к поверхности называется перпендикуляр к касательной плоскости в точке касания Теорема (Без доказательства) Во всякой точке, где grad градиент поля направлен по нормали к линии уровня, проходящей через эту точку в сторону возрастания поля На рисунке изображена функция и рядом поле градиентов рядом с линиями уровня, что иллюстрирует данную теорему Пусть поверхность задана уравнением (,, ) = Из приведенной теоремы следует, что grad перпендикулярен касательной к любой дифференцируемой кривой, проходящей через точку М (,, ) и лежащей на поверхности уровня Эти касательные образуют касательную плоскость к поверхности уровня и следовательно в качестве вектора нормали к касательной плоскости можно взять вектор grad

6 В точке М вектор градиента имеет координаты: следовательно для поверхности (,, ) = уравнение касательной плоскости можно записать: Для уравнения нормали к поверхности вектор градиента будет уже направляющим вектором, поэтому данное уравнение: Если поверхность задана явным уравнением = (, ), можно его переписать как (,, ) = (, ) - и тогда вектор нормали (градиента) запишем в виде, соответственно уравнение касательной плоскости и нормальной прямой Пример Записать уравнения касательной плоскости и нормали к поверхности в точке М (-,, ) Поверхность задана явным уравнением = (, ), поэтому вектор нормали,,, N Экстремум функции нескольких переменных

7 Определение Точка (, ) называется точкой максимума функции = (, ) если существует такая ε окрестность точки (, ), что для каждой точки (, ) отличной от (, ), из этой окрестности выполняется неравенство (, ) < (, ) Аналогично определяется точка минимума функции: для всех точек (, ) отличных от (, ), из ε окрестность точки (, ) выполняется неравенство (, ) > (, ) Значение функции в точке максимума (минимума) функции называется максимумом (минимумом) функции Максимум и минимум функции экстремум функции Теорема (Необходимое условие экстремума) Если в точке М(, ) дифференцируемая функция = (, ) имеет экстремум, то ее частные производные в этой точке равны нулю:,,, Определение Точка в которой частные производные первого порядка функции = (, ) равны нулю, то есть,, называется стационарной точкой функции Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками В критических точках функция может иметь экстремум, а может и не иметь Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума Теорема (достаточное условие экстремума) Пусть в стационарной точке (, ) и некоторой ее окрестности функция (, ) имеет непрерывные частные производные до A,, второго порядка включительно Вычислим в точке (, ) значения B,, C, Обозначим A B B AC B C Тогда: Если Δ >, то функция (, ) в точке (, ) имеет экстремум Максимум, если A < минимум, если A > Если Δ <, то функция (, ) в точке (, ) экстремума не имеет В случае Δ = экстремум в точке (, ) может быть или может не быть Необходимы дополнительные исследования Примеры: Найти экстремумы функции 9 9, 9 Найдем стационарные точки из системы уравнений: 9 9,, Проведем исследование стационарных точек, 9, В точке (, ): A =, B = -9, C =, Δ = -8 < То есть в точке нет экстремума В точке (, ): A = 8, B = -9, C = 8, Δ = - 8 = > То есть в точке экстремум Так как A >, то в точке минимум Исследовать на экстремум функцию, Найдем стационарные точки из системы уравнений:,, Проведем исследование стационарных точек,,

8 В точке, : A, B =, C =-, Δ < То есть в точке нет экстремума В точке, : A, B =, C = -, Δ > То есть в точке экстремум Так как A <, то в точке максимум Исследовать на экстремум функцию, Найдем стационарные точки из системы уравнений:, Проведем исследование стационарной точки,, В стационарной точке: A =, B =, C =, Δ = Нельзя ничего сказать про экстремум в этой точке, необходимы дополнительные исследования Нахождение максимального и минимального значения функции в замкнутой области Рассмотрим множество G точек плоскости (или пространства) Точка М называется внутренней точкой множества G, если она принадлежит этому множеству вместе с некоторой своей окрестностью Точка N называется граничной для множества G если в любой ее полной окрестности имеются точки, как принадлежащие G так и не принадлежащие G Совокупность всех граничных точек множества G называется ее границей Г Определение Множество G будем называть областью, если все его точки внутренние Множество G вместе со своей границе называется замкнутой областью ( G G Г ) Определение Наименьшее или наибольшее значение функции в данной области называется абсолютным экстремумом функции Теорема (Вейерштрасса) Абсолютный экстремум функции в данной области достигается либо в стационарной точке, принадлежащей этой области, либо в граничной точке области Примеры: Найти наибольшее значение функции ограниченной линиями =, =, + =, Стационарных точек нет так как Исследуем функцию на границах области а) = = + Стационарных точек нет () =, () = в области G, b) = Стационарная точка = ½ () =, () =, (/) =/ c) + = Стационарная точка /, Сравниваем все полученные значения функции и получаем, что максимальное значение в точке (,), ma

9 Найти наибольшее значение функции = в треугольной области G с вершинами О(, ), А(, ), В (, ), Стационарная точка =, =, = Исследуем на границах области: ОА: =, = OB: =, = AB: = = ½, =, (/,) () =, (A) =, (B) = ma, Из всех прямоугольных параллелепипедов, имеющих заданную полную поверхность S найти параллелепипед с максимальным объемом V Решение: Пусть,, измерения параллелепипеда V = S Полная поверхность S = ( + + ) S V Область ограничена: >, >, < S (тк V > ) V S V S Найдем стационарную точку S V V S Получаем третье измерение S S S S Искомый параллелепипед куб со стороной Условный экстремум Пусть в задаче на нахождение минимума или максимума функции переменные связаны некоторыми условиями Задача: Дана функция = (, ) () Найти максимум если (, ) = C () (Линия L) Геометрически это означает, что мы сравниваем значения функции не во всех точках, а только лежащих на линии (уровня) L Решение: Уравнение () определяет функцию = (), заданную неявно d d Так как = (, ()), то d d d d Необходимое условие экстремума:, т е () d d Продифференцируем уравнение связи () по : S

10 d, если то d условие: d d Подставляем в () и получаем Обозначим величину последнего отношения λ (знак для удобства) Получаем, что в точке экстремума должны выполняться условия: Величина λ множитель Лагранжа Введем функцию Лагранжа, определяемую как: Ф(,, λ) = (, ) + λ (, ) Тогда исходная задача меняется на задачу нахождения безусловного экстремума функции Лагранжа Аналогичные рассуждения можно провести для функции большего числа переменных Пример: Найти экстремум функции,, Составим функцию Лагранжа:,,, при условии Экстремум будет в точке: Из первых -х уравнений исключим λ: = -, = Из последнего уравнения исключаем и у: + + = Таким образом: =, =, = При данных условиях (,, ) = -

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ. 1. Основные понятия. Если каждой паре независимых друг от друга переменных

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ. 1. Основные понятия. Если каждой паре независимых друг от друга переменных ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ 1. Основные понятия. Если каждой паре независимых друг от друга переменных, из некоторого множества D ставится в соответствие переменная величина, то называется функцией двух

Подробнее

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению.

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению. ЛЕКЦИЯ N. Скалярное поле. Производная по направлению. Градиент. Касательная плоскость и нормаль к поверхности. Экстремумы функции многих переменных. Условный экстремум.. Скалярное поле. Производная по

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 8.1. Функции нескольких переменных. Частные производные П л а н 1. Понятие функции двух и нескольких переменных.. Предел и непрерывность

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1,

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1, Глава Экстремумы функции двух переменных Экстремум функции двух переменных При решении многих экономических задач приходится вычислять наибольшее и наименьшее значения В качестве примера рассмотрим задачу

Подробнее

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных.

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных. ЛЕКЦИЯ Экстремум функции нескольких переменных Экстремум функции нескольких переменных Необходимые и достаточные условия существования экстремума Точка M, 0) называется точкой минимума максимума) функции

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ РАЗДЕЛА

Подробнее

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн.

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

Подробнее

МАТЕМАТИКА. Часть 4. Функции нескольких переменных

МАТЕМАТИКА. Часть 4. Функции нескольких переменных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» ОГ Павловская ЕС Плюснина МАТЕМАТИКА Часть Функции нескольких переменных Методические указания

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Теория функций нескольких переменных (аргументов)

Теория функций нескольких переменных (аргументов) Тема 6. Пределы последовательностей и функций, их свойства и приложения 1 Теория функций нескольких переменных (аргументов) Дифференциальное исчисление функций нескольких переменных Определение функции

Подробнее

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения. Э. Е. Поповский П. П.

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения. Э. Е. Поповский П. П. Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Э Е Поповский П П Скачков ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Типовой расчет Екатеринбург 1 Федеральное

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Веб- страница кафедры http://kvm.gubkin.ru 1 Функции многих переменных 2 Определение

Подробнее

~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ. называется функцией двух переменных xy,, если каждой паре значений x, Область определения. D - замкнутая область

~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ. называется функцией двух переменных xy,, если каждой паре значений x, Область определения. D - замкнутая область ~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ 3 Функция двух переменных, область определения, способы задания и геометрический смысл. Определение: z f, называется функцией двух переменных,, если каждой паре значений,

Подробнее

= 0. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. ; является точкой локального ми-,0 0

= 0. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. ; является точкой локального ми-,0 0 6 ( ) Получаем, что HP =. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. В данном случае стационарная точка P ( ) ; является точкой локального ми- Δz > P O & P : z = z =. δ

Подробнее

Математический анализ

Математический анализ С.Н. Зиненко Математический анализ Дифференцирование функций нескольких переменных (теория к задачам) 015 1 6. Частные производные и дифференциал функции Частная производная функции u f(,,, ) нескольких

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. - дифференцируемые функции, то сложная функция y f ( g( тоже дифференцируема, причѐм:

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. - дифференцируемые функции, то сложная функция y f ( g( тоже дифференцируема, причѐм: ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Дифференцирование сложных и неявных функций Приложения понятия частных производных(производная по направлению, градиент функции) Дифференцирование

Подробнее

Функции многих переменных Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Функции многих переменных Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Функции многих переменных Конспект лекций и практикум для

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

Тема 1. Предел и непрерывность функции

Тема 1. Предел и непрерывность функции Уметь: Тема 1. Предел и непрерывность функции Вычислять пределы функций и числовых последовательностей, используя различные приемы, в том числе, замечательные пределы, проводить сравнение бесконечно малых

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

26. x x. y ; наибольшее значение функции y. 6 1, наименьшее значение функции x y 2 0. x z

26. x x. y ; наибольшее значение функции y. 6 1, наименьшее значение функции x y 2 0. x z 1) Найти наибольшее и наименьшее значения функции 1 1 на отрезке 6. Чтобы найти наибольшее и наименьшее значения функции на отрезке, надо: а) найти стационарные точки, расположенные на данном отрезке,

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ Российский государственный технологический

Подробнее

P Проверим выполнение достаточных

P Проверим выполнение достаточных Функции нескольких переменных (ФНП). Локальный экстремум. 1) Исследовать на локальный экстремум функцию z z e ; а) -х переменных б) 3-х переменных 3 3 3 u u z z 17 48 z. а) z e e e e 1 1 z e e Находим

Подробнее

Практическое занятие 5 Экстремум функции многих переменных. 5.2 Некоторые сведения о квадратичных формах 5.3 Достаточные условия экстремума

Практическое занятие 5 Экстремум функции многих переменных. 5.2 Некоторые сведения о квадратичных формах 5.3 Достаточные условия экстремума Практическое занятие 5 Экстремум функции многих переменных 5 Определение и необходимые условия экстремума 5 Некоторые сведения о квадратичных формах 53 Достаточные условия экстремума 5 Определение и необходимые

Подробнее

Функции нескольких переменных.

Функции нескольких переменных. Московский Государственный Технический Университет имени НЭ Баумана Дубограй ИВ Скуднева ОВ Левина А И Функции нескольких переменных методические указания для подготовки к аттестации Москва Издательство

Подробнее

2 Принцип Даламбера-Лагранжа (общее уравнение динамики) 5. 3 Обобщенные координаты механической системы 6. 4 Тождества Лагранжа 9

2 Принцип Даламбера-Лагранжа (общее уравнение динамики) 5. 3 Обобщенные координаты механической системы 6. 4 Тождества Лагранжа 9 Содержание 1 Связи и ограничения на движение твердых тел 2 1.1 Пример 1.................................................. 2 1.2 Пример 2.................................................. 3 1.3 Пример стационарной

Подробнее

7. Экстремумы функций нескольких переменных

7. Экстремумы функций нескольких переменных 7. Экстремумы функций нескольких переменных 7.. Локальные экстремумы Пусть функция f(x,..., x n ) определена на некотором открытом множестве D R n. Точка M D называется точкой локального максимума (локального

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Основные понятия и формулы Определение 1 Производной функции в точке называется предел отношения приращения функции к приращению аргумента, при условии, что приращение аргумента

Подробнее

Функции нескольких переменных

Функции нескольких переменных Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» Институт образовательных информационных технологий Функции нескольких переменных Методические указания

Подробнее

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности. 5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

Подробнее

Лекция 11. Основные понятия теории поля. Скалярное поле.

Лекция 11. Основные понятия теории поля. Скалярное поле. Лекция 11 Основные понятия теории поля Скалярное поле Теория поля раздел физики, механики, математики, в котором изучаются скалярные, векторные, тензорные поля К рассмотрению скалярных и векторных полей

Подробнее

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен: уметь применять таблицу производных и правила дифференцирования для вычисления производных элементарных функций находить производные

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Введение Домашние контрольные работы (ДКР) по математическому анализу являются одной из основных форм текущего контроля самостоятельной работы

Введение Домашние контрольные работы (ДКР) по математическому анализу являются одной из основных форм текущего контроля самостоятельной работы Введение Домашние контрольные работы (ДКР) по математическому анализу являются одной из основных форм текущего контроля самостоятельной работы студентов. Примерное время, необходимое для выполнения ДКР,

Подробнее

5. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА (ПО ПЛОЩАДИ ПОВЕРХНОСТИ) 1. Задача, приводящая к понятию поверхностного интеграла I рода

5. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА (ПО ПЛОЩАДИ ПОВЕРХНОСТИ) 1. Задача, приводящая к понятию поверхностного интеграла I рода 5 ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА ПО ПЛОЩАДИ ПОВЕРХНОСТИ Поверхностный интеграл I рода представляет собой такое же обобщение двойного интеграла каким криволинейный интеграл I рода является по отношению к

Подробнее

5. Задачи с подвижной границей. при условии, что левый конец функции, на которой достигается экстремум, закреплен:

5. Задачи с подвижной границей. при условии, что левый конец функции, на которой достигается экстремум, закреплен: Лекция 5 Задачи с подвижной границей Рассмотрим задачу минимизации функционала V F при условии что левый конец функции на которой достигается экстремум закреплен: а правый может перемещаться вдоль заданной

Подробнее

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ ООО «Резольвента» www.resolventa.ru resolventa@list.ru (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми.

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми. Контрольная работа Тема Пределы и производные функций Найти пределы нижеследующих функций одной переменной (без правила Лопиталя) а) б) в) г) Пример а) Решение Определяем вид неопределенности При формальных

Подробнее

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП Функции нескольких переменных 11. Определение функции нескольких переменных. Предел и непрерывность ФНП 1. Определение функции нескольких переменных ОПРЕДЕЛЕНИЕ. Пусть X = { 1 n i X i R } U R. Функция

Подробнее

ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ В СРЕДЕ MATHCAD

ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ В СРЕДЕ MATHCAD РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВ Богатова, КВ Бухенский, ИП Карасев, ГС Лукьянова ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ В СРЕДЕ MATHCAD Практикум Рязань Предисловие Общий

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления»

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления» 4 Методические указания к выполнению контрольной работы «Производная и ее приложения Приложения дифференциального исчисления» Производная Приложения дифференциального исчисления Производной функции f (

Подробнее

Глава 7 Плоскость в пространстве

Глава 7 Плоскость в пространстве Глава 7 Плоскость в пространстве Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:, где А, В, С координаты вектора i j k -вектор нормали к плоскости. Возможны

Подробнее

1. Найти прямую l, с наименьшей суммой расстояний до этих точек, т.е. такую, что

1. Найти прямую l, с наименьшей суммой расстояний до этих точек, т.е. такую, что Математика. О некоторых экстремальных прямых Ипатова Виктория физико-математический класс ГБОУ «Химический лицей» город Москва Научный руководитель: Привалов Александр Андреевич МПГУ доцент к.ф.-м.н. Пусть

Подробнее

Производная функции. Ее геометрический и физический смысл. Техника дифференцирования.

Производная функции. Ее геометрический и физический смысл. Техника дифференцирования. Производная функции Ее геометрический и физический смысл Техника дифференцирования Основные определения Пусть f ( ) определена на (, ) a, b некоторая фиксированная точка, приращение аргумента в точке,

Подробнее

2 Конечномерные гладкие задачи с равенствами

2 Конечномерные гладкие задачи с равенствами 2 Конечномерные гладкие задачи с равенствами В этом параграфе даются необходимые и достаточные условия экстремума в гладкой конечномерной задаче с ограничениями типа равенств. 2.1 Постановка задачи Пусть

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу 1. Дайте определение конечного предела последовательности. Приведите пример последовательности,

Подробнее

Репозиторий БНТУ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Белорусский национальный технический университет

Репозиторий БНТУ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Белорусский национальный технический университет МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра «Высшая математика 1» Г. И. Лебедева Г. А. Романюк И. М. Мартыненко ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Методическое

Подробнее

ПРИМЕНЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ В ТЕОРИИ ПОЛЯ

ПРИМЕНЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ В ТЕОРИИ ПОЛЯ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика СП КОРОЛЕВА»

Подробнее

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский

Подробнее

Материалы для подготовки к экзамену. Содержание

Материалы для подготовки к экзамену. Содержание 7 «Строительство уникальных зданий и сооружений» семестр Очная форма обучения. Специалисты. I курс, семестр. Направление 7 «Строительство уникальных зданий и сооружений» Дисциплина - «Математика» Материалы

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

Экстремум функции двух переменных

Экстремум функции двух переменных ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 11 Экстремум функции двух переменных Максимум или минимум функции называется её экстремумом Точка M 0, в которой функция имеет экстремум, называется точкой экстремума Если дифференцируемая

Подробнее

k g k k (3.2) = = g i i i k ζ ζ ζ ζ r r ζ ζ ζ ζ ζ ζ (3.3) = = = i i k i k k

k g k k (3.2) = = g i i i k ζ ζ ζ ζ r r ζ ζ ζ ζ ζ ζ (3.3) = = = i i k i k k 3. Элементы тензорного анализа 3.1. Ковариантная производная Зададимся вопросом, как определить производные от вектора. Можно ли считать, что для вектора w w g справедливо: w w g? (3.1) Оказывается, что,

Подробнее

Лекция 2.7. Производные и дифференциалы высших порядков

Лекция 2.7. Производные и дифференциалы высших порядков 1 Лекция 7 Производные и дифференциалы высших порядков Аннотация: Вводится понятие дифференцируемой функции, дается геометрическая интерпретация первого дифференциала и доказывается его инвариантность

Подробнее

«Функции нескольких переменных»

«Функции нескольких переменных» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

Дифференциальное исчисление функций нескольких переменных

Дифференциальное исчисление функций нескольких переменных Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1. ПОНЯТИЕ ВЕКТОРА

ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1. ПОНЯТИЕ ВЕКТОРА ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1 ПОНЯТИЕ ВЕКТОРА Вектором называется направленный прямолинейный отрезок Длину отрезка в установленном масштабе называют модулем вектора Векторы считаются

Подробнее

R может быть задана с помощью

R может быть задана с помощью 5... Уравнения плоскости. Плоскость в пространстве 5.. ПЛОСКОСТЬ. R может быть задана с помощью n, B, C, вектора перпендикулярного плоскости, и точки M,, этой плоскости. Вектор n, B, C,, лежащей на E перпендикулярный

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

С.А. Лавренченко. Лекция 9. Экстремумы

С.А. Лавренченко. Лекция 9. Экстремумы 1 СА Лавренченко Лекция 9 Экстремумы 1 Определения и примеры Определение 11 Говорят, что функция имеет (или достигает) абсолютный максимум в точке, если для всех из области определения Значение называется

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

Дифференциальное исчисление функций нескольких переменных

Дифференциальное исчисление функций нескольких переменных Министерство образования и науки Российской Федерации Московский государственный университет геодезии и картографии ОВ Исакова, ЛА Сайкова Дифференциальное исчисление функций нескольких переменных Рекомендовано

Подробнее

n = или k = k n называется единичным вектором

n = или k = k n называется единичным вектором Лекция 5 Тема: Кривизна и кручение кривой Репер Френе План лекции Кривизна кривой Кручение кривой Репер Френе Формулы Френе Натуральные уравнения кривой Кривизна кривой Соприкасающаяся плоскость Пусть

Подробнее

Тема 39. «Производные функций»

Тема 39. «Производные функций» Тема 39. «Производные функций» Функция Производной функции в точке х 0 называется предел отношения приращения функции к приращению переменной, то есть = lim = lim + ( ) Таблица производных: Производная

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами:

Вариант Найти область определения функции : y = x 3x+ Область определения данной функции определяется двумя неравенствами: Вариант 7 Найти область определения функции : y Область определения данной функции определяется двумя неравенствами: и > Второе неравенство выполняется при всех значениях Корнями уравнения являются числа

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ.

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» СИ, Бородина, МЮ Старовская ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

16.2.Н. Производная.

16.2.Н. Производная. 6..Н. Производная 6..Н. Производная. Оглавление 6..0.Н. Производная Введение.... 6..0.Н. Производная сложной функции.... 5 6..0.Н. Производные от функций с модулями.... 7 6..0.Н. Возрастание и убывание

Подробнее

1 раздел. Матрицы и определители.

1 раздел. Матрицы и определители. Министерство образования и науки РФ еверный (рктический) федеральный университет им МЛомоносова Кафедра математики Примерные задания к экзамену по математике ( часть) для студентов 9 группы ИЭИТ направление

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

). Частной производной функции f по переменной x k в точке x. ). Полным дифференциалом функции f

). Частной производной функции f по переменной x k в точке x. ). Полным дифференциалом функции f ГЛАВА 7 Дифференциальное исчисление функций нескольких переменных 1 Частные производные и полный дифференциал функции нескольких переменных Опр711 Пусть М (, y ), : O(М, ) Рассмотрим функцию 1 = 1 ()=

Подробнее

) и, следовательно, функция на этом множестве возрастает и f (x) 0 для x (1;3 ), где функция убывает.

) и, следовательно, функция на этом множестве возрастает и f (x) 0 для x (1;3 ), где функция убывает. Лекции 7-9 Глава 7 Исследование функции 7 Возрастание и убывание функции Теорема о монотонности функции Если f ( на промежутке ( a ; b, то на этом промежутке функция f ( возрастает Если f ( на промежутке

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

Пределы. Производные. Функции нескольких переменных

Пределы. Производные. Функции нескольких переменных Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее