Дифференциальные и разностные уравнения

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Дифференциальные и разностные уравнения"

Транскрипт

1 Министерство образования и науки Российской Федерации Волгоградский государственный технический университет Кафедра Прикладная математика Дифференциальные и разностные уравнения Методические указания к контрольной работе по дисциплине «Дифференциальные и разностные уравнения» на заочной форме обучения Составитель: доц Тарасова И А Волгоград, 0 г Введение

2 I Содержание дисциплины: Часть первая Обыкновенные дифференциальные уравнения Примеры математических моделей в экономике, описываемых дифференциальными уравнениями Обыкновенные дифференциальные уравнения первого порядка Общие понятия для обыкновенного дифференциального уравнения первого порядка (решение уравнения, интегральная кривая, задача Коши для уравнения в нормальной форме) Уравнение первого порядка в дифференциалах и методы его решения (уравнение с разделяющимися переменными, однородное уравнение, уравнение в полных дифференциалах) Линейное уравнение первого порядка Метод вариации постоянной Уравнение Бернулли Комплексные числа Комплексные числа Арифметические действия над комплексными числами Модуль и аргумент числа Тригонометрическая и экспоненциальная записи комплексного числа Решение уравнений в комплексных числах 3 Системы линейных обыкновенных дифференциальных уравнений в нормальной форме Общие понятия и свойства (матрица системы, решение системы, задание начальных значений) Линейная однородная система (принцип суперпозиции и фундаментальная матрица решений, общее решение) Структура общего решения линейной неоднородной системы Вариация постоянных 4 Линейные дифференциальные уравнения с постоянными коэффициентами Принцип суперпозиции и алгоритм построения общего решения линейного однородного уравнения с постоянными коэффициентами Критерии устойчивости нулевого решения линейного однородного уравнения Структура общего решения линейного неоднородного уравнения Методы нахождения частных решений неоднородного уравнения 5 Обыкновенные дифференциальные уравнения второго порядка Общие понятия (решение уравнения, начальные значения для уравнения в нормальной форме) Методы понижения порядка дифференциальных уравнений Понятие о дифференциальных уравнениях высших порядков 6 Методы решения систем линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами 7 Количественный и качественный анализ автономных (стационарных) систем обыкновенных дифференциальных уравнений в нормальной форме Общие понятия и свойства (решение системы, фазовая траектория, положения равновесия, циклы) Устойчивые и неустойчивые положения равновесия Полный анализ однородной системы линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами для случая двух неизвестных Исследование нелинейных автономных систем вблизи положений равновесия по линейному приближению Приложения к исследованию экономических моделей

3 Часть вторая Разностные (рекуррентные) уравнения Примеры математических моделей в экономике, описываемых разностными уравнениями Разностные (рекуррентные) уравнения первого порядка Общие понятия для рекуррентного уравнения первого порядка в нормальной форме (решение уравнения, начальные условия, задача Коши, решение рекуррентного уравнения подстановкой) Линейное уравнение первого порядка (арифметическая и геометрическая прогрессии, частичные суммы и произведения, метод вариации постоянной) 3 Разностные (рекуррентные) уравнения второго порядка Общие понятия (решение уравнения, начальные значения для уравнения в нормальной форме) Решение уравнения подстановкой 4 Линейные разностные (рекуррентные) уравнения Принцип суперпозиции и алгоритм построения общего решения линейного однородного уравнения с постоянными коэффициентами Структура общего решения линейного неоднородного уравнения Методы нахождения частного решения линейного неоднородного уравнения Уравнения с постоянными коэффициентами 5 Системы линейных разностных (рекуррентных) уравнений Общие понятия и свойства (матрица системы, решение системы, начальные условия) Решение подстановкой Линейная однородная система (принцип суперпозиции и фундаментальная матрица решений, общее решение) Методы решения систем линейных разностных уравнений с постоянными коэффициентами Критерии устойчивости нулевого решения линейной однородной системы Структура общего решения линейной неоднородной системы Частные решения Элементы количественного и качественного анализа нелинейных разностных (рекуррентных) уравнений Приложения к исследованию экономических моделей II Вопросы к зачету (экзамену) ДУ первого порядка, его решение, геометрическое истолкование ДУ и его решений Интегрирование некоторых типов ДУ первого порядка: a с разделяющимися переменными b однородные c линейные d Бернулли в полных дифференциалах 3 ДУ высших порядков, допускающих понижение порядка 4 Линейные однородные ДУ высших порядков, в частности, второго порядка: a линейная зависимость и независимость функций

4 b вронскиан, необходимое и достаточное условие линейной зависимости функций c определитель Вронского решений линейного однородного ДУ второго порядка d теорема о структуре общего решения 5 Линейные однородные ДУ с постоянными коэффициентами: a характеристическое уравнение, характеристические числа b общее решение при r r и r r (вещ) c общее решение при комплексно-сопряженных корнях характеристического уравнения, его вещественная форма 6 Линейные неоднородные ДУ второго порядка, теорема о структуре общего решения, теорема о суперпозиции решений 7 Линейные неоднородные ДУ второго порядка с постоянными коэффициентами Отыскание частного решения для правой части специального вида методом неопределенных коэффициентов 8 Обобщение результатов на линейные уравнения n-го порядка 9 Основные понятия о дифференциальных уравнениях n-го порядка 0 Определитель Вронского Критерий линейной независимости системы функций Дифференциальные уравнения первого порядка Задача Коши Теорема существования и единственности Общее и частное решение Фундаментальная система решения Теорема о структуре общего решения линейного однородного уравнения n-го порядка 3 Дифференциальные уравнения с разделенными и разделяющимися переменными 4 Построение общего решения линейного однородного уравнения n-го порядка с постоянными коэффициентами 5 Определение линейно зависимых и независимых функций Первое свойство линейной зависимости 6 Дифференциальные уравнения высших порядков, допускающие понижение порядка 7 Уравнение Бернулли 8 Теорема о структуре общего решения линейного однородного уравнения n- го порядка 9 Уравнение в полных дифференциалах 0 Решение линейных неоднородных уравнений второго порядка со специальной правой частью f ( ) Pu( ) Дифференциальные уравнения с разделенными и разделяющимися переменными Построение фундаментальной системы решений для ЛОУ второго порядка с постоянными коэффициентами (D=0) 3 Однородные дифференциальные уравнения первого порядка 4 Уравнения в полных дифференциалах 5 Теорема о суперпозиции решений линейного неоднородного уравнения второго порядка с постоянными коэффициентами

5 6 Задача Коши для дифференциальных уравнений n-го порядка Теорема существования и единственности Общее и частное решение 7 Дифференциальные уравнения высших порядков, допускающие понижение порядка 8 Примеры математических моделей в экономике, описываемых разностными уравнениями 9 Разностные (рекуррентные) уравнения первого порядка 30 Разностные (рекуррентные) уравнения второго порядка 3 Линейные разностные (рекуррентные) уравнения 3 Системы линейных разностных (рекуррентных) уравнений III Список литературы: Базовые учебники Романко ВК Курс дифференциальных уравнений и вариационного исчисления М-СПб: Физматлит, 00 Калягин ВА, Козырев ОР, Куркин АА, Петрухин НС Дифференциальные и разностные уравнения Н Новгород: НГТУ, 00 3 Лобанов СГ Конспект лекций по курсу дифференциальных и разностных уравнений М: Изд-во ГУ ВШЭ, Учебные материалы по курсу Дифференциальные и разностные уравнения» Составители: Андреев ВГ, Юркчан АГ, Чернявский ВМ-М: Изд-во ВШЭ, Сборник задач по обыкновенным дифференциальным уравнениям и вариационному исчислению под редакцией Романко ВК М-СПб: Физматлит, 00 6 Филиппов АФ Сборник задач по дифференциальным уравнениям М: Наука, 99 7 Калягин ВА, Тютин ВВ Расчетные задания по дифференциальным уравнениям ННовгород: НФ ГУ ВШЭ, 004 Дополнительная литература: 8 Тихонов АН Васильев АБ Свешников АГ Дифференциальные уравнения Наука, Самойленко АМ Кривошея СА Перестюк НА Дифференциальные уравнения: примеры и задачи Высшая школа Gandolfo G Economic dynamics 99 Chiang AC Fundamntal mthods of mathmatical conomics Mc Graw Hill 984

6 IV Контрольная работа Последовательность задач, а также их содержание, в данной контрольной работе полностью согласуются с программой соответствующего курса Первый пример является дифференциальным уравнением с разделяющимися переменными; второй уравнением Бернулли; третий дифференциальным уравнением высшего порядка, допускающим его понижение, четвертый линейным неоднородным уравнением второго порядка с постоянными коэффициентами При решении контрольной работы студент должен продемонстрировать не только практические навыки решений дифференциальных уравнений, но и теоретические знания основных положений теории: как-то, общий интеграл дифференциальных уравнений, общее решение, решения задачи Коши, структура общего линейного дифференциального неоднородного уравнения второго порядка с постоянными коэффициентами Студент, претендующий на оценку по высшему уровню, должен решить все четыре задачи, по среднему уровню три задачи, включая четвертую, по нижнему уровню любую из первых трех задач и последнюю Студент, решивший менее двух задач, получает за контрольную работу «незачет», а на экзамене обязательно дополнительные задачи по данной теме Номер варианта равен последней цифре зачетки

7 Задания для контрольной работы Вариант Найти общий интеграл дифференциального уравнения Найти решение задачи Коши y y 0 y y ( ) y, y(0) ''' '' y tg y y '' 3y y Вариант Найти общий интеграл дифференциального уравнения y yctg 0 Найти решение задачи Коши y y y ln, y() y ''' y'' 0 y' ' y

8 Вариант 3 Найти общий интеграл дифференциального уравнения y ycos 0 Найти решение задачи Коши ( y y) y, y() y ''' ctg y'' y '' y 5 Вариант 4 Найти общий интеграл дифференциального уравнения y ytg 0 Найти решение задачи Коши 3( y y) y ln, y() 3 ''' ( cos ) y sin y'' 7y'' y

9 Вариант 5 5 Найти общий интеграл дифференциального уравнения y y 0 6 Найти решение задачи Коши y y y, y() 7 Найти общее решение уравнения y''' y'' 8 Найти общее решение дифференциального уравнения y '' 3y y Вариант 6 Найти общий интеграл дифференциального уравнения y y 0 Найти решение задачи Коши y y y lg, y() y' '' ctg 5 5y'' y '' 5y 6y 6 5

10 Вариант 7 Найти общий интеграл дифференциального уравнения 5 y y 0 Найти решение задачи Коши ( y y) y, y(0) ( sin ) y''' cos y'' y' ' y 6 3 Вариант 8 Найти общий интеграл дифференциального уравнения Найти решение задачи Коши y y 0 y y y, y(0) ( ) y''' y'' ( ) y' ' y

11 Вариант 9 Найти общий интеграл дифференциального уравнения y y 0 Найти решение задачи Коши y y y, y(0) 3 y''' y' ' y '' 5y 6y ( ) Вариант 0 Найти общий интеграл дифференциального уравнения y y 0 ( ) Найти решение задачи Коши 3 3 y y y, y(0) ''' '' y tg5 5y y '' y 6

12 Пример решения контрольной работы ) Найти общий интеграл дифференциального уравнения (3+е х )уу =е х Решение Это уравнение является уравнением с разделяющимися переменными Разделяем переменные yy' 3 dy y d 3 ydy d 3 Интегрируя левую часть этого уравнения по у,а правую по х, получим общий интеграл исходного дифференциального уравнения 3 ydy d C y y ln(3 ) C ln(3 ) C ) Найти решение задачи Коши y +y=y, y(0)= Решение Уравнение Бернулли можно проинтегрировать с помощью подстановки y=uv Тогда y =u v+uv И после подстановки первоначальное уравнение примет вид: u v + uv +uv = u v u v + u(v +v) = u v (*) Приравняем к нулю выражение стоящие в скобках v' v 0 dv v d dv d v dv d v ln v C Из общего решения выберем одно частное уравнение v= - Подставляя v в уравнение (*), получим новое уравнение

13 du u d Это уравнение явл уравнением с разделяющимися переменными Решаем его du d u du d C u ; u C Следовательно, общее решение первоначального уравнения y C Для того, чтобы найти С, воспользуемся начальным условием y(0) ; C c 0 C Окончательное решение задачи Коши y Или после сокращения на y Так же можно проинтегрировать и линейное уравнение первого порядка 3) Найти общее решение дифференциального уравнения y +y = Решение dz Данное уравнение не содержит y и y Положим y =z, тогда y, d и уравнение примет вид: dz z d Это линейное уравнение первого порядка Его общее решение c y Проинтегрировав это равенство два раза получим y C( ln ) B A z c Следовательно

14 4) Найти общее решение дифференциального уравнения y 4 y 3y Решение Это неоднородное линейное уравнение второго порядка с постоянными коэффициентами Решение такого уравнения состоит из двух частей y - общего решения * соответствующего однородного уравнения и y - частного решения самого уравнения Характеристическое уравнение имеет корни, Значит, 3 общее решение однородного уравнения y C C 3 Для нахождения частного решения неоднородного уравнения воспользуемся методом неопределѐнных коэффициентов Будем искать частное решение в виде * y A B * * y A; y 0 Подставим *, y * y и y * в исходное уравнение и получим 4А+3(А+B)= Приравнивая коэффициенты при одинаковых степенях х, будем иметь 3A,4A 3B 0 4 A, B 3 9 * 4 y 3 9 Следовательно, общее решение уравнения имеет вид y C 3 3 C 4 9

Дифференциальные и разностные уравнения

Дифференциальные и разностные уравнения Государственный университет - Высшая школа экономики Нижегородский филиал Факультет бизнес информатики и прикладной математики Программа дисциплины Дифференциальные и разностные уравнения для направлений

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Дифференциальные уравнения Методические указания

Подробнее

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б2.Б3 ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ Бизнес-информатика

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б2.Б3 ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ Бизнес-информатика МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Государственное образовательное учреждение высшего профессионального образования «Мурманский государственный гуманитарный университет» (МГГУ) РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Стр. 1 из 17 26.10.2012 11:39 Аттестационное тестирование в сфере профессионального образования Специальность: 010300.62 Математика. Компьютерные науки Дисциплина: Дифференциальные уравнения Время выполнения

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Некоммерческое акционерное общество АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ. Кафедра высшей математики МАТЕМАТИКА 2

Некоммерческое акционерное общество АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ. Кафедра высшей математики МАТЕМАТИКА 2 Некоммерческое акционерное общество АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ Кафедра высшей математики МАТЕМАТИКА Методические указания и задания по выполнению расчетно-графической работы для студентов

Подробнее

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ Уфимский государственный нефтяной технический университет. Вариант 500. Дифференциальное уравнение P (, ) d Q(, ) d 0 порядка, если: будет однородным уравнением первого Ответы: ). P и Q однородные функции

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» В. М. Сафро,

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

"Национальный исследовательский университет "Высшая школа экономики" Факультет Экономики

Национальный исследовательский университет Высшая школа экономики Факультет Экономики Правительство Российской Федерации федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "Высшая школа экономики"

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

Расписание курсовых контрольных работ (компьютерных тестов) 4-го семестра 2017 г.

Расписание курсовых контрольных работ (компьютерных тестов) 4-го семестра 2017 г. Расписание курсовых контрольных работ (компьютерных тестов) 4-го семестра 2017 г. По дифференциальным м предполагается 3 теста. Ориентировочные сроки 01-10 марта, 10-20 апреля, 15-20 мая). По интегральным

Подробнее

Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения. Направление подготовки "Прикладная информатика"

Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения. Направление подготовки Прикладная информатика Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Утверждаю: Руководитель ООП: 20 г. Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Факультет математики и информатики Кафедра математического анализа и дифференциальных уравнений И.И. Вайнштейн, Н.Н. Лазарева, Е.В.

Подробнее

ПРОГРАММА И ЗАДАНИЯ. занятия: нет 2 часа в неделю ВСЕГО АУДИТОРНЫХ ЧАСОВ 132

ПРОГРАММА И ЗАДАНИЯ. занятия: нет 2 часа в неделю ВСЕГО АУДИТОРНЫХ ЧАСОВ 132 УТВЕРЖДАЮ Проректор по учебной работе Ю.А. Самарский 10 июня 2010 г. ПРОГРАММА И ЗАДАНИЯ по дисциплине: ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ по направлению подготовки: 010600 факультет: для всех факультетов (кроме

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции.

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции. Решение типового варианта ИДЗ «Дифференциальные уравнения» Задание Убедиться, что функция = (ln + C) удовлетворяет уравнению = Найдём производную данной функции = ln + C + = ln + C + Подставим данное выражение

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

Тематика и расписание 3-х тестов по дифференциальным уравнениям. (ориентировочные сроки 05 марта, 10 апреля, 15 мая)

Тематика и расписание 3-х тестов по дифференциальным уравнениям. (ориентировочные сроки 05 марта, 10 апреля, 15 мая) Тематика и расписание 3-х тестов по дифференциальным м (ориентировочные сроки 05 марта, 10 апреля, 15 мая) Тест по интегральным м и вариационному исчислению предполагается один - в конце семестра (ориентировочно,

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Нижегородский государственный

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

Дифференциальные и разностные уравнения

Дифференциальные и разностные уравнения Правительство Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет - Высшая школа экономики"

Подробнее

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения КЫРГЫЗСКО-РОССИЙСКИЙ СЛАВЯНСКИЙ УНИВЕРСИТЕТ ЕСТЕСТВЕННО-ТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра математики ЛГЛелевкина ТАШемякина Обыкновенные дифференциальные уравнения Учебное пособие по математическому анализу

Подробнее

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА Бабичева ТА Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Махачкала УДК 5(75) ББК я 7 Учебное пособие

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» КАФЕДРА «МАТЕМАТИКА» ЛГ ХАЛИЛОВА

Подробнее

Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения

Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Утверждаю: Руководитель ООП: 20 г. Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики (МИРЭА) кафедра высшей

Подробнее

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика»

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева ЕГ Определение: Уравнение

Подробнее

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений»

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» Задание Выясните, являются ли функции ( ) e и e решениями дифференциального уравнения d ( ) d 0 на промежутке ( ; )..

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

Лекция2. Дифференциальные уравнения первого порядка

Лекция2. Дифференциальные уравнения первого порядка Лекция. Дифференциальные уравнения первого порядка Уравнения с разделяющимися переменными... Однородные уравнения... 3 Линейные уравнения первого порядка.... 7 Линейные однородные дифференциальные уравнения....

Подробнее

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы.

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы. Памятка для практических занятий по теме «Обыкновенные дифференциальные уравнения» Решение различных задач методом математического моделирования сводится к отысканию неизвестной функции из уравнения, содержащего

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Теоретические вопросы

Теоретические вопросы V ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Теоретические вопросы 1 Основные понятия теории дифференциальных уравнений Задача Коши для дифференциального уравнения первого порядка Формулировка теоремы существования и

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Высшая Школа Экономики Нижегородский филиал Кафедра математики Кафедра информационных систем и технологий ЗАХАРОВА ЕВ КАЛЯГИН ВА ТЮТИН ВВ ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ

Подробнее

Институт радиоэлектроники и информационных технологий Кафедра «Прикладная математика»

Институт радиоэлектроники и информационных технологий Кафедра «Прикладная математика» Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

ЛНДУ с постоянными коэффициентами. С12 Раздел 2. Дифференциальные Контрольная работа 2 по теме

ЛНДУ с постоянными коэффициентами. С12 Раздел 2. Дифференциальные Контрольная работа 2 по теме Программой дисциплины «Дифференциальные уравнения» предусмотрены следующие виды аудиторных занятий: лекции, практические занятия/семинары, а также внеаудиторная самостоятельная работа студентов. Методические

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

Руководитель ООП «Информационные системы и технологии» Составитель рабочей программы д.ф.-м.н., проф. Миклюков В.М.

Руководитель ООП «Информационные системы и технологии» Составитель рабочей программы д.ф.-м.н., проф. Миклюков В.М. Рабочая программа составлена в соответствии с государственным образовательным стандартом высшего профессионального образования по направлению подготовки специалистов 3001 «Информационные системы и технологии».

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

1. Цели и задачи дисциплины Основные задачи дисциплины: Место дисциплины в структуре ООП Требования к результатам освоения дисциплины

1. Цели и задачи дисциплины Основные задачи дисциплины: Место дисциплины в структуре ООП Требования к результатам освоения дисциплины 2 1. Цели и задачи дисциплины Теория дифференциальных уравнений является одним из самых больших разделов современной математики. Дифференциальные уравнения помогают решать различные задачи не только в

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный

Подробнее

А. Н. Филиппов, Т. С. Филиппова,

А. Н. Филиппов, Т. С. Филиппова, Министерство образования и науки Российской Федерации РГУ нефти и газа имени И.М.Губкина Кафедра «Высшая математика» А. Н. Филиппов, Т. С. Филиппова, Методические указания к выполнению типового расчета

Подробнее

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Московский государственный технический университет им Н Э Баумана Соболев СК Дифференциальные уравнения Методические указания к решению задач Москва МГТУ им Баумана 008 СК Соболев Дифференциальные уравнения

Подробнее

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ.

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. ЛЕКЦИЯ Вводные замечания Дифференциальные уравнения занимают в математике особое место. Математическое исследование разнообразных природных явлений

Подробнее

Кафедра «Физика и математика» ВОПРОСЫ по дисциплине «Дифференцтальные уравнения»

Кафедра «Физика и математика» ВОПРОСЫ по дисциплине «Дифференцтальные уравнения» Министерство образования и науки Республики Казахстан Каспийский государственный университет технологий и инжиниринга имени ШЕсенова Кафедра «Физика и математика» Государственный экзамен по профилирующей

Подробнее

Министерство общего и профессионального образования РФ

Министерство общего и профессионального образования РФ Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет Министерство общего и профессионального образования РФ Назарова Л.И. Дифференциальные

Подробнее

Консультационный тренинговый центр «Резольвента»

Консультационный тренинговый центр «Резольвента» ООО «Резольвента», wwwresolventaru, resolventa@listru, (495) 509-8-10 Консультационный тренинговый центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое

Подробнее

Дифференциальные уравнения (наименование дисциплины) Направление подготовки физика

Дифференциальные уравнения (наименование дисциплины) Направление подготовки физика Аннотация рабочей программы дисциплины Дифференциальные уравнения (наименование дисциплины) Направление подготовки 03.03.02 физика Профиль подготовки «Фундаментальная физика», «Физика атомного ядра и частиц»

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Составитель: доц. Никонова Т.В. 2012/2013 учебный год

Составитель: доц. Никонова Т.В. 2012/2013 учебный год Практические занятия по курсу высшей математики (II семестр) на основе учебного пособия «Сборник индивидуальных заданий по высшей математике», том, под ред Рябушко АП для студентов дневной формы обучения

Подробнее

Дифференциальные уравнения высших порядков. Лекции 2-3

Дифференциальные уравнения высших порядков. Лекции 2-3 Дифференциальные уравнения высших порядков Лекции 2-3 Дифференциальным уравнением порядка n называется уравнение вида F( x, y, y,..., y() n ) 0, () в котором обязательно наличие n-ой производной. Будем

Подробнее

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА»

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» Задача 1. Найти общее решение дифференциального уравнения с разделяющимися переменными: 1. d d d d 1 1 0.. d d d. d d d 5. 6d 6d d d 6. d d 0 7. 8. (

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ИВ Ребро, СЮ Кузьмин, НН Короткова, ДА Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Специальность "Математика" Квалификация - математик ОПД.Ф.

ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Специальность Математика Квалификация - математик ОПД.Ф. 3 ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Специальность 010101 "Математика" Квалификация - математик ОПД.Ф.07 Дифференциальные уравнения. Понятие дифференциального

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Образцы решения уравнений из «Сборника типовых заданий по курсу высшей математики» Кузнецова Л.А. Авторы: Смирнов А.Н., Беловодский В.Н., кафедра компьютерных систем мониторинга,

Подробнее

t),;;l 2015 г. ационный УД t'7,,l5-6 /баз. для специальности «Экономическая кибернетика (по направлениям)»

t),;;l 2015 г. ационный УД t'7,,l5-6 /баз. для специальности «Экономическая кибернетика (по направлениям)» Учреждение образования "Белорусский государственный экономический университет" УТВЕРЖДАЮ Ректор Учреждения образования "Белорусе осу дарственный й университет" ~~--,,.,.,_.,.,r---,r--~ В.Н.Шимов t),;;l

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ О.А. ЕВСЕЕВА, О.А.МАЛЫГИНА, Е.В. ПРОНИНА, И.Н.РУДЕНСКАЯ, Л.И. ТАЛАНОВА РЕДАКТОР: Н.С. ЧЕКАЛКИН ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА. 2 3 1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА. Цель дисциплины обеспечить студента необходимыми знаниями и привить практический навык работы с фундаментальными понятиями дифференциальных и интегральных уравнений. Задача

Подробнее

Уравнения в частных производных первого порядка

Уравнения в частных производных первого порядка Уравнения в частных производных первого порядка Некоторые задачи классической механики, механики сплошных сред, акустики, оптики, гидродинамики, переноса излучения сводятся к уравнениям в частных производных

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ Министерство образования Республики Беларусь Учебно-методическое объединение вузов Республики Беларусь по естественнонаучному образованию УТВЕРЖ, Первый Республ (гра образования Регистрационный ТД- (г.

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФГОУ ВПО «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ В.Д. ГУНЬКО, Л.Ю. СУХОВЕЕВА, В.М. СМОЛЕНЦЕВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПРИМЕРЫ И ТИПОВЫЕ ЗАДАНИЯ Учебное пособие Краснодар

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ Основные понятия Нормальные Системой называется совокупность в каждое из которых входят независимая переменная искомые функции и их производные Всегда предполагается

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ для технических направлений

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ для технических направлений С. Н. КУБЫШКИНА, Е. Ю. АРЛАНОВА ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ для технических направлений Практикум Самара 2017 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

Решением дифференциального уравнения называется функция y y(x)

Решением дифференциального уравнения называется функция y y(x) Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или нескольких

Подробнее

Дифференциальные уравнения рабочая программа дисциплины

Дифференциальные уравнения рабочая программа дисциплины МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" (ФГБОУ ВПО «АлтГУ») УТВЕРЖДАЮ Декан Поляков

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Программа дисциплины

Программа дисциплины МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт

Подробнее

Содержание программы 4 семестр Уравнения, неразрешенные относительно производной. Теорема существования и единственности решения, следствие.

Содержание программы 4 семестр Уравнения, неразрешенные относительно производной. Теорема существования и единственности решения, следствие. Содержание программы семестр Уравнения, неразрешенные относительно производной. Теорема существования и единственности решения, следствие. Дискриминантная кривая, особое решение дифференциального уравнения,

Подробнее

ОГЛАВЛЕНИЕ ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ... 3 ПРАКТИЧЕСКИЙ РАЗДЕЛ План практических занятий... 4 РАЗДЕЛ КОНТРОЛЯ ЗНАНИЙ... 17

ОГЛАВЛЕНИЕ ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ... 3 ПРАКТИЧЕСКИЙ РАЗДЕЛ План практических занятий... 4 РАЗДЕЛ КОНТРОЛЯ ЗНАНИЙ... 17 ОГЛАВЛЕНИЕ ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ... 3 ПРАКТИЧЕСКИЙ РАЗДЕЛ... 4 План практических занятий... 4 РАЗДЕЛ КОНТРОЛЯ ЗНАНИЙ... 17 Текущий контроль знаний... 17 Аттестация... 17 ВСПОМОГАТЕЛЬНЫЙ РАЗДЕЛ... 21 Типовая

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

Уравнения первого порядка

Уравнения первого порядка Глава 1. Введение Лекция 1 1. Понятие дифференциального уравнения. Основные определения. 2. Общее решение дифференциального уравнения, общий интеграл. 3. Постановка основных задач для обыкновенных дифференциальных

Подробнее

1. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

1. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ 2 3 СОДЕРЖАНИЕ 1. Место дисциплины (модуля) в структуре образовательной программы... 4 2. Планируемые результаты изучения по дисциплине (модулю)... 4 3. Объем дисциплины (модуля) с распределением по семестрам...

Подробнее

Глава 2. Дифференциальные уравнения 1-го порядка

Глава 2. Дифференциальные уравнения 1-го порядка Глава Дифференциальные уравнения -го порядка Основные понятия Определение Дифференциальное уравнение вида ( n) F, ( ),,, 0 () называют обыкновенным дифференциальным уравнением Оно содержит известную функцию

Подробнее

Рабочая программа дисциплины (с аннотацией) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Рабочая программа дисциплины (с аннотацией) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Рабочая программа дисциплины (с аннотацией) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Направление подготовки 02.03.03

Подробнее

ПРОГРАММА ЭКЗАМЕНА по курсу "ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ" 2 семестр группы АК1,2,4-11 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ПРОГРАММА ЭКЗАМЕНА по курсу ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 2 семестр группы АК1,2,4-11 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ ПРОГРАММА ЭКЗАМЕНА по курсу "ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ" 2 семестр группы АК,2,4- ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Неопределенный интеграл. Первообразная функции. Таблица первообразных.

Подробнее

Контрольная работа выполнена на сайте МатБюро. Решение задач по математике, статистике, теории вероятностей

Контрольная работа выполнена на сайте  МатБюро. Решение задач по математике, статистике, теории вероятностей Контрольная работа выполнена на сайте wwwmatburoru МатБюро Решение задач по математике статистике теории вероятностей МАТЕМАТИЧЕСКИЙ АНАЛИЗ РГР 8 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Задание Найти общий интеграл

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия теории дифференциальных уравнений

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия теории дифференциальных уравнений ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия теории дифференциальных уравнений n Опр Дифференциальным уравнением F,,,, называется уравненние, содержащее независимую переменную х, функцию ух

Подробнее

Романова Л.Д., Ланцова В.А., Романова Е.Г. Контрольные задания по высшей математике и методические указания к их выполнению

Романова Л.Д., Ланцова В.А., Романова Е.Г. Контрольные задания по высшей математике и методические указания к их выполнению Федеральное агентство по образованию Пензенский государственный университет Кафедра Высшей и прикладной математики Романова ЛД, Ланцова ВА, Романова ЕГ Контрольные задания по высшей математике и методические

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ. ДУ линейные однородные (ДУЛО)

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ. ДУ линейные однородные (ДУЛО) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ ДУ допускающие понижение ДУ линейные однородные (ДУЛО) ДУ линейные неоднородные (ДУЛН) ДУ линейные однородные

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ТЕСТОВЫЕ ЗАДАНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ТЕСТОВЫЕ ЗАДАНИЯ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет»

Подробнее

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме ОГЛАВЛЕНИЕ Предисловие............................................. 5 Глава 1 Введение в теорию обыкновенных дифференциальных уравнений первого порядка................................. 8 1. Основные понятия

Подробнее

О.Д. Ростова, Т.М. Тушкина ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ

О.Д. Ростова, Т.М. Тушкина ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Бийский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Алтайский государственный

Подробнее

I. Дифференциальные уравнения 1-го порядка

I. Дифференциальные уравнения 1-го порядка Пособие предназначено для студентов - курсов МАТИ-РГТУ, изучающих в рамках курса высшей математики тему «Дифференциальные уравнения». В нем рассматриваются основные приемы решения обыкновенных дифференциальных

Подробнее

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет

Подробнее