Линейная алгебра Лекция 3. Обратная матрица. Ранг матрицы

Размер: px
Начинать показ со страницы:

Download "Линейная алгебра Лекция 3. Обратная матрица. Ранг матрицы"

Транскрипт

1 Линейная алгебра Лекция Обратная матрица Ранг матрицы Обратная матрица Определение Матрица А - называется обратной по отношению к квадратной матрице если при умножении этой матрицы на данную матрицу как справа так и слева получается единичная матрица то есть E Матрица называется невырожденной если Теорема (необходимые и достаточные условия существования А - ) А - существует тогда и только тогда когда исходная матрица невырожденная Доказательство необходимости Пусть имеет обратную матрицу Существует такая матрица А - что выполняется равенство Тогда на основании свойств определителей имеем E или E следовательно E Доказательство достаточности Пусть Надо доказать что ) существует обратная матрица и ) эта обратная матрица единственная Рассмотрим матрицу состоящую из алгебраических дополнений элементов транспонированной матрицы Ее называют союзной матрицей и обозначают (один из вариантов) А с Произведение союзной матрицы на исходную матрицу равно диагональной матрице то c есть E Или c E Значит в качестве обратной матрицы можно взять союзную матрицу умноженную на число Следовательно обратная матрица существует и получен способ ее вычисления Теперь докажем что она единственная Доказательство от противного Пусть еще есть обратная матрица C такая что СААСЕ Умножим все части равенства на матрицу А - получим САА - ЕА - или C(АА - )ЕА - следовательно СЕЕА - СА - ; А - АСА - Е или (А - А)CА - Е следовательно ЕСА - Е СА - Что доказывает единственность обратной матрицы Свойства невырожденных матриц По определению обратной матрицы и на основании свойств определителей имеем E или E следовательно ( ) Умножим обе части равенства на матрицу А - слева и справа получим ( ) E ( ) E E Учитывая единственность обратной матрицы А - имеем ( ) B B ( ) B B B Действительно ( )( ) ( ) B E Учитывая свойства умножения матриц определение обратной матрицы получим E BB E E E ЕЕ 4 m ( ) ( ) m Доказательство Умножим обе части равенства на m справа Получим ( ) E m m Аналогично при умножении слева Значит m ( ) ( ) m T T ( ) ( )

2 Выполним транспонирование матриц E и E Учтем свойства транспонирования произведения матриц получим T T T T E ( ) ( ) E так как E T E и T T T T E ( ) ( ) E По определению обратной матрицы и в силу ее единственности получаем ( T ) T T ( ) T есть для матрицы ( ) T обратной будет матрица T ( ) другими словами T T ( ) ( ) то Точечные (прямые) методы нахождения обратной матрицы Алгоритм вычисления обратной матрицы методом алгебраических дополнений Вычисляем определитель матрицы если он отличен от нуля то существует обратная матрица А - ; Транспонируем исходную матрицу получаем T ; Составляем союзную матрицу c вычисляя алгебраические дополнения элементов транспонированной матрицы; Все элементы союзной матрицы делим на величину определителя матрицы получаем обратную c матрицу Выполняем проверку умножением полученного результата на исходную матрицу слева и справа Пример Для матрицы найти обратную матрицу методом алгебраических дополнений Решение Вычислим определитель данной матрицы по теореме Лапласа разложив по элементам + первой строки: А ( )( ) ( ) + ( ) (- )+(4- )+(-) ++ Следовательно обратная матрица существует Транспонируем исходную матрицу: А Т Вычислим алгебраические дополнения элементов транспонированной матрицы c Тогда союзная матрица имеет вид и обратная матрица есть А - Необходимо делать проверку Обратите внимание что при вычислении союзной матрицы знак меняется в элементах где сумма номеров строк и столбцов нечетная В определителях второго и третьего прядка эти элементы выделены кружками

3 Вычисляем произведение E и произведение Е Метод элементарных преобразований строк Составляем матрицу ; Преобразуем ее с помощью элементарных преобразований к виду - ; Проверка E Пример Методом элементарного преобразования строк обратить матрицу из примера Составим матрицу Указанным методом приведем ее к виду в котором единичная матрица расположится перед пунктирной линией Преобразуем вторую строчку с помощью первой умножив первую на (-) и поэлементно прибавив ко второй получим Преобразуем третью строчку с помощью первой: умножим первую на (-) и прибавим к третьей те Разделим вторую строчку на имеем Изменим третью строку прибавив к ней вторую умноженную на (-) получим и разделим ее на () те Теперь обнулим элемент во второй строке и третьем столбце для этого третью строчку умножим на () и прибавим поэлементно ко второй строке получим Первую строку преобразуем так: прибавим к ней вторую и вычтем третью строки: Значит обратная матрица Метод Жордана - Гаусса нахождения обратной матрицы В основе этого метода лежит метод элементарного преобразования строк расширенной матрицы но с относительно простым правилом вычисления элементов матрицы на каждом этапе перевода единичной части матрицы справа налево ( E) (E - ) Представим нашу расширенную матрицу схематически выделив две строки и по два столбца в матрицах и Е В матрице А все строки и столбцы ненулевые иначе матрица была бы вырожденная те ее определитель равнялся бы нулю Выберем в k-том столбце элемент Назовем его разрешающим элементом и возьмем в рамочку Столбец и строка на пересечении которых стоит разрешающий элемент называют разрешающими Столбец матрицы называется

4 единичным если в нем один элемент равен единице а остальные нулю Например единичная матрица состоит из единичных столбцов Добьемся чтобы разрешающий столбец был единичным Для этого разделим разрешающую строчку на разрешающий элемент: Для обнуления элемента умножим разрешающую строчку на (- ) и прибавим к элементам i-ой строки: r k Последние формулы можно получить по геометрическому правилу «прямоугольников» Рассмотрим прямоугольник одной из диагоналей которого является отрезок соединяющие искомый элемент с разрешающим элементом а другая диагональ отрезок соединяющий элементы стоящие в разрешающей строке и разрешающем столбце В числителе дробей стоят произведения элементов одной диагонали Со знаком «+» берем произведение содержащее разрешающий элемент и со знаком «-» произведение элементов другой диагонали В знаменатели всегда стоит разрешающий элемент По этому правилу преобразуются элементы матрицы и матрицы E не стоящие в разрешающем столбце и разрешающей строке Значит для преобразования столбца в единичный столбец надо выполнить следующие действия: элементы разрешающей строки разделить на разрешающий элемент; в разрешающем столбце напишем нули кроме разрешающего элемента который равен единице; остальные элементы матрицы вычисляются по правилу «прямоугольника» Это был первый шаг преобразования На втором шаге преобразуем следующий столбец превращая его в единичный столбец матрицы с помощью нового разрешающего элемента выбранного из этого столбца и не принадлежащего прежней разрешающей строке При этом прежний единичный столбец не изменится Доказательство этого факта приводить не будем На каждом шаге выбирая разрешающий элемент по одному из каждой строки и каждого столбца левой части матрицы и выполняя аналогичные преобразования после шагов получим в левой части матрицу состоящую из разных единичных столбцов Простой перестановкой строк эта матрица может быть преобразована в единичную матрицу Тогда полученная матрица в правой части будет обратной к матрице А Для контроля над вычислением целесообразно ввести в расширенную матрицу дополнительный столбец состоящий из суммы элементов соответствующих строк Вычислив его элементы по правилу «прямоугольников» с одной стороны и как сумму элементов соответствующей строки с другой стороны должны получить один и тот же результат Действительно пусть в контрольном столбце в i ой строке стоит элемент «прямоугольников» получим j ( ) + j ( Σ i j + Σ j i После первого шага преобразования по правилу Σ Σ i r Σ i i Σ r ) + j j j + + j j j А это уже сумма элементов преобразованной строки Пример Для матрицы из примера найти обратную матрицу методом Жордано - Гаусса Значит обратная матрица Ответ можно записать и так 4

5 Рассмотренные методы вычисления обратной матрицы можно сравнить по степени сложности алгоритма те затраченного времени на вычисление Так сложность алгоритма метода Жордана Гаусса составляет O(п ) сложность алгоритма метода алгебраических дополнений зависит от сложности расчета определителя O dt и равна O(п ) O dt Есть еще точечный метод использование LULUPразложения не рассматриваемый в данной лекции После выполнения LUP-разложения матрицы со сложностью O(п ) на решение каждого из уравнений нужно время O( ) Те все методы достаточно трудоемкие По этой причине в упражнениях на определение обратной матрицы нет смысла предлагать матрицы выше третьего прядка Тем не менее в исследованиях экономического характера встречаются задачи на обратимость матрицы размерностью более чем В этом случае надо воспользоваться компьютерными расчетами Но помните что возможны проблемы с точностью вычислений и опятьтаки ограничения на размерность матрицы из-за возможностей вычислительных машин Кроме точечных методов вычисления обратной матрицы есть итерационный способ - метод Шульца В этом случае мы получим приближенное решение обратной матрицы Проблема выбора начального приближения в рассматриваемом процессе обращения матриц не позволяет относиться к нему как к самостоятельному универсальному методу конкурирующему с прямыми методами и скорость сходимости процесса может оказаться не столь высокой Ранг матрицы Из матрицы mx выделим подматрицы порядка k mi(m ) путем вычеркивания каких-либо рядов Определители таких матриц называются минорами k-го порядка матрицы Минор матричного элемента является частным случаем минора k-го порядка когда из матрицы -го прядка вычеркивается столбец и строка соответствующие данному элементу Количество миноров k-го порядка которое k k m!! можно составить из матрицы mx равно C mc k!( m k)! k!( k)! Например из матрицы õ 4 можно составить миноров первого прядка 8 миноров второго и 4 минора третьего порядков:! 4! 6 4! 4! 6 4! 4! 6 4 C C4 C C4 8 C C4 4!( )!!(4 )! 6!( )!!(4 )! 4!( )!!(4 )! 6 6 Поскольку минор это определитель те число то миноры разного порядка могут равняться одному и тому же числу в частности и нулю Теорема Если все миноры k-го порядка матрицы равны нулю то равны нулю и все остальные миноры более высокого порядка Действительно если у матрицы есть минор (k+)-го порядка то применяя к нему теорему Лапласа разложим его по элементам (k+)-го ряда элементы которого будут умножаться на их алгебраические дополнения являющиеся минорами k-го порядка взятые со знаком «+» или «-» А они по условию теоремы равны нулю Следовательно миноры (k+)-го порядка равны нулю Это приводит к тому что миноры (k+) (k+l)-го порядков где l mim( m ) k тоже будут равны нулю Определение Рангом r() матрицы называется наивысший порядок отличных от нуля миноров этой матрицы Из определения следует r() mi(m ); r() ; для квадратной матрицы -го порядка r() -невырожденная 4 8 Найти ранг матрицы в примерах 4 и : 4) 4 6 ) Решение примера 4 Так как два столбца состоят из нулевых элементов а два других пропорциональны то по свойствам определителей все миноры второго порядка равны нулю Поскольку в матрице есть ненулевые элементы значит ранг r() Решение примера С помощью окаймляющих миноров вычислим ранг матрицы Найдем матричный элемент отличный от нуля например а Значит r() 4 (mi{4}4) Этот минор М окаймим минором второго порядка М - Значит r() 4 Найденный минор второго порядка отличный от нуля окаймим минором третьего порядка Он оказался равным нулю М

6 Вычислим другой окаймляющий минор третьего порядка заменив третий столбец на второй он тоже равен нулю М Составим еще окаймляющий минор третьего порядка вычеркнув второй и третий столбец Он так же равен нулю Есть еще три минора третьего порядка образованные вычеркиванием третьей строки и поочередно парой столбцов и и и Вычислив их получим что все миноры третьего порядка равны нулю следовательно и миноры четвертого порядка тоже равны нулю Значит ранг матрицы равен Определение Минор k-го порядка отличный от нуля называется базисным Вся строка и весь столбец матрицы mx из которых составлен базисный минор называются базисными Остальные строки и столбцы будем называть небазисными У матрицы mx может быть несколько базисных миноров но все они имеют одинаковый порядок О принадлежности строк и столбцов к базисным рядам можно говорить только в связи с конкретным минором По отношению к другому минору эти же строки и столбцы могут и не быть базисными Если k k ранг матрицы равен k то число миноров k-го порядка как уже отмечалось равно C mc но не обязательно все они будут базисными среди них могут быть миноры равные нулю Теорема Ранг матрицы не изменится при элементарных преобразованиях матрицы Доказательство Из свойств определителей следует что при преобразованиях квадратных матриц их определители либо сохраняются либо умножаются на число неравное Следовательно сохраняется порядок минора отличного от нуля M k исходной матрицы а значит ранг матрица не меняется Следовательно получаем еще один способ вычисления ранга матрицы: с помощью элементарных преобразований приводим матрицу к ступенчатому виду l l (ступенчатой называется матрица где ii i l l<); ll l определяем ранг матрицы по числу ненулевых строк Пример 6 Применим данный способ к матрице из примера Решение Поменяем местами -ю и -ю строчки получим матрицу в которой будем получать нули в первом столбце и в строчках третьей и четвертой Во второй матрице умножим вторую строчку на (-) и прибавим к третей и четвертой строкам получим матрицу в которой последние две строки нулевые Ранг этой матрицы равен так как есть миноры второго порядка отличные от нуля Например минор выделенный рамкой Значит ранг исходной матрицы тоже равен Перебор всех миноров в поиске отличного от нуля при определении ранга матрицы достаточно трудоемкий процесс Рассмотренный способ вычисления ранга матрицы дал результат быстрее чем метод окаймляющих миноров Он позволяет в последней матрице определить ранг даже визуально не вычисляя миноры Введем обозначение строк матрицы mx ( ) i m j соответственно m Тогда исходную матрицу можно записать как матрица-столбец с элементами m Строка е называется линейной комбинацией строк если существуют такие числа λ λ λ что выполняется равенство λ + λ + + λ Строки матрицы называются линейно зависимыми если λ + λ + + λ не при всех λ i i в противном случае линейно независимыми Теорема Строки матрицы линейно зависимы тогда и только тогда когда одна из них является линейной комбинацией остальных строк Доказательство Пусть из первых строк матрицы последняя строка является линейной комбинацией остальных строк то есть λ + λ + + λ Тогда это равенство можно переписать так: 6

7 λ + λ + + λ + ( ) в котором не все коэффициенты равны нулю Значит строки линейно зависимые Докажем другую часть теоремы Пусть строк матрицы линейно зависимые и для определенности λ то есть λ + λ + + λ λ Разделив обе части равенства на число ( λ ) ( λ получим λ ) + ( λ λ ) + + ( λ λ ) Значит строка является линейной комбинацией остальных строк Очевидны следующие утверждения: если часть строк матрицы линейно зависимы то и все эти строки линейно зависимы; если среди строк матрицы имеется нулевая строка то эти строки линейно зависимы; если среди строк матрицы есть пропорциональные то все они линейно зависимые; понятие линейной зависимости применимо не только к строкам но и к столбцам Теорема о базисном миноре Базисные строки матрицы линейно независимы Любая небазисная строка матрицы является линейной комбинацией ее базисных строк Доказательство Пусть ранг матрицы r Не нарушая общности будем считать что базисный минор r находится в левом верхнем углу матрицы (Это всегда можно достичь перестановкой строк) Предположим что базисные строки матрицы линейно зависимые тогда линейно зависимыми будут и строки определителя который состоит либо из полных базисных строк (r) либо из их частей (r ) Это означает что определитель равен нулю что противоречит понятию базисный минор Следовательно базисные строки матрицы линейно независимые Докажем что всякая i - тая строка (r<i m) является линейной комбинацией первых r базисных строк матрицы Для этого окаймим базисный минор i - ой строкой и j - ым столбцом Получили определитель r+ При любом столбце этот определитель равен нулю потому что все миноры (r+)-го порядка равны нулю Разложим его по элементам j-го столбца получим r+ j j + j j + + r r j j Алгебраическое дополнение r Тогда j Или компактно i поскольку равенство выполняется для всех столбцов Это означает что i -ая строка является линейной комбинацией базисных строк Теорема о ранге матрицы Ранг матрицы равен максимальному числу ее линейно независимых строк (столбцов) через которые линейно выражаются все остальные строки (столбцы) 7


ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ ЛЕКЦИЯ ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ РАНГ МАТРИЦЫ Элементарные преобразования матриц Эквивалентные матрицы Получение обратной матрицы с помощью элементарных преобразований Линейная зависимость (независимость)

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

Линейная алгебра Лекция 2. Определители квадратных матриц

Линейная алгебра Лекция 2. Определители квадратных матриц Линейная алгебра Лекция. Определители квадратных матриц Введение Определитель или детерминант одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной

Подробнее

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим.

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим. ПЕРЕСТАНОВКИ Определение 1 Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,, n в строчку одно за другим Например, 2, 4, 3, 1, 5 Это перестановка пятой степени Вообще

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Метод окаймляющих миноров нахождения ранга матрицы A = m m m минора Минором k порядка k матрицы А называется любой определитель k-го порядка этой матрицы,

Подробнее

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E,

Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E, 31 Обратная матрица Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы 1 Критерий существования и свойства обратной матрицы Определение Пусть A квадратная

Подробнее

2. ОПРЕДЕЛИТЕЛИ. СВОЙСТВА. МЕТОДЫ ВЫЧИСЛЕНИЯ. порядка n > 1 называется число

2. ОПРЕДЕЛИТЕЛИ. СВОЙСТВА. МЕТОДЫ ВЫЧИСЛЕНИЯ. порядка n > 1 называется число ОПРЕДЕЛИТЕЛИ СВОЙСТВА МЕТОДЫ ВЫЧИСЛЕНИЯ ИНДУКТИВНОЕ ОПРЕДЕЛЕНИЕ Пусть квадратная матрица порядка Определитель (детерминант) квадратной матрицы это число det, которое ставится в соответствие матрице и вычисляется

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ...

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ... ы ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m называется прямоугольная таблица, имеющая m строк и столбцов m m m суммы двух Суммой двух ( ) и ( ) строк и столбцов называется

Подробнее

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса.

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Ранг матрицы. Рассмотрим прямоугольную матрицу имеющую m строк и столбцов: A. m m m Выделим в этой матрице произвольные строк и столбцов. Элементы

Подробнее

3. РАНГ МАТРИЦЫ 3.1 ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ

3. РАНГ МАТРИЦЫ 3.1 ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ . РАНГ МАТРИЦЫ. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ Матрицы-столбцы (матрицы-строки) будем называть далее просто столбцами (соответственно строками) и обозначать в этой

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 5 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ Ранг матрицы Рассмотрим матрицу A K m следующего общего вида: a a a A a 2 a 2 2 a 2 A = = A A 2,A 2,,A =, a m a2 m a m A m где a a a 2 A =,,A a 2

Подробнее

A ij (или Ad ij) элемента a ij матрицы A называется

A ij (или Ad ij) элемента a ij матрицы A называется 1) Найти все дополнительные миноры определителя 1 9 11 0 0 0 56 18 2. Пусть дана квадратная матрица порядка n. Дополнительным минором a матрицы называется определитель на единицу меньшего M ij элемента

Подробнее

Определение 1.1. Таблица чисел (вещественных или комплексных) Число строк и столбцов матрицы А, если это необходимо, можно указать так:

Определение 1.1. Таблица чисел (вещественных или комплексных) Число строк и столбцов матрицы А, если это необходимо, можно указать так: Матрицы Определение и виды матриц Определение Таблица чисел (вещественных или комплексных) () состоящая из строк и столбцов называется прямоугольной матрицей размера Число строк и столбцов матрицы А если

Подробнее

Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ. 0. План лекции Лекция Теорема о базисном миноре. 1. Две вспомогательные теоремы из теории определителей.

Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ. 0. План лекции Лекция Теорема о базисном миноре. 1. Две вспомогательные теоремы из теории определителей. Конспект лекции 9 ТЕОРЕМА О БАЗИСНОМ МИНОРЕ План лекции Лекция Теорема о базисном миноре Две вспомогательные теоремы из теории определителей НИДУ равенства нулю определителя: det A = ; 2 Явное выражение

Подробнее

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров.

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров. Лекция 2. Определители Миноры и алгебраические дополнения. Рекуррентное определение определителя n-го порядка. Соответствие между общим определением и правилом Саррюса при n=3. Основные свойства определителей.

Подробнее

Лекция 1. Определение матрицы. Определение 1.1. Матрицей называется прямоугольная таблица чисел... a1 A =... =...

Лекция 1. Определение матрицы. Определение 1.1. Матрицей называется прямоугольная таблица чисел... a1 A =... =... Лекция Определение матрицы Определители второго и третьего порядков, их основные свойства Миноры и алгебраические дополнения, разложение определителя по строке (столбцу) Методы вычисления определителей

Подробнее

образуют главную диагональ матрицы. Вторую диагональ матрицы называют побочной.

образуют главную диагональ матрицы. Вторую диагональ матрицы называют побочной. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ МАТРИЦ Матрицы При решении ряда прикладных задач используются специальные математические выражения, называемые матрицами О п р е д е л е н и е Матрицей размерности m n называется

Подробнее

Матрицы и определители. Обратная матрица. Линейная алгебра (лекция 3) 2 / 23

Матрицы и определители. Обратная матрица. Линейная алгебра (лекция 3) 2 / 23 Линейная алгебра Матрицы и определители Обратная матрица Линейная алгебра (лекция 3) 2 / 23 Квадратная матрица называется вырожденной (или особенной), если ее определитель равен нулю, и невырожденной (или

Подробнее

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет ОБРАТНАЯ МАТРИЦА ОПРЕДЕЛЕНИЕ, СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ ОБРАТНОЙ МАТРИЦЫ Рассмотрим проблему определения операции, обратной умножению матриц Пусть квадратная матрица порядка n Матрица, удовлетворяющая

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Глава 1. Начала линейной алгебры

Глава 1. Начала линейной алгебры Глава Начала линейной алгебры Системы линейных уравнений Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: + + + + n n = + + + + nn = m + m + m + + mnn = m () Здесь n неизвестные

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 1 Линейная алгебра Решить матричное уравнение ( ( 3 1 2 1 X + 2 4 2 3 3 ( 1 0 = 3 2 3 Выполним вначале умножение матриц на

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст (самостоятельное изучение) Аннотация Понятие линейной зависимости строк или столбцов матрицы. Ранг матрицы, теорема о ранге

Подробнее

УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ

УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ УПРАЖНЕНИЯ ПО ЛИНЕЙНОЙ АЛГЕБРЕ Как изменится произведение B матриц и B если: а переставить -ю и j -ю строки матрицы? б переставить -й и j -й столбцы матрицы B? в к -й строке матрицы прибавить ее j -ю строку

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

РАЗДЕЛ 1. Линейная алгебра.

РАЗДЕЛ 1. Линейная алгебра. -й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Подробнее

2.1.3 Методы решений системы линейных алгебраических уравнений

2.1.3 Методы решений системы линейных алгебраических уравнений Методы решений системы линейных алгебраических уравнений Метод обратной матрицы Рассмотрим частный случай системы ) когда число уравнений равно числу неизвестных те m Система уравнений имеет вид: ì ) î

Подробнее

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы.

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы. .4. Ранг матрицы. В матрице А выделим k строк и столбцов из элементов, стоящих на их пересечении составим определитель. Будем называть его минором k-того порядка. Если минор k-того порядка отличен от нуля,

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Определители. Решение систем линейных алгебраических уравнений методом Крамера

Определители. Решение систем линейных алгебраических уравнений методом Крамера Занятие Определители. Решение систем линейных алгебраических уравнений методом Крамера.. Определители. Пусть дана квадратная таблица чисел А, т.е. матрица из двух строк и двух столбцов. Заметим сразу,

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени ВН КАРАЗИНА ЮМ ДЮКАРЕВ, ИЮ СЕРИКОВА ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений Учебно-методическое

Подробнее

A A. Убедимся в том, что матрица B является обратной к A. В самом деле, рассмотрим произведение матриц A и B:

A A. Убедимся в том, что матрица B является обратной к A. В самом деле, рассмотрим произведение матриц A и B: Лекция 3. Обратная матрица. Определитель произведения квадратных матриц. Обратная матрица, определение, основные свойства. Критерий обратимости матрицы. Элементарные преобразования матриц. Нахождение обратных

Подробнее

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис Тема 06 Произведение матриц и его свойства Обращение квадратных матриц и его свойства Детерминант квадратной матрицы -го порядка и его свойства Миноры дополнительные миноры и алгебраические дополнения

Подробнее

Матрицы, определители и системы линейных уравнений

Матрицы, определители и системы линейных уравнений Федеральное агентство по образованию Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Матрицы определители и системы линейных уравнений Методические указания к решению задач Санкт-Петербург

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1 Кафедра Математики, физики и информационных технологий 2 Направление подготовки 010302

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En 4 Обратная матрица Понятие обратной матрицы Существование и единственность обратной матрицы Присоединенная матрица Определение 4 Пусть А квадратная матрица порядка п Матрица B называется правой обратной

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра М и ММЭ 2 Направление подготовки Бизнес-информатика Общий профиль 3 Дисциплина

Подробнее

Лекция IV. IV.1. Линейная зависимость векторов. α 1 a 1 +α 2 a α n a n.

Лекция IV. IV.1. Линейная зависимость векторов. α 1 a 1 +α 2 a α n a n. Лекция IV IV Линейная зависимость векторов Линейной комбинацией векторов a, a 2,, a n называется сумма произведений этих векторов на произвольные числа: α a +α 2 a 2 ++α n a n Линейная комбинация называется

Подробнее

КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ

КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ ЛЕКЦИЯ 9 ОБРАТНЫЕ МАТРИЦЫ КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ ПРОСТРАНСТВО РЕШЕНИЙ 1 ОБРАТНЫЕ МАТРИЦЫ Для данной матрицы A M n (R) можно попробовать найти такую матрицу A M n

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю.

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Широкое использование математических методов в современном

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

Математики и математических методов в экономике 2. Направление подготовки

Математики и математических методов в экономике 2. Направление подготовки 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра Математики и математических методов в экономике 2 Направление подготовки 380301

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. 1. Матрицы и операции над ними. 2. Определители и их свойства. Вычисление определителей. А =

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. 1. Матрицы и операции над ними. 2. Определители и их свойства. Вычисление определителей. А = ЭЛЕМЕНТЫ ЛИНЕЙНОЙ ЛГЕБРЫ. Матрицы и операции над ними.. Определители и их свойства. Вычисление определителей. Матрицы и операции над ними Определение. Матрицей размера m n, где m- число строк, n- число

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А 8 Методические рекомендации по выполнению контрольны работ, курсовы работ К О Н Т Р О Л Ь Н А Я Р А Б О Т А Д и с ц и п л и н а «М а т е м а т и к а» ) Решить систему линейны уравнений методом Гаусса 7

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.2

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.2 Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Лекция 12 Аннотация Вырожденные и невырожденные матрицы Приведение квадратной невырожденной матрицы к единичной с помощью элементарных

Подробнее

Лекция 1. Работа с матрицами. ( ) Количество строк и столбцов матрицы называется размерностью. ( )

Лекция 1. Работа с матрицами. ( ) Количество строк и столбцов матрицы называется размерностью. ( ) Лекция 1 Работа с матрицами. 1. Основные понятия. Определение. Матрицей размерности чисел, содержащая строк и столбцов. называется таблица пронумерованных Исходя из такого определения матрицы, можно сделать

Подробнее

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева МАТЕМАТИКА Методические рекомендации и задания контрольной работы для студентов, обучающихся по заочной форме по направлениям «Менеджмент», «Экономика» Составитель: старший преподаватель Н А Кривошеева

Подробнее

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

УДК ББК МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ. Составитель: Н.А. Пинкина КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УДК ББК Составитель: Н.А. Пинкина КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Линейная алгебра. Решение типовых примеров. Варианты контрольных

Подробнее

ТЕКСТЫ ЛЕКЦИЙ по учебной дисциплине

ТЕКСТЫ ЛЕКЦИЙ по учебной дисциплине ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ «САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ» Кафедра высшей математики Допущены к проведению занятий в - учгоду Заведующий кафедрой профессор АП Господариков

Подробнее

Лекция 1: Определители второго и третьего порядков

Лекция 1: Определители второго и третьего порядков Лекция 1: Определители второго и третьего порядков Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы начинаем

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgray 5 setgray Лекция 3 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Основные определения Рассмотрим следующую систему m уравнений относительно n неизвестных в поле K: a x + a 2 + + a nx n b, a 2 x + a 2 2 + + a2 nx

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» Кафедра «Математический анализ»

Подробнее

Матрицы и определители. Линейная алгебра

Матрицы и определители. Линейная алгебра Матрицы и определители Линейная алгебра Определение матрицы Числовой матрицей размера mxn называется совокупность чисел, расположенных в виде таблицы, содержащей m строк и n столбцов 11 21... m1 12......

Подробнее

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса Лекция 6 Методы решения СЛАУ: матричный и Гаусса Аннотация: Доказывается теорема о базисном миноре Кратко излагается суть метода Гаусса Приводятся пример решения системы этим методом Доказывается теорема

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений ) Понятие СЛАУ ) Правило Крамера решения СЛАУ ) Метод Гаусса 4) Ранг матрицы, теорема Кронекера-Капелли 5) Решение СЛАУ обращением матриц, понятие обусловленности матриц ) Понятие СЛАУ О. СЛАУ система

Подробнее

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры

МОДУЛЬ 1. Векторная алгебра и аналитическая геометрия. Элементы линейной алгебры МОДУЛЬ Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Леция Понятие матрицы и определителя Свойства определителей Аннотация: В лекции указывается на применение определителей для

Подробнее

С.Ж. КАРАТАБАНОВА ЛИНЕЙНАЯ АЛГЕБРА

С.Ж. КАРАТАБАНОВА ЛИНЕЙНАЯ АЛГЕБРА АЛМАТИНСКИЙ ФИЛИАЛ НЕГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ ПРОФСОЮЗОВ» СЖ КАРАТАБАНОВА ЛИНЕЙНАЯ АЛГЕБРА задания

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Тема 3: Определители

Тема 3: Определители Тема 3: Определители А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров Начало

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст 1.1

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст 1.1 Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст 1.1 Аннотация Определитель матрицы произвольного порядка. Вычисление определителей 2-ого и 3-его порядков. Миноры и алгебраические

Подробнее

МАТЕМАТИКА ЛИНЕЙНАЯ АЛГЕБРА

МАТЕМАТИКА ЛИНЕЙНАЯ АЛГЕБРА ООО «Резольвента», wwwresolventru, resolvent@listru, (95) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

1. Линейные системы и матрицы

1. Линейные системы и матрицы 1. Линейные системы и матрицы 1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить. Произведение C матриц A и B определяется как m p m p A B ij = A ik B kj. Операция не коммутативна.

Подробнее

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40 Линейная алгебра Матрицы и определители Ранг матрицы Линейная алгебра (лекция 4) 2 / 40 Выберем в матрице A размера m n произвольные k строк и k столбцов, k min(m, n). Линейная алгебра (лекция 4) 3 / 40

Подробнее

Теорема Кронекера-Капелли

Теорема Кронекера-Капелли Установить совместность и решить систему линейных уравнений 5xx x xx 5x 0 x4x x 0 а) по формулам Крамера, б) матричным способом, в) методом Гаусса Совместность Совместность системы можно установить: а)

Подробнее

3. Определители высших порядков

3. Определители высших порядков Определители высших порядков Понятие определителя п-го порядка и его основные свойства Понятие определителя п-го порядка вводится на основе изучения структуры определителей -го и -го порядков Так например

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Подробнее

РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ

РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ ЛЕКЦИЯ 11 РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ 1 РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ Определение 1. Определитель матрицы,

Подробнее

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида...

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида... Системы линейных алгебраических уравнений Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида a a a, a a a,, a a a Ее можно представить в виде матричного уравнения

Подробнее

2. Решение произвольных систем линейных алгебраических уравнений

2. Решение произвольных систем линейных алгебраических уравнений Решение произвольных систем линейных алгебраических уравнений Выше рассматривались в основном квадратные системы линейных уравнений число неизвестных в которых совпадает с числом уравнений В настоящем

Подробнее

Линейная алгебра. Матрицы

Линейная алгебра. Матрицы Линейная алгебра. Матрицы вводные определения и примеры) Предуведомление: ниже лишь краткий конспект, не предназначенный для замены имеющихся учебных пособий. Шаги решения задачи с использованием математики:.

Подробнее

Метод Гаусса (метод исключения неизвестных)

Метод Гаусса (метод исключения неизвестных) Метод Гаусса (метод исключения неизвестных) Две системы называются эквивалентными (равносильными) если их решения совпадают. К эквивалентной системе можно перейти с помощью элементарных преобразований

Подробнее

Тема 2-5: Ранг матрицы

Тема 2-5: Ранг матрицы Тема 2-5: Ранг матрицы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр) В

Подробнее

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a

a 2 1x 1 + a 2 2x a 2 nx n = b 2, a m 1 x 1 + a m 2 x a m n x n = b m. a m 1 a m 2... a m n b m AX = B, a 1 1 a Лекция 5 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Рассмотрим систему, состоящую из m линейных уравнений с n неизвестными: a x + a x + + a nx n = b, a x + a x + + a nx n = b, a m x + a m x + + a m n x n = b m Сокращенно

Подробнее

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( )

5.4. МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ( ) МЕТОД ГАУССА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Пусть дана система () m линейных уравнений с неизвестными Для ее решения нужно выполнить следующие действия: Составить расширенную матрицу (7) системы: m

Подробнее

МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ НГ ЧЕРНЫШЕВСКОГО Кафедра дифференциальных уравнений и прикладной математики АС Суслова МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Учебное пособие

Подробнее

Линейная алгебра. Матрицы

Линейная алгебра. Матрицы Линейная алгебра. Матрицы (вводные определения и примеры) Предуведомление: ниже лишь краткий конспект, не предназначенный для замены имеющихся учебных пособий. Под матрицей в математике понимается таблица,

Подробнее

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ ДК Агишева СА Зотова ВБ Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ Волгоград Тема Матрицы Основные действия над ними Обратная матрица Матричный способ решения систем линейных

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

Алгебра и теория чисел

Алгебра и теория чисел Московский международный институт эконометрики информатики финансов и права Балюкевич ЭЛ Романников АН Алгебра и теория чисел Москва УДК ББК А Балюкевич ЭЛ Романников АН Алгебра и теория чисел // Московский

Подробнее

ДИСЦИПЛИНА «ВЫСШАЯ МАТЕМАТИКА» 1 курс, 1 семестр. ТЕМА 1. Матричная алгебра Е =. Заочная форма обучения. Действия над матрицами

ДИСЦИПЛИНА «ВЫСШАЯ МАТЕМАТИКА» 1 курс, 1 семестр. ТЕМА 1. Матричная алгебра Е =. Заочная форма обучения. Действия над матрицами ДИСЦИПЛИНА «ВЫСШАЯ МАТЕМАТИКА» курс, семестр Заочная форма обучения ТЕМА Матричная алгебра При решении экономических задач применяются методы экономико-математического моделирования, использующие решение

Подробнее

Министерство образования и науки РФ. Российский государственный университет нефти и газа имени И. М. Губкина. Кафедра высшей математики С.И.

Министерство образования и науки РФ. Российский государственный университет нефти и газа имени И. М. Губкина. Кафедра высшей математики С.И. Министерство образования и науки РФ Российский государственный университет нефти и газа имени И М Губкина Кафедра высшей математики СИ ВАСИН ЛИНЕЙНАЯ АЛГЕБРА Учебно-методическое пособие для студентов Москва

Подробнее

Министерство образования Российской Федерации

Министерство образования Российской Федерации Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

1. Определители. a11 a12. a21 a22

1. Определители. a11 a12. a21 a22 . Определители. Определитель второго порядка Пусть задана таблица четырех чисел, расположенных в две строки и в два столбца 2 () 2 22 Элементы а, а 2 образуют первую строку, элементы а 2, а 22 образуют

Подробнее

Семинар 7. Линейная алгебра

Семинар 7. Линейная алгебра 1 Семинар 7. Линейная алгебра Теоретические вопросы для самостоятельного изучения: 1. Определители и их свойства. 2. Матрица. Виды матриц. 3. Действия над матрицами 4. Обратная матрица. Решение матричных

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее