Тема 6. Новые источники энергии и способы их использования. Ядерные реакции на быстрых нейтронах Реактор на быстрых нейтронах ядерный реактор,

Save this PDF as:
Размер: px
Начинать показ со страницы:

Download "Тема 6. Новые источники энергии и способы их использования. Ядерные реакции на быстрых нейтронах Реактор на быстрых нейтронах ядерный реактор,"

Транскрипт

1 Тема 6. Новые источники энергии и способы их использования. Ядерные реакции на быстрых нейтронах Реактор на быстрых нейтронах ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны с энергией > 10 5 эв. Названия реакторов связаны с особенностями происходящих в них физических процессов: рождением, движением и поглощением нейтронов, вызывающих деление ядерного топлива. Энергия нейтронов в момент их рождения в реакторе очень высока: они движутся со скоростью несколько тысяч километров в секунду. Это «быстрые» нейтроны. В результате столкновений с окружающими атомами их энергия и скорость уменьшаются. Этот процесс называется замедлением нейтронов. Особенно эффективно замедляются нейтроны в воде и в чистом графите, которые и используются в ядерных реакторах в качестве замедлителя нейтронов. Нейтроны, замедленные до скорости теплового движения атомов, т.е. до нескольких километров в секунду, в ядерной физике принято называть «тепловыми». Тепловые нейтроны имеют наибольшую вероятность вызвать деление ядер топлива. Поэтому реакторы, в которых процесс деления ядер происходит под действием тепловых нейтронов, требуют для своего запуска наименьшего количества ядерного горючего. Иными словами, их «критическая масса» минимальна, что объясняет преимущественное применение тепловых ректоров в современной атомной энергетике. В реакторах без замедления нейтронов процесс деления ядерного топлива происходит при взаимодействии с быстрыми нейтронами. Поэтому и называются они реакторами на быстрых нейтронах, или просто «быстрыми» реакторами. В таких реакторах горение ядерного топлива начинается при большей критической массе ядерного горючего, чем в тепловых. Соответственно и стоимость их топливной загрузки выше. В чем же преимущество быстрых реакторов? В их уникальной возможности обеспечивать себя топливом, и более того, обеспечивать топливом другие ядерные установки.

2 Существует всего три вида атомов, которые могут осуществлять цепную ядерную реакцию: плутоний - Pu-239 и два изотопа урана - U-235 и U-233. Из них только уран 235 встречается в природе, и то в малых количествах, а уран 233 и плутоний 239 в природе практически не встречаются. Они образуются в результате бомбардировки нейтронами изотопов урана U-238 и тория Th-232, которые имеются в природе в относительно большом количестве, причем торий приблизительно в три раза более распространен в земной коре, чем уран. Чтобы резко расширить топливную базу атомной энергетики, необходимо заставить работать в реакторах весь природный уран, включая его «негорючую» часть - уран U-238. Именно такая возможность и реализуется в быстрых реакторах. Применяя реакторы на быстрых нейтронах (реакторы-размножители, реакторы-бридеры), можно гораздо полнее использовать природное ядерное горючее. Применительно к этим реакторам можно рассматривать Pu-239 и U- 233 как исходное ядерное топливо, а U-238 и Th как своего рода сырье, из которого в реакторе получается вторичное ядерное топливо, то есть новые порции Pu-239 и U-233.Таким образом, в реактор размножитель загружается исходное ядерное топливо (Pu-239 или U-233) и атомное сырье ( U-238 или Th-232). Реактор производит тепловую энергию, преобразуемую на АЭС в электрическую, и дает вторичное ядерное топливо. В одних реакторах расходуемое и воспроизводимое ядерное топливо - Pu-239, в других U Важной физической особенностью быстрого реактора является то, что в нем образуется больше нейтронов, которые могут поглотиться в уране U Поэтому и процесс образования плутония в нем идет намного быстрее, чем в любом другом реакторе. В результате за время работы в быстром реакторе накапливается примерно столько плутония, сколько сгорает первоначально загруженного урана U-235. Если же быстрый реактор загрузить сразу плутониевым топливом в смеси с неделящимся ураном U-

3 238, то нового плутония в нем образуется даже больше, чем сгорает в процессе работы. Получается, что быстрый реактор обладает уникальным и очень ценным свойством он способен воспроизводить ядерное топливо, полностью в процессе своей работы восполняя его выгорание и даже увеличивая массу горючего. Рис. 6.1 Реакции расщепления в реакторах на тепловых и на быстрых нейтронах Таким образом, реакторы на быстрых нейтронах производят энергию при более полном использовании U-238 в реакторных топливных сборках путем сжигания плутония, вместо расщепляющегося изотопа U-235, применяемого в тепловых реакторах. Если такие реакторы используются для производства большого количества плутония (большего, чем они потребляют), их называют реакторами-размножителями (бридерами) на быстрых нейтронах. Многолетний интерес к таким реакторам как раз и обусловлен их способностью производить больше топлива, чем они

4 потребляют. Кроме того, они могут утилизировать оружейный уран и плутоний и сжигать ядерные отходы. Обычные реакторы на тепловых нейтронах производят два "избыточных" материала: плутоний (появляется при поглощении ураном-238 нейтронов и отделяется затем в процессе переработки) и обедненный уран (получается при обогащении природного урана). Плутоний используется в реакторах на быстрых нейтронах как основное топливо и в то же самое время плутоний образуется из U-238 обедненного урана, которым окружают активную зону реактора в виде специальных "бланкет". Другими словами, реактор одновременно и "сжигает", и "производит" плутоний. В зависимости от конструкции реактора, произведенный расщепляющийся плутоний может использоваться либо в этом же реакторе, либо в будущих реакторахразмножителях, либо в обычных легко-водных реакторах. Реакторы на быстрых нейтронах имеют высокую тепловую эффективность, обусловленную высокотемпературным режимом их эксплуатации. Охлаждение активной зоны осуществляется в них с помощью жидкого натрия. Хотя с химической точки зрения это довольно сложно, тем не менее, сделать это проще, чем использовать воду при очень высоком давлении. Опыт эксплуатации таких реакторов и экспериментальные исследования показали, что система охлаждения на основе жидкого металлического натрия надежнее, чем системы, использующие воду очень высокого давления или пар (в легко-водных реакторах). Ядерные реакторы, охлаждаемые легкой водой под большим давлением (до МПа), из-за невысокой (не более 374 о С) температуры воды на входе в парогенераторы имеют КПД энергетической установки 30-33%. Реакторы с жидкометаллическим охлаждением при давлении, необходимом для перекачки теплоносителя, могут иметь высокую (ограниченную стойкостью конструкционных материалов) температуру на входе в парогенераторы, что повышает КПД до 40-43%. В итоге для выработки одного и того же количества электроэнергии в ядерных реакторах

5 с высокой температурой теплоносителя тратится меньше ядерного топлива, чем в легководных реакторах. Топливный цикл быстрых реакторов-размножителей позволяет извлечь больше энергии из первоначально добытого урана. Именно поэтому реакторы-размножители очень привлекательны для производства энергии. Именно быстрые реакторы смогут решить важнейшую проблему энергетики проблему надежного и долговременного обеспечения ее топливом. Естественно, что для этого доля быстрых реакторов в атомной энергетике должна быть немалой по крайней мере, 30 % от общего числа ядерных реакторов. Кроме того, должна быть налажена система переработки ядерного топлива с извлечением из него плутония. Устройства реактора на быстрых нейтронах. Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями топливных сборок образуют три зоны с различным обогащением по урану , 21 и 26% (изначально зон было только две, но, чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства). Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой, и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части. В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней головная часть, за которую сборку захватывают при

6 перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно. Для управления реактором используется 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» фотонейтронный источник (гамма-излучатель плюс бериллий). Рис. 6.2 Блок-схема энергетического реактора на быстрых нейтронах Теплоносители Теплоносителями в реакторе на быстрых нейтронах выступают расплавы металлов или солей. Наибольшее распространение получило использование натрия. Отметим, что с точки зрения эффективности воспроизводства, натрий не лучший выбор теплоносителя для быстрого реактора-наработчика. Хуже натрия может быть только вода. Лёгкий химический элемент Na (атомный вес всего лишь 23) превращается в активной зоне в замедлитель. Спектр нейтронов из-за этого существенно смягчается растёт доля нейтронов с

7 меньшими энергиями и показатели воспроизводства ядерного топлива падают. Однако у натрия есть немаловажные теплофизические и прочие преимущества над тяжёлыми теплоносителями типа свинца и свинцависмута, и поэтому конструкторам пришлось пойти на компромисс. Одним из следствий применения натрия в БН стало то, что процессы получения энергии деления и производства плутония в этих реакторах пространственно разделены. Новые делящиеся изотопы образуются в боковой и торцевых зонах воспроизводства, или бланкетах, окутывающих активную зону наподобие одеяла откуда и пошло их английское название blanket. Так же есть данные о проектах. электростанций на быстрых нейтронах с газовыми теплоносителями. Отдельно стоит уделить вниманию применению ртути как теплоносителя. Ртуть первоначально казалась перспективным теплоносителем. Это тяжелый металл, поэтому плохо замедляет нейтроны, спектр такого реактора очень быстрый, и коэффициент воспроизводства велик. Ртуть жидкость при комнатной температуре, что упрощает конструкцию (не нужен подогрев жидкометаллического контура для пуска), кроме того, планировалось направлять пары ртути непосредственно в турбину, что гарантировало очень высокий кпд при относительно низкой температуре. Для отработки ртутного теплоносителя был построен реактор БР-2 тепловой мощностью 100 квт. Однако, реактор проработал меньше года. Главным недостатком ртути являлась ее высокая коррозийная активность. За пять месяцев ртуть буквально растворила первый контур реактора, постоянно возникали течи. Другими недостатками ртути являются токсичность, дороговизна, большие затраты энергии на перекачку. В результате ртуть была признана бесперспективным теплоносителем. Уникальной особенностью БР-2 стал также выбор топлива - металлический плутоний (сплав σ-фазного плутония с галлием). Уран использовался только в зоне воспроизводства.

8 Реакторы на быстрых нейтронах не получили широкого распространения по ряду причин. В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии от экзотических свинцововисмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС). В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах. Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному распуханию. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, оно лишь чуть выше атмосферного». Основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. Российские, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Российские ученые успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А

9 французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен». Термоядерный синтез. Термоядерная реа кция разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счет кинетической энергии их теплового движения. Для того, чтобы произошла ядерная реакция, исходные атомные ядра должны преодолеть так называемый "кулоновский барьер" - силу электростатического отталкивания между ними. Для этого они должны иметь большую кинетическую энергию. Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а следовательно, нагревая вещество можно достичь ядерной реакции. Именно эту взаимосвязь нагревания вещества и ядерной реакции и отражает термин термоядерная реакция. Управляемый термоядерный синтез (УТС) синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерных взрывных устройствах), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий( 2 H) и тритий ( 3 H), а в более отдалённой перспективе гелий-3 ( 3 He) и бор-11 ( 11 B). Впервые задачу по управляемому термоядерному синтезу в Советском Союзе сформулировал и предложил для неё некоторое конструктивное решение советский физик Лаврентьев О. А. Кроме него важный вклад в решение проблемы внесли такие выдающиеся физики, как А. Д. Сахаров и И.

10 Е. Тамм, а также Л. А. Арцимович, возглавлявший советскую программу по управляемому термоядерному синтезу с 1951 года. Исторически вопрос управляемого термоядерного синтеза на мировом уровне возник в середине XX века. Известно, что И. В. Курчатов в 1956 году высказал предложение о сотрудничестве учёных-атомщиков разных стран в решении этой научной проблемы. Это произошло во время посещения Британского ядерного центра «Харуэлл». Типы реакций Реакция синтеза заключается в следующем: два или больше атомных ядра в результате применения некоторой силы сближаются настолько, чтобы силы, действующие на таких расстояниях, преобладали над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего формируется новое ядро. При создании нового ядра выделится большая энергия сильного взаимодействия. По известной формуле E=mc², высвободив энергию, система нуклонов потеряет часть своей массы. Атомные ядра, имеющие небольшой электрический заряд, проще свести на нужное расстояние, поэтому тяжелые изотопы водорода являются одними из лучших видов топлива для реакции синтеза. Установлено, что смесь двух изотопов, дейтерия и трития, требует менее всего энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надежнее контролироваться, или, что более важно, производить меньше нейтронов. Особенный интерес вызывают так называемые «безнейтронные» реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость

11 эксплуатации реактора, существенно уменьшив затраты на вывод из эксплуатации и утилизацию. Проблемой остается то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом. Схема реакции дейтерий-тритий Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива. Реакция дейтерий + тритий (Топливо D-T) Самая легко осуществимая реакция дейтерий + тритий: 2H + 3H = 4He + n при энергетическом выходе 17,6 МэВ (мегаэлектронвольт). Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты дешевы. Недостаток выход нежелательной нейтронной радиации. Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона:

12 Токамак (Тороидальная Камера с Магнитными Катушками) тороидальная установка для магнитного удержания плазмы. Плазма удерживается не стенками камеры, которые не способны выдержать её температуру, а специально создаваемым магнитным полем. Особенностью токамака является использование электрического тока, протекающего через плазму для создания тороидального поля, необходимого для равновесия плазмы. Реакция дейтерий + гелий-3 Существенно сложнее, на пределе возможного, осуществить реакцию дейтерий + гелий-3 2H + 3He = 4He + p при энергетическом выходе 18,4 МэВ. Условия её достижения значительно сложнее. Гелий-3, кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах в настоящее время не производится. Однако может быть получен из трития, получаемого в свою очередь на атомных электростанциях; или добыт на Луне. Сложность проведения термоядерной реакции можно характеризовать тройным произведением ntτ (плотность на температуру на время удержания). По этому параметру реакция D-3He примерно в 100 раз сложнее, чем D-T. Реакция между ядрами дейтерия (D-D, монотопливо) Также возможны реакции между ядрами дейтерия, они идут немного труднее реакции с участием гелия-3: В дополнение к основной реакции в ДД-плазме также происходят:

13 Эти реакции медленно протекают параллельно с реакцией дейтерий + гелий-3, а образовавшиеся в ходе них тритий и гелий-3 с большой вероятностью немедленно реагируют с дейтерием. Другие типы реакций Возможны и некоторые другие типы реакций. Выбор топлива зависит от множества факторов его доступности и дешевизны, энергетического выхода, лёгкости достижения требующихся для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и т. д. «Безнейтронные» реакции Наиболее перспективны так называемые «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и порождает наведенную радиоактивность в конструкции реактора. Реакция дейтерий + гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода. Реакции на лёгком водороде. Стоит отметить, что протон-протонные реакции синтеза, идущие в звёздах, не рассматриваются как перспективное термоядерное горючее. Протон-протонные реакции идут через слабое взаимодействие с излучением

14 нейтрино, и по этой причине требуют астрономических размеров реактора для сколь-либо заметного энерговыделения. p + p ²D + e+ + νe Мэв Ядерная реакция лития-6 с дейтерием 6Li(d,α)α Управляемый термоядерный синтез возможен при одновременном выполнении двух условий: Скорость соударения ядер соответствует температуре плазмы: T > 108 K (для реакции D-T). Соблюдение критерия Лоусона: nτ > 1014 см 3 с (для реакции D-T), где n плотность высокотемпературной плазмы, τ время удержания плазмы в системе. От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции. В настоящее время (2012) управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного

15 экспериментального термоядерного реактора (ITER) находится в начальной стадии. Термоядерная энергетика и гелий-3 Запасы гелия-3 на Земле составляют в атмосфере около т и гораздо больше в литосфере, на Луне он находится в значительном количестве: до 10 млн тонн (по минимальным оценкам 500 тысяч тонн В то же время его можно легко получать и на Земле из широко распространённого в природе лития-6 на существующих ядерных реакторах деления. Наиболее простым способом осуществления термоядерной реакции является синтез дейтерия и трития с выделением гелия-4 и «быстрого» нейтрона: D + T 4He (3,5 МэВ) + n (14,1 МэВ). Однако при этом бо льшая часть (более 80 %) выделяемой кинетической энергии приходится именно на нейтрон. В результате столкновений осколков с другими атомами эта энергия преобразуется в тепловую. Помимо этого, быстрые нейтроны создают значительное количество радиоактивных отходов. В отличие от этого, синтез дейтерия и гелия-3 почти не производит радиоактивных продуктов: D + 3He 4He (3,7 МэВ) + p (14,7 МэВ), где p протон. Это позволяет использовать более простые и эффективные системы преобразования кинетической реакции синтеза, такие как магнитогидродинамический генератор. Вопросы для самоконтроля. 1. Что такое управляемый термоядерный синтез? 2. Назовите условие протекания ядерной реакции 3. В чем заключается реакция синтеза7 4. Чем вызван особый интерес к «безнейтронной» реакции 5. Перечислите основные типы реакций.


Лекция 11 Ядерные и термоядерные реакторы Основные понятия о реакторах Специалистам-атомщикам известно, что существующая технология атомной

Лекция 11 Ядерные и термоядерные реакторы Основные понятия о реакторах Специалистам-атомщикам известно, что существующая технология атомной Лекция 11 Ядерные и термоядерные реакторы Основные понятия о реакторах Специалистам-атомщикам известно, что существующая технология атомной энергетики, основанная на так называемых "тепловых" ядерных реакторах

Подробнее

Реакторы на быстрых нейтронах

Реакторы на быстрых нейтронах Реакторы на быстрых нейтронах А. А. Новохатский Ядерная энергетика занимает значительное место в энергообеспечении потребностей человечества. По данным за 2012 год, около 11% всей энергии было выработано

Подробнее

Репозиторий БНТУ. А к т у а л ь н ы е п р о б л е м ы э н е р г е т и к и

Репозиторий БНТУ. А к т у а л ь н ы е п р о б л е м ы э н е р г е т и к и А к т у а л ь н ы е п р о б л е м ы э н е р г е т и к и 2017 486 УДК 621.311.25 Основные направления развития ядерных реакторов АЭС Хоронеко В.А. Научный руководитель к.т.н., доцент ЧИЖ В.А. История ядерной

Подробнее

ЛЕКЦИЯ 12 РЕАКЦИИ ПОД ДЕЙСТВИЕМ НЕЙТРОНОВ. ЯДЕРНЫЕ РЕАКТОРЫ

ЛЕКЦИЯ 12 РЕАКЦИИ ПОД ДЕЙСТВИЕМ НЕЙТРОНОВ. ЯДЕРНЫЕ РЕАКТОРЫ ЛЕКЦИЯ 12 РЕАКЦИИ ПОД ДЕЙСТВИЕМ НЕЙТРОНОВ. ЯДЕРНЫЕ РЕАКТОРЫ 1. Нейтронная физика С помощью нейтронов можно изучать кристаллическую и магнитную структуру вещества и другие параметры. По сути основой ядерных

Подробнее

Тест по ядерной физике система подготовки к тестам Gee Test. oldkyx.com

Тест по ядерной физике система подготовки к тестам Gee Test. oldkyx.com Тест по ядерной физике система подготовки к тестам Gee Test oldkyx.com Список вопросов по ядерной физике 1. С какой скоростью должен лететь протон, чтобы его масса равнялась массе покоя α-частицы mα =4

Подробнее

Деление тяжелых ядер нейтронами

Деление тяжелых ядер нейтронами Атомная энергетика Деление тяжелых ядер нейтронами Эта реакция состоит в том, что тяжелое ядро, поглотив нейтрон, делится на 2 (редко на 3 или 4) обычно неравных по массе осколка. При этом выделяется ок.

Подробнее

ЯДЕРНАЯ ЭНЕРГЕТИКА В.А.

ЯДЕРНАЯ ЭНЕРГЕТИКА В.А. ЯДЕРНАЯ ЭНЕРГЕТИКА В.А. Грачев, научный руководитель Центра глобальной экологии факультета глобальных процессов МГУ им. М.В. Ломоносова, профессор, д.т.н., член-корр. РАН ОПРЕДЕЛЕНИЕ Ядерная (атомная)

Подробнее

238 U при бомбодировке быстрыми нейтронами.

238 U при бомбодировке быстрыми нейтронами. Тема 6. Эффективность использования ядерных энергоресурсов. Ядерная энергия освобождается в виде тепловой в процессе торможения продуктов ядерного деления или синтеза атомных ядер, движущихся с большими

Подробнее

Ядерная физика и Человек

Ядерная физика и Человек Ядерная физика и Человек ЯДЕРНЫЕ РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ Мировые запасы урана, тонн Олимпийская Плотина в Австралии 18,5 % разведанных мировых запасов урана Шахта Река МакАртур в Канаде 13 % мировой

Подробнее

Естественный фон. Рентгеновское и гаммаизлучения. Быстрые нейтроны. Альфаизлучение. Медленные нейтроны. k 1 1-1,

Естественный фон. Рентгеновское и гаммаизлучения. Быстрые нейтроны. Альфаизлучение. Медленные нейтроны. k 1 1-1, Тема: Лекция 54 Строение атомного ядра. Ядерные силы. Размеры ядер. Изотопы. Дефект масс. Энергия связи. Радиоактивность. Закон радиоактивного распада. Свойства ионизирующих излучений. Биологическое действие

Подробнее

В результате столкновения ядра урана с частицей произошло деление ядра урана, сопровождающееся излучением - квантов в соответствии с уравнением

В результате столкновения ядра урана с частицей произошло деление ядра урана, сопровождающееся излучением - квантов в соответствии с уравнением Ядерные реакции 1. В результате столкновения ядра урана с частицей произошло деление ядра урана, сопровождающееся излучением - квантов в соответствии с уравнением 2. Ядро урана столкнулось с протоном электроном

Подробнее

ДЕЛЕНИЕ. Рождение и жизнь атомных ядер. Энергетика

ДЕЛЕНИЕ. Рождение и жизнь атомных ядер. Энергетика Микромир и Вселенная 2017 ДЕЛЕНИЕ Рождение и жизнь атомных ядер. Энергетика 2 N-Z диаграмма атомных ядер α-распад β+ распад β- распад деление СЛИЯНИЕ Удельная энергия связи ядра ε(a,z) 0,8 0,6 ДЕЛЕНИЕ

Подробнее

Семинар 12. Деление атомных ядер

Семинар 12. Деление атомных ядер Семинар 1. Деление атомных ядер На устойчивость атомного ядра влияют два типа сил: короткодействующие силы притяжения между нуклонами, дальнодействующие электромагнитные силы отталкивания между протонами.

Подробнее

ИЗОТОПЫ: СВОЙСТВА ПОЛУЧЕНИЕ ПРИМЕНЕНИЕ. Инжечик Лев Владиславович. Кафедра общей физики Лекция 22

ИЗОТОПЫ: СВОЙСТВА ПОЛУЧЕНИЕ ПРИМЕНЕНИЕ. Инжечик Лев Владиславович. Кафедра общей физики Лекция 22 ИЗОТОПЫ: СВОЙСТВА ПОЛУЧЕНИЕ ПРИМЕНЕНИЕ Инжечик Лев Владиславович Кафедра общей физики inzhechik@stream.ru Термоядерные реакции Пороги первых пяти реакций порядка 0.1 MeV (кулоновский барьер). Последняя

Подробнее

Микромир и Вселенная

Микромир и Вселенная Микромир и Вселенная ДЕЛЕНИЕ ЯДЕР Структура материи Молекулы T = 300 К Атомы ( N, Z) e Атомные ядра ( N, Z ) e Стабильные частицы p протон (uud) e n нейтрон (udd) 885,7 c n pe e n Адроны Лептоны Барионы

Подробнее

Рождение и жизнь атомных ядер

Рождение и жизнь атомных ядер Рождение и жизнь атомных ядер ДЕЛЕНИЕ ЯДЕР Деление ядер. История 1934 г. Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра. 1939 г. О. Ган и Ф. Штрассман

Подробнее

Ядерная физика и Человек

Ядерная физика и Человек Ядерная физика и Человек ДЕЛЕНИЕ ЯДЕР ЭНЕРГИЯ АННИГИЛЯЦИЯ АННИГИЛЯЦИЯ = 100 тонн угля Механика Химия Ядерная физика Энергия связи ядра W(A,Z) 2 M ( A, Z) c W ( A, Z) p 2 ( ) 2 n Z m c A Z m c Удельная

Подробнее

РЕФЕРАТ НА ТЕМУ: МГУ им. М.В. Ломоносова. «Атомная энергия. Принцип работы атомного реактора. Зачем обогащать уран» Физический факультет

РЕФЕРАТ НА ТЕМУ: МГУ им. М.В. Ломоносова. «Атомная энергия. Принцип работы атомного реактора. Зачем обогащать уран» Физический факультет МГУ им. М.В. Ломоносова Физический факультет РЕФЕРАТ НА ТЕМУ: «Атомная энергия. Принцип работы атомного реактора. Зачем обогащать уран» Выполнил: студент 2 курса, гр. 214 Туровецкий М.В. г. Москва, 2016

Подробнее

Ядро атома. Ядерные силы. Структура атомного ядра

Ядро атома. Ядерные силы. Структура атомного ядра Ядро атома. Ядерные силы. Структура атомного ядра На основе опытов Резерфорда была предложена планетарная модель атома: r атома = 10-10 м, r ядра = 10-15 м. В 1932 г. Иваненко и Гейзенберг обосновали протон-нейтронную

Подробнее

5. Бета- частица это. 6. В состав радиоактивного излучения входят. 7. Явление радиоактивности открыл. 8. Гамма - квант - это

5. Бета- частица это. 6. В состав радиоактивного излучения входят. 7. Явление радиоактивности открыл. 8. Гамма - квант - это БАНК ЗАДАНИЙ. ФИЗИКА.БАЗОВЫЙ УРОВЕНЬ.МОДУЛЬ 4. СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА.ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ АТОМНЫХ ЯДЕР. 1. Явление радиоактивности свидетельствует о том, что все вещества состоят из неделимых

Подробнее

Таблица Менделеева Радиоактивный распад Элементарные частицы. Атомная, ядерная физика

Таблица Менделеева Радиоактивный распад Элементарные частицы. Атомная, ядерная физика Таблица Менделеева Радиоактивный распад Элементарные частицы Атомная, ядерная физика Квантовые числа Квантовое число Определяемая величина Формула Диапазон значений Главное квантовое число Энергетические

Подробнее

Нуклонная модель ядра Гейзенберга Иваненко. Заряд ядра. Массовое число ядра. Изотопы

Нуклонная модель ядра Гейзенберга Иваненко. Заряд ядра. Массовое число ядра. Изотопы 531 Нуклонная модель ядра Гейзенберга Иваненко Заряд ядра Массовое число ядра Изотопы 28 (С1)1 На рисунке показаны два трека заряженных частиц в камере Вильсона, помещенной в однородное магнитное поле,

Подробнее

Тема 22. Физика атомного ядра и элементарных частиц. 1. Общие сведения об атомных ядрах

Тема 22. Физика атомного ядра и элементарных частиц. 1. Общие сведения об атомных ядрах Тема 22. Физика атомного ядра и элементарных частиц 1. Общие сведения об атомных ядрах В 1932 г. была открыта новая элементарная частица с массой примерно равной массе протона, но имеющая электрического

Подробнее

Выберите один из 4 вариантов ответа: 1) 2 2) 1 3) 3 4) На рисунке угол падения не обозначен

Выберите один из 4 вариантов ответа: 1) 2 2) 1 3) 3 4) На рисунке угол падения не обозначен Материалы для подготовки к тестированию по физике 9класс Законы отражения света 1.На рисунке показа световой луч, падающий на зеркальную поверхность. Укажите, какой из углов является углом падения? 1)

Подробнее

И.И. Гуревич, Я.Б. Зельдович, И.Я. Померанчук, Ю.Б. Харитон

И.И. Гуревич, Я.Б. Зельдович, И.Я. Померанчук, Ю.Б. Харитон 539(09) ИСПОЛЬЗОВАНИЕ ЯДЕРНОЙ ЭНЕРГИИ ЛЕГКИХ ЭЛЕМЕНТОВ И.И. Гуревич, Я.Б. Зельдович, И.Я. Померанчук, Ю.Б. Харитон Предлагается использование для взрывных целей ядерной реакции превращения дейтерия в водород

Подробнее

Нейтронные ядерные реакции

Нейтронные ядерные реакции Нейтронные ядерные реакции Нейтронные ядерные реакции Ядерная реакция это процесс и результат взаимодействия ядер с различными ядерными частицами (альфа-, бета-частицами, протонами, нейтронами, гамма-квантами

Подробнее

Ядерная физика и Человек

Ядерная физика и Человек Ядерная физика и Человек ЯДЕРНЫЕ РЕАКТОРЫ НА ТЕПЛОВЫХ НЕЙТРОНАХ Деление ядер. История 1934 г. Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра. 1939 г.

Подробнее

Лекция Атомное ядро. Дефект массы, энергия связи ядра.

Лекция Атомное ядро. Дефект массы, энергия связи ядра. 35 Лекция 6. Элементы физики атомного ядра [] гл. 3 План лекции. Атомное ядро. Дефект массы энергия связи ядра.. Радиоактивное излучение и его виды. Закон радиоактивного распада. 3. Законы сохранения при

Подробнее

11. Горение водорода источник энергии звезд Начало звёздной эры относится примерно к 1 млрд. лет с момента Большого взрыва, когда формируются первые

11. Горение водорода источник энергии звезд Начало звёздной эры относится примерно к 1 млрд. лет с момента Большого взрыва, когда формируются первые 11. Горение водорода источник энергии звезд Начало звёздной эры относится примерно к 1 млрд. лет с момента Большого взрыва, когда формируются первые галактики. Солнечная система возникла сравнительно поздно

Подробнее

ЛЕКЦИЯ 2 ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ

ЛЕКЦИЯ 2 ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ ЛЕКЦИЯ ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ.1. Ионизирующее излучение (ИИ). ИИ поток частиц заряженных или нейтральных и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации или

Подробнее

Введение в ядерную физику

Введение в ядерную физику 1. Предмет «Ядерная физика». 2. Основные свойства атомных ядер. 3. Модели атомных ядер. 4. Радиоактивность. 5. Взаимодействие излучения с веществом. 1 6. Ядерные реакции. Законы сохранения в ядерных реакциях.

Подробнее

Физическая и ядерная безопасность. Лекция 1. Введение

Физическая и ядерная безопасность. Лекция 1. Введение Физическая и ядерная безопасность Лекция 1. Введение 2 Что такое ядерные материалы? ядерные материалы (ЯМ) материалы, содержащие делящиеся вещества, или способные их воспроизвести (например, уран- 238);

Подробнее

Название курса на английском языке. Nuclear Physics and the Man. Ответственный за курс доцент М.Е. Степанов

Название курса на английском языке. Nuclear Physics and the Man. Ответственный за курс доцент М.Е. Степанов Название курса на английском языке Nuclear Physics and the Man Ответственный за курс доцент М.Е. Степанов Аннотация к курсу Ядерная физика и Человек Цикл лекций представляет собой введение в современную

Подробнее

Многопрофильная инженерная олимпиада «Будущее России» Профиль «Ядерная энергетика и технологии» Отборочный тур гг.

Многопрофильная инженерная олимпиада «Будущее России» Профиль «Ядерная энергетика и технологии» Отборочный тур гг. Многопрофильная инженерная олимпиада «Будущее России» Профиль «Ядерная энергетика и технологии» Отборочный тур 2014-15гг. 7-8 класс 1. Что такое радиация, где и при каких условиях она возникает? Каковы

Подробнее

Лекция 23 Атомное ядро

Лекция 23 Атомное ядро Сегодня: воскресенье, 8 декабря 2013 г. Лекция 23 Атомное ядро Содержание лекции: Состав и характеристики атомного ядра Дефект массы и энергия связи ядра Ядерные силы Радиоактивность Ядерные реакции Деление

Подробнее

Таблица Менделеева Радиоактивный распад Элементарные частицы. Атомная, ядерная физика

Таблица Менделеева Радиоактивный распад Элементарные частицы. Атомная, ядерная физика Таблица Менделеева Радиоактивный распад Элементарные частицы Атомная, ядерная физика Квантовые числа Квантовое число Определяемая величина Формула Диапазон значений Главное квантовое число Энергетические

Подробнее

Блок - 4 Строение атома и атомного ядра. Использование энергии атомных ядер

Блок - 4 Строение атома и атомного ядра. Использование энергии атомных ядер Н.А.Кормаков 1 9 класс Содержание Блок - 4 Строение атома и атомного ядра. Использование энергии атомных ядер БЛОК -4 Содержание опорного конспекта Стр. Параграф учебника Лист -4 вопросов ОК 9.4.35 49

Подробнее

В приложении Радиоактивный распад. В приложении Задание Цепные ядерные реакции. Ядерный реактор

В приложении Радиоактивный распад. В приложении Задание Цепные ядерные реакции. Ядерный реактор Календарно-тематическое планирование по ФИЗИКЕ для 11 класса (заочное обучение) на II полугодие 2016-2017 учебного года Базовый учебник: ФИЗИКА 11, Г.Я. Мякишев и др., М.:«Просвещение», 2004 Учитель: Горев

Подробнее

Контрольный тест по физике Строение атома и атомного ядра Использование энергии атомных ядер 9 класс. 1 вариант

Контрольный тест по физике Строение атома и атомного ядра Использование энергии атомных ядер 9 класс. 1 вариант Контрольный тест по физике Строение атома и атомного ядра Использование энергии атомных ядер 9 класс 1 вариант 1. Модель атома Резерфорда описывает атом как 1) однородное электрически нейтральное тело

Подробнее

Ядерный реактор: мультимедийный урок физики Урок физики в 11 классе В. С. Головейко, учитель физики высшей категории

Ядерный реактор: мультимедийный урок физики Урок физики в 11 классе В. С. Головейко, учитель физики высшей категории Ядерный реактор: мультимедийный урок физики Урок физики в 11 классе В. С. Головейко, учитель физики высшей категории Тема урока: Деление тяжелых ядер. Цепные ядерные реакции. Ядерный реактор. Цели урока:

Подробнее

Решение задач ЕГЭ часть С: Физика атома и атомного ядра

Решение задач ЕГЭ часть С: Физика атома и атомного ядра C11 На рисунке показаны два трека заряженных частиц в камере Вильсона, помещенной в однородное магнитное поле, перпендикулярное плоскости рисунка Трек I принадлежит протону Какой из частиц (протону, электрону

Подробнее

U +n = A + B + 2,46 n + β Мэв

U +n = A + B + 2,46 n + β Мэв Принцип действия ЯР Изотопы некоторых химических элементов из существующих в природе являются неустойчивыми и распадаются с испусканием -, - или -излучения. Эти процессы сопровождаются выделением теплоты,

Подробнее

Деление и синтез. Лекция 16

Деление и синтез. Лекция 16 Деление и синтез Лекция 16 Содержание Принцип деления Механизм деления Схема реакции деления Урана Сечение захвата нейтронов разными изотопами Обогащение урана Размножение нейтронов Неуправляемая реакция

Подробнее

1

1 5.3 Физика атомного ядра 5.3.1 Нуклонная модель ядра Гейзенберга-Иваненко. Заряд ядра. Массовое число ядра. Изотопы. В 1911 году Резерфорд произвел опыт по «рассеиванию альфа и бета частиц». Резерфорд

Подробнее

ЯДЕРНАЯ ЭНЕРГИЯ И ЯДЕРНАЯ ЭНЕРГЕТИКА

ЯДЕРНАЯ ЭНЕРГИЯ И ЯДЕРНАЯ ЭНЕРГЕТИКА ЯДЕРНАЯ ЭНЕРГИЯ И ЯДЕРНАЯ ЭНЕРГЕТИКА кандидат геологоминералогических наук доцент О.А. Максимова Ядерная энергия - это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях. Ядерная энергетика

Подробнее

ЯДЕРНЫЕ РЕАКТОРЫ. Содержание.

ЯДЕРНЫЕ РЕАКТОРЫ. Содержание. ЯДЕРНЫЕ РЕАКТОРЫ Сегодня: пятница, 18 апреля 2014 г. Содержание. 1. Самоподдерживающая цепная реакция деления. 2. Критическая масса ядерных делящихся материалов. 3. Коэффициент размножения в бесконечной

Подробнее

Облученное ядерное топливо и новое поколение ядерных реакторов. Главный научный сотрудник лаборатории радиоэкологии ИГЕМ, д.т.н. В.Б.

Облученное ядерное топливо и новое поколение ядерных реакторов. Главный научный сотрудник лаборатории радиоэкологии ИГЕМ, д.т.н. В.Б. Облученное ядерное топливо и новое поколение ядерных реакторов Главный научный сотрудник лаборатории радиоэкологии ИГЕМ, д.т.н. В.Б. Иванов Проблемы обращения с облученным (отработавшим) ядерным топливом

Подробнее

24 Mg + (Q = МэВ) 23 Mg + n (Q = МэВ) 23 Na + e + + n e (Q = 8.51 МэВ).

24 Mg + (Q = МэВ) 23 Mg + n (Q = МэВ) 23 Na + e + + n e (Q = 8.51 МэВ). 1 Лекция 27 (Продолжение) В ходе дальнейшей эволюции звезды возможны ядерные реакции горения кремния. Характерные условия горения кремния - температура (3-5) 109 K, плотность 105-106 г/см3. С началом горения

Подробнее

1 А 1 Б 1 В 1 Г 1 И ЭНЕРГИЯ СВЯЗИ ЯДЕР. образуется: а-частица и ядро некоторого ЯДЕРНЫЕ РЕАКЦИИ ЯДЕРНАЯ ЭНЕРГЕТИКА. 1. Начальный уровень (0,5 балла)

1 А 1 Б 1 В 1 Г 1 И ЭНЕРГИЯ СВЯЗИ ЯДЕР. образуется: а-частица и ядро некоторого ЯДЕРНЫЕ РЕАКЦИИ ЯДЕРНАЯ ЭНЕРГЕТИКА. 1. Начальный уровень (0,5 балла) ЯДЕРНЫЕ РЕАКЦИИ И ЭНЕРГИЯ СВЯЗИ ЯДЕР. ЯДЕРНАЯ ЭНЕРГЕТИКА Самостоятельная работа N2 Вариант. Начальный уровень (0,5 балла) В уране-235 может происходить цепная.ядерная реакция деления. А. Цепная реакция

Подробнее

Контрольная работа 5 физика 9 класс "Строение атома и атомного ядра. Использование энергии атомных ядер"

Контрольная работа 5 физика 9 класс Строение атома и атомного ядра. Использование энергии атомных ядер Контрольная работа 5 физика 9 класс "Строение атома и атомного ядра. Использование энергии атомных ядер" Вариант 1 1.Самое перспективное «горючее» нашей планеты вода. Объясните это. 2.Проведите энергетический

Подробнее

6. Отклоняются от нас 1) α лучи 2) β - лучи 3) γ - лучи 7. Отклоняются на нас

6. Отклоняются от нас 1) α лучи 2) β - лучи 3) γ - лучи 7. Отклоняются на нас Банк заданий. Физика атома и атомного ядра... Радиоактивность. Альфа-, бета-, гамма-излучения. Строение атома.. Явление радиоактивности..естественная радиоактивность элемента зависит от температуры радиоактивного

Подробнее

i. ~. -- ; . ; _..._... ~- - - г--- 1 А 1 Б 1 В 1 Г 1 ---~--[: АТОМНАЯ И ЯДЕРНАЯ Контрольная работа NO 4 ФИЗИКА "... Вариант 1 ,,_ - Класс

i. ~. -- ; . ; _..._... ~- - - г--- 1 А 1 Б 1 В 1 Г 1 ---~--[: АТОМНАЯ И ЯДЕРНАЯ Контрольная работа NO 4 ФИЗИКА ... Вариант 1 ,,_ - Класс Класс --- АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА Контрольная работа NO 4 Вариант Задание (0,5 балла) В каком состоянии должен находиться водород, чтобы можно было наблюдать его характерный линейчатый спектр? А. В жидком.

Подробнее

Рождение и жизнь атомных ядер

Рождение и жизнь атомных ядер Рождение и жизнь атомных ядер n W e p e e W n p АТОМНАЯ ЭНЕРГЕТИКА 2 Ядерная физика Энергия связи ядра W(A,Z) 2 M ( A, Z) c W ( A, Z) p 2 ( ) 2 n Z m c A Z m c W(A, Z) 10 2 Mc 2 7 СЛИЯНИЕ W A, Z M яд 100%

Подробнее

И протон, и нейтрон обладают полуцелым спином

И протон, и нейтрон обладают полуцелым спином Конспект лекций по курсу общей физики. Часть III Оптика. Квантовые представления о свете. Атомная физика и физика ядра Лекция 1 9. СТРОЕНИЕ ЯДРА 9.1. Состав атомного ядра Теперь мы должны обратить наше

Подробнее

Минимум по физике для учащихся 9-х классов за 4 - ю четверть.

Минимум по физике для учащихся 9-х классов за 4 - ю четверть. Минимум по физике для учащихся 9-х классов за 4 - ю четверть. Учебник: Перышкин А. В.Физика.9 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. Виды и формы контроля: 1) предъявление

Подробнее

Тайны атомных ядер 2017

Тайны атомных ядер 2017 Тайны атомных ядер 2017 ЗВЕЗДНЫЙ НУКЛЕОСИНТЕЗ Образование тяжелых элементов Диаграмма Герцшпрунга-Рассела диаграмма эволюции звезд Диаграмма Герцшпрунга-Рассела M / M 15 9 5 3 1,5 1,0 0,5 Время достижения

Подробнее

ЛЕКЦИЯ 5. Изготовление топлива для ядерных реакторов. «Сжигание» ядерного топлива в реакторах с целью производства тепловой

ЛЕКЦИЯ 5. Изготовление топлива для ядерных реакторов. «Сжигание» ядерного топлива в реакторах с целью производства тепловой ЛЕКЦИЯ 5 ПРОБЛЕММЫ ЯДЕРНОЙ ЭНЕРГЕТИКИ 5.1. Ядерный топливный цикл (ЯТЦ) совокупность технологических операций, включающих: Добычу урановой руды. Изготовление уранового концентрата (в форме октооксида урана

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Ядерные реакции

И. В. Яковлев Материалы по физике MathUs.ru. Ядерные реакции И. В. Яковлев Материалы по физике MathUs.ru Ядерные реакции Энергетический выход ядерной реакции это разность Q кинетической энергии продуктов реакции и кинетической энергии исходных частиц. Если Q > 0,

Подробнее

Физика_11.1 Строение атома. Атомное ядро. (часть 1 банка) Излучения и

Физика_11.1 Строение атома. Атомное ядро. (часть 1 банка) Излучения и Физика_11.1 Строение атома. Атомное ядро. (часть 1 банка) Излучения и спектры. Радиоактивность. Законы радиоактивности. Световые кванты. Состав атомного ядра. Цепная ядерная реакция. Элементы квантовой

Подробнее

Какая элементарная частица, обозначенная знаком вопроса, участвует в реакции (это может быть электрон, протон или нейтрон)?

Какая элементарная частица, обозначенная знаком вопроса, участвует в реакции (это может быть электрон, протон или нейтрон)? Задания 10. Квантовая физика 1. На рисунке изображён фрагмент Периодической системы химических элементов Д.И. Менделеева. Изотоп урана испытывает α-распад, при котором образуются ядро гелия и ядро другого

Подробнее

Управляемый термоядерный синтез: история и современной состояние проблемы

Управляемый термоядерный синтез: история и современной состояние проблемы Управляемый термоядерный синтез: история и современной состояние проблемы Д. П. Костомаров Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики

Подробнее

Календарно-тематическое планирование по ФИЗИКЕ для 11 класса (заочное обучение) на II полугодие учебного года

Календарно-тематическое планирование по ФИЗИКЕ для 11 класса (заочное обучение) на II полугодие учебного года Календарно-тематическое планирование по ФИЗИКЕ для 11 класса (заочное обучение) на II полугодие 2017-2018 учебного года Базовый учебник: ФИЗИКА 11, Г.Я. Мякишев и др., М.:«Просвещение», 2012 Учитель: Горев

Подробнее

Деление ядер. История 1934 г. Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра.

Деление ядер. История 1934 г. Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра. ДЕЛЕНИЕ ЯДЕР Деление ядер. История 1934 г. Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра. 1939 г. О. Ган и Ф. Штрассман обнаружили среди продуктов реакций

Подробнее

ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ

ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ Продолжаем изучать атомные ядра. 1. Диаграмма стабильности ядер. Долина стабильности На рис. 11.1 показана диаграмма стабильности ядер. Если сдвинуться из этой долины, то тогда

Подробнее

могут только ядра атомов, стоящие за ураном в таблице Д. И. Менделеева

могут только ядра атомов, стоящие за ураном в таблице Д. И. Менделеева БАНК ЗАДАНИЙ_ФИЗИКА_9 КЛАСС_ПРОФИЛЬ_МОДУЛЬ _КВАНТОВЫЕ ЯВЛЕНИЯ. Задание Кто из ученых впервые открыл явление радиоактивности? Д. Томсон Э. Резерфорд А. Беккерель А. Эйнштейн Задание Может ли ядро атома

Подробнее

Динамика индивидуального потребления энергии за год: 100 тыс. лет назад - 0,3 квт XV в. - 1,4 квт Начало XX в. - 3,9 квт Конец XX в.

Динамика индивидуального потребления энергии за год: 100 тыс. лет назад - 0,3 квт XV в. - 1,4 квт Начало XX в. - 3,9 квт Конец XX в. Динамика индивидуального потребления энергии за год: 100 тыс. лет назад - 0,3 квт XV в. - 1,4 квт Начало XX в. - 3,9 квт Конец XX в. - 10 квт Энергия это такое состояние физического объекта, которое дает

Подробнее

ПОДГОТОВКА к ОГЭ ЧАСТЬ 1

ПОДГОТОВКА к ОГЭ ЧАСТЬ 1 ПОДГОТОВКА к ОГЭ ЧАСТЬ 1 СТРОЕНИЕ АТОМА 1.Ниже приведены уравнения двух ядерных реакций. Какая из них является реакций α - распада? 1. 2. + + 2.Ниже приведены уравнения двух ядерных реакций. Какая из них

Подробнее

Проблема замыкания топливного цикла ядерных реакторов

Проблема замыкания топливного цикла ядерных реакторов Проблема замыкания топливного цикла ядерных реакторов М.С. Онегин 2012 Гатчина Зависимость активности выгоревшего топлива от времени выдержки 7 6 4 2 Activity [Ci] 1-2 -4-6 238U 235U Fission -8 - Minor

Подробнее

Занятие 28 Ядерная физика. СТО

Занятие 28 Ядерная физика. СТО Задача 1 Гамма-излучение это 1) Поток ядер гелия; 2) Поток протонов; 3) Поток электронов; 4) Электромагнитные волны. Занятие 28 Ядерная физика. СТО Задача 2 Неизвестная частица, являющаяся продуктом некоторой

Подробнее

Т15. Строение ядра (элементы физики ядра и элементарных частиц)

Т15. Строение ядра (элементы физики ядра и элементарных частиц) Т5. Строение ядра (элементы физики ядра и элементарных частиц). Строение ядра. Протоны и нейтроны. Понятие о ядерных циклах. Энергия связи, дефект массы.. Естественная радиоактивность. Радиоактивность.

Подробнее

Рис.6. ZX A Z+1 Y A + -1 e 0, т. е. выполняются те же законы сохранения.

Рис.6. ZX A Z+1 Y A + -1 e 0, т. е. выполняются те же законы сохранения. Конспект лекций по курсу общей физики. Часть III Оптика. Квантовые представления о свете. Атомная физика и физика ядра Лекция 14 9. СТРОЕНИЕ ЯДРА (продолжение) 9.5. Радиоактивность Радиоактивностью называется

Подробнее

РАДИОАКТИВНОСТЬ. Радиоактивность свойство атомных ядер. самопроизвольно изменять свой состав в результате испускания частиц или ядерных фрагментов.

РАДИОАКТИВНОСТЬ. Радиоактивность свойство атомных ядер. самопроизвольно изменять свой состав в результате испускания частиц или ядерных фрагментов. РАДИОАКТИВНОСТЬ Радиоактивность свойство атомных ядер самопроизвольно изменять свой состав в результате испускания частиц или ядерных фрагментов. Радиоактивный распад может происходить только в том случае,

Подробнее

Институт ядерной физики АН РУз ОСНОВЫ ЯДЕРНОЙ ФИЗИКИ ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

Институт ядерной физики АН РУз ОСНОВЫ ЯДЕРНОЙ ФИЗИКИ ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ Институт ядерной физики АН РУз ОСНОВЫ ЯДЕРНОЙ ФИЗИКИ ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ 2018 Введение Основные понятия и определения Взаимодействие тяжелых заряженных частиц с веществом

Подробнее

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2 ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2 Задача 1. 1. Покоившееся ядро радона 220 Rn выбросило α чаcтицу со скоростью υ = 16 Мм/с. В какое ядро превратилось ядро радона? Какую скорость υ 1 получило оно вследствие

Подробнее

Исследовательский ядерный реактор ИВВ-2М. Краткое описание и основные характеристики

Исследовательский ядерный реактор ИВВ-2М. Краткое описание и основные характеристики Исследовательский ядерный реактор ИВВ-2М. Краткое описание и основные характеристики Исследовательский ядерный реактор ИВВ-2М является легководным реактором бассейнового типа. Его номинальная тепловая

Подробнее

Национальная атомная энергогенерирующая компания «Энергоатом» Что мы делаем и планируем делать с отработавшим ядерным топливом

Национальная атомная энергогенерирующая компания «Энергоатом» Что мы делаем и планируем делать с отработавшим ядерным топливом Национальная атомная энергогенерирующая компания «Энергоатом» Что мы делаем и планируем делать с отработавшим ядерным топливом Что такое ядерное топливо Около половины энергии в Украине вырабатывается

Подробнее

ФИО. Ответ Вопрос Базовый билет Настройки 1 1) 2) 3) 4)

ФИО. Ответ Вопрос Базовый билет Настройки 1 1) 2) 3) 4) Центр обеспечения качества образования Институт Группа ФИО МОДУЛЬ: ФИЗИКА (КВАНТОВАЯ МЕХАНИКА + КЛАССИЧЕСКИЕ И СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О СТРОЕНИИ И ОПТИЧЕСКИХ СВОЙСТВАХ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ

Подробнее

Примерный перечень вопросов к экзамену по курсу «Радиационные методы контроля объектов окружающей среды»:

Примерный перечень вопросов к экзамену по курсу «Радиационные методы контроля объектов окружающей среды»: Примерный перечень вопросов к экзамену по курсу «Радиационные методы контроля объектов окружающей среды»: Билет 1 1.Как были открыты рентгеновские лучи и явление радиоактивности? Что вы знаете о работах

Подробнее

5.2. Атомные энергетические установки

5.2. Атомные энергетические установки 5.2. Атомные энергетические установки Впервые самоподдерживающаяся цепная реакция деления атомных ядер тяжёлых химических элементов под действием медленных нейтронов была осуществлена под руководством

Подробнее

Натриевый реактор на быстрых нейтронах со смешанным нитридным топливом. Главный конструктор РУ БН Б.А. Васильев

Натриевый реактор на быстрых нейтронах со смешанным нитридным топливом. Главный конструктор РУ БН Б.А. Васильев Натриевый реактор на быстрых нейтронах со смешанным нитридным топливом Главный конструктор РУ БН Б.А. Васильев Введение Натрий как теплоноситель реакторов на быстрых нейтронах впервые был применен в нашей

Подробнее

ИЗОТОПЫ: СВОЙСТВА ПОЛУЧЕНИЕ ПРИМЕНЕНИЕ. Инжечик Лев Владиславович. Кафедра общей физики Лекция 19

ИЗОТОПЫ: СВОЙСТВА ПОЛУЧЕНИЕ ПРИМЕНЕНИЕ. Инжечик Лев Владиславович. Кафедра общей физики Лекция 19 ИЗОТОПЫ: СВОЙСТВА ПОЛУЧЕНИЕ ПРИМЕНЕНИЕ Инжечик Лев Владиславович Кафедра общей физики inzhechik@stream.ru Иллюстрация процесса деления на основе капельной модели ядра Учитываются поверхностное натяжение

Подробнее

Ядерный реактор. Критическая масса. устройство, в котором осуществляется управляемая реакция деления ядер.

Ядерный реактор. Критическая масса. устройство, в котором осуществляется управляемая реакция деления ядер. Ядерный реактор устройство, в котором осуществляется управляемая реакция деления ядер. Критическая масса наименьшая масса делящегося вещества, при которой может протекать цепная ядерная реакция. «Открытие

Подробнее

студент, Южно-Уральского государственного университета, РФ, г.челябинск студент, Южно-Уральского государственного университета, РФ, г.

студент, Южно-Уральского государственного университета, РФ, г.челябинск студент, Южно-Уральского государственного университета, РФ, г. XXXIX Студенческая международная заочная научно-практическая конференция «Молодежный научный форум: технические и математические науки» ЯДЕРНЫЕ РАКЕТНЫЕ ДВИГАТЕЛИ Никулов Михаил Константинович студент,

Подробнее

Замкнутый ядерный топливный цикл

Замкнутый ядерный топливный цикл Замкнутый ядерный топливный цикл Деление ядра Выделение энергии в ядерных реакторах происходит за счёт деления ядер урана и плутония. В реакторах на тепловых нейтронах (ТР) делению подвергаются радиоактивные

Подробнее

Новая тема 9. В.В.Поступаев * Физика плазмы, тема 9. Управляемый термоядерный синтез

Новая тема 9. В.В.Поступаев * Физика плазмы, тема 9. Управляемый термоядерный синтез Новая тема 9 Управляемый термоядерный синтез синтез Управляемый термоядерный синтез Зачем это нужно? Люди хотят жить Других вариантов нет Зависимость ВНП от энергетики от энергетики ГДж/человека в год

Подробнее

9 класс. 1. Законы взаимодействия и движения тел Вопрос Ответ 1 Что называется материальной точкой?

9 класс. 1. Законы взаимодействия и движения тел Вопрос Ответ 1 Что называется материальной точкой? 9 класс 1 1. Законы взаимодействия и движения тел Вопрос Ответ 1 Что называется материальной точкой? Тело, размерами которого в условиях рассматриваемой задачи можно пренебречь, называется материальной

Подробнее

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ. Окунев Дмитрий Олегович Кафедра физики, 216н

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ. Окунев Дмитрий Олегович Кафедра физики, 216н РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ Окунев Дмитрий Олегович Кафедра физики, 216н Н.А. ОПАРИНА, О.Н. ПЕТРОВИЧ РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ КОНСПЕКТ ЛЕКЦИЙ для студентов технических специальностей, Новополоцк 2003 1.

Подробнее

>>> Ответы на контрольный тест по теме ядерная физика 9 класс

>>> Ответы на контрольный тест по теме ядерная физика 9 класс Ответы на контрольный тест по теме ядерная физика 9 класс >>> Ответы на контрольный тест по теме ядерная физика 9 класс Ответы на контрольный тест по теме ядерная физика 9 класс В результате бета-распада

Подробнее

Класс задачи математике 2 по. Таким образом мы имеем множество "плюсов" думать самостоятельно.

Класс задачи математике 2 по. Таким образом мы имеем множество плюсов думать самостоятельно. Класс задачи математике 2 по. Таким образом мы имеем множество "плюсов" думать самостоятельно. Класс задачи математике 2 по >>>класс задачи математике 2 по

Подробнее

ОЦЕНКА РЕСУРСА ГРАФИТА ТОПЛИВНЫХ БЛОКОВ РЕАКТОРА ГТ-МГР

ОЦЕНКА РЕСУРСА ГРАФИТА ТОПЛИВНЫХ БЛОКОВ РЕАКТОРА ГТ-МГР УДК 61.039.53.1 ОЦЕНКА РЕСУРСА ГРАФИТА ТОПЛИВНЫХ БЛОКОВ РЕАКТОРА ГТ-МГР Бойко В.И. Гаврилов П.М.* Кошелев Ф.П. Мещеряков В.Н.* Нестеров В.Н. Ратман А.В.** Шаманин И.В. Томский политехнический университет

Подробнее

Атомная физика. А) 5. В) 2. С) 4. D) 1.*

Атомная физика. А) 5. В) 2. С) 4. D) 1.* Атомная физика Согласно постулатам Бора, атом в стационарном состоянии A) непрерывно излучает энергию B) находится всегда C) может находиться только определённое время D) излучает свет определённых частот

Подробнее

Ю.А. Балошин, Ю.П. Заричняк, М.В. Успенская ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОЙ ЭНЕРГЕТИКИ (Часть II)

Ю.А. Балошин, Ю.П. Заричняк, М.В. Успенская ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОЙ ЭНЕРГЕТИКИ (Часть II) Ю.А. Балошин, Ю.П. Заричняк, М.В. Успенская ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОЙ ЭНЕРГЕТИКИ (Часть II) Санкт-Петербург 2015 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО Ю.А. Балошин, Ю.П.

Подробнее

ЯДЕРНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ КАК ОБЪ- ЕКТЫ РЕГУЛИРОВАНИЯ

ЯДЕРНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ КАК ОБЪ- ЕКТЫ РЕГУЛИРОВАНИЯ УДК: 62-533.65 ЯДЕРНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ КАК ОБЪ- ЕКТЫ РЕГУЛИРОВАНИЯ студент гр. 10309114 Лукьянчик А. Ю. Научный руководитель Чигарев А. В. Белорусский национальный технический университет Минск,

Подробнее

КВАНТОВАЯ ФИЗИКА. Лекция 4. Атомное ядро. Элементарные частицы. Характеристики атомного ядра.

КВАНТОВАЯ ФИЗИКА. Лекция 4. Атомное ядро. Элементарные частицы. Характеристики атомного ядра. КВАНТОВАЯ ФИЗИКА Лекция 4. Атомное ядро. Элементарные частицы Характеристики атомного ядра. Атом состоит из положительно заряженного ядра и окружающих его электронов. Атомные ядра имеют размеры примерно

Подробнее

Критические размеры и нейтронное. поле в реакторе с отражателем

Критические размеры и нейтронное. поле в реакторе с отражателем Критические размеры и нейтронное поле в реакторе с отражателем Введение Идеальная модель реактора гомогенная размножающая среда конечных размеров цилиндрической формы, находящаяся в вакууме. Такая конструкция

Подробнее

и научно-исследовательские и опытноконструкторские поддержку" на годы"

и научно-исследовательские и опытноконструкторские поддержку на годы Постановление Правительства РФ от 1 декабря 1998 г. N 1417 "Об утверждении федеральной целевой научно-технической программы "Международный термоядерный реактор ИТЭР и научно-исследовательские и опытно-конструкторские

Подробнее

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ АЭС НА ОСНОВЕ ЭЛЕКТРОГЕНЕРИРУЮЩИХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ АЭС НА ОСНОВЕ ЭЛЕКТРОГЕНЕРИРУЮЩИХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ Косарев А.В ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ АЭС НА ОСНОВЕ ЭЛЕКТРОГЕНЕРИРУЮЩИХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ АННОТАЦИЯ Рассматривается возможная технологическая схема частичного прямого преобразования энергии ядерного деления

Подробнее

Дидактическое пособие по теме «Квантовая физика» учени 11 класса

Дидактическое пособие по теме «Квантовая физика» учени 11 класса Задачи «Квантовая физика» 1 Дидактическое пособие по теме «Квантовая физика» учени 11 класса Тема I. Фотоэлектрический эффект и его законы. Фотон. Уравнение Эйнштейна для фотоэффекта c Wф, Wф, где W ф

Подробнее

Вариант 1 ID ФИО. Накопленная оценка: Семинар: Тест1: ИТОГ(0.4 Семинар+0.6 Тест1):

Вариант 1 ID ФИО. Накопленная оценка: Семинар: Тест1: ИТОГ(0.4 Семинар+0.6 Тест1): Вариант 1 ID ФИО Накопленная оценка: Семинар: Тест1: ИТОГ(0.4 Семинар+0.6 Тест1): Тест2: Часть A Часть B Часть C Σ, 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 2 3 баллы Σ, 10-бальн. Окончательная оценка (0.6 Накопл+0.4

Подробнее

Тайны атомных ядер 2017

Тайны атомных ядер 2017 Тайны атомных ядер 2017 ЗВЕЗДНЫЙ НУКЛЕОСИНТЕЗ Синтез ядер легче группы железа Возраст t 0 Характеристики Вселенной Радиус наблюдаемой части Вселенной (горизонт видимости) R 0 сt 0 13,7 млрд. лет 10 28

Подробнее