Л.В. Агамиров. Методы статистического анализа результатов научных исследований

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Л.В. Агамиров. Методы статистического анализа результатов научных исследований"

Транскрипт

1 Л.В. Агамиров Методы статистического анализа результатов научных исследований Учебно-методическое пособие для решения задач для научных работников, инженеров и студентов технических вузов

2 Оценка параметров кривой усталости Определить параметры медианной кривой усталости натурной детали, если заданы: уравнение медианной кривой усталости гладких лабораторных образцов стандартного диаметра: параметр подобия детали коэффициент наклона прямой подобия теоретический коэффициент концентрации напряжений в детали Уравнение подобия усталостного разрушения имеет вид: max напряжение в зоне концентрации детали, соответствующее пределу выносливости детали предел выносливости гладкого лабораторного образца стандартного размера Уравнение медианной кривой усталости детали:

3 Вероятность безотказной работы Определить вероятность безотказной работы элемента конструкции на базе 10 6 циклов при отнулевом цикле нагружения, если заданы: 100 МПа амплитуда цикла напряжений, коэффициент вариации предела выносливости и действующей амплитуды равны: кривая усталости при ассиметричном цикле При отнулевом цикле: Определить вероятность безотказной работы стержней, если заданы:

4 распределение предельных напряжений, распределение усилий, распределение диаметра поперечного сечения балки.

5 Двусторонние доверительные границы для генерального среднего Вычислить двусторонние доверительные границы для генерального среднего логарифма долговечности в выборке из нормального распределения: 7.12, 6.76, 6.94, 7.23, 6.54, 7.16, 6.87, 6.65, α = 0,1 уровень значимости; квантиль распределения Стьюдента. Односторонние доверительные границы для квантилей Нормальный закон распределения Определить верхнюю и нижнюю доверительные границы квантиля уровня p = 0,01 логарифма долговечности с доверительной на основе нормального закона распределения, если вероятностью измерены следующие значения: 6.57, 6.83, 6.99, 7, 7.05, 7.12, 7.33, 7.45 Односторонние доверительные границы для квантилей нормального закона распределения в полной выборке определяют по формулам: квантиль уровня нецентрального распределения Стьюдента с f = n-1 степенями свободы и с параметром нецентральности квантиль уровня P нормированного нормального распределения,

6 оценки параметров нормального закона распределения Оценки параметров в полной выборке(выборочное среднее, выборочная дисперсия): Оценки квантиля уровня P:

7 Метод максимального правдоподобия Произвести оценку параметра распределения методом максимального правдоподобия, если X: 5.07, 5.53, 5.89, 6.05, 6.15 В случае полной выборки: Производная по b: Производная по c:

8 Решая систему: Произвести оценку параметра с распределения методом максимального правдоподобия, если измерены следующие значения x: 15.07, 15.63, 15.79, 16.05, В случае полной выборки:

9 Метод наименьших квадратов Для линейной модели вида: определить методом наименьших квадратов параметры модели, если наблюдения y составляют: 12.1; 12.3; 12.5; 12.6; 12.8 при значении факторов x: 100; 120; 140; 150; 170.Значения весовой функции принять равной единице. Условие минимума записывается в виде: Которое эквивалентно уравнению: или Тогда решение системы относительно вектора k записывается в виде: f 1 (x) + f 2 (x) + f 3 (x) = y(x)

10 Законы распределения вероятностей ХМС Оценка квантиля уровня P распределения Вейбулла-Гнеденко Произвести оценку квантиля уровня P=0,01 распределения Вейбулла- Гнеденко, если параметры распределения составляют значения: b=1,1; c=100; Квантиль уровня P=0,01:

11 Непараметрические оценки характеристик распределения ХМС Для выборки объемом n = 30 из произвольного непрерывного распределения определить непараметрическим методом вероятность накрытия квантиля уровня p = 0,1 интервалом между первым и шестым членами вариационного ряда. Доверительная вероятность: - доверительная вероятность, то есть вероятность накрыть квантиль интервалом При использовании симметрично расположенных порядковых статистик s = n - r + 1

12 Критерий Андерсона-Дарлинга A 2 Проверить по критерию Андерсона-Дарлинга A 2 гипотезу о нормальности распределения логарифма долговечности: 7.12, 6.76, 6.94, 7.23, 6.54, 6.25, 7.16, 6.87, 6.65, Статистика критерия: i Составляют неравенство: Если неравенство выполняется, то нулевая гипотеза принимается, в противном случае нулевая гипотеза отвергается.

13 Критерий Смирнова Проверить по критерию Смирнова гипотезу о нормальности закона распределения логарифма долговечности: 7.12, 6.78, 6.94, 7.23, 6.54, 6.25, 7.16, 6.87, 6.65, 7.20 Вариационный ряд: 6.25, 6.54, 6.65, 6.78, 6.87, 6.94, 7.12, 7.16, 7.20, 7.23 накопленная частность Затем составляют неравенство: Для уровня значимости следовательно, гипотеза о нормальности распределения логарифма долговечности принимается.

14 Двухвыборочный критерий Уилкоксона Проверить по критерию Уилкоксона гипотезу об отсутствии сдвига в двух независимых выборках. Измеренные значения временных сопротивлений составляют: X: 720, 676, 695, 728, 654, 653, 718, 687, 665, 705 (МПа) Y: 783, 621, 643, 628, 619, 724, 622 (МПа) т.е. обе выборки принадлежат одной совокупности Строим вариационный ряд из k = m + n = 17 элементов: Считаем сумму рангов наименьшей из совокупностей Для приблизительного расчета: Нулевую гипотезу принимают, если для двустороннего критерия с уровнем значимости a выполняется неравенство: квантиль уровня распределения Стьюдента с числом степеней свободыf = m + n - 2 квантиль уровня нормированного нормального распределения В противном случае гипотезу отвергают. Рассчитать точное распределение значений суммы рангов двухвыборочного критерия Уилкоксона при объемах выборки n 1 =2 и n 2 =3.

15 Степени полинома определяют критические значения статистики, коэффициенты полинома частоты распределения, суммированием которых определяются значения точной дискретной функции распределения: U W G(W) P(W)=1-α 1/10 2/10 4/10 6/10 8/10 9/10 10/10 Критерий знаковых рангов Уилкоксона Рассчитать точное распределение статистики критерия знаковых рангов Уилкоксона при n=3. Степени полинома определяют значения статистики, коэффициенты полинома частоты распределения, суммированием которых определяются значения точной дискретной функции распределения: T G(T) P(T) = 1- α 1/8 2/8 3/8 5/8 6/8 7/8 8/8

16 Критерии для отбрасывания резко выделяющихся (аномальных) результатов испытаний Критерий Смирнова Проверить по критерию Смирнова принадлежность последнего члена вариационного ряда логарифмов долговечностей в выборке из нормального закона распределения общей генеральной совокупности: 4.90; 5.12; 5.32; 5.55; 5.76; 5.87; 5,98; 6.03; 6.10; 7.05 Для рассматриваемой выборки т.е. значительно больше критического значения для n=10 и уровня значимости 0,10. Следовательно, результат испытания последнего в вариационном ряду образца является резко выделяющимся, и не принадлежит той же генеральной совокупности, что и результаты испытаний остальных 9 образцов выборки. Проверить по критерию Смирнова принадлежность первого члена вариационного ряда логарифмов долговечностей в выборке из нормального закона распределения общей генеральной совокупности: 4.12, 4.99, 5.12, 5.32, 5.55, 5.76, 5.87, 5.98, 6.03, 6.10

17 Статистика критерия: следовательно, первый член вариационного ряда не принадлежит той же генеральной совокупности, что и остальные 9 образцов.

18 Проверка гипотезы о равенстве дисперсий двух генеральных совокупностей. Критерий Фишера (F-критерий) Даны два распределения: Сравнить дисперсии с помощью критерия Фишера.

19 Проверка гипотезы о равенстве дисперсий ряда генеральных совокупностей. Критерий Бартлета Проверить по критерию Бартлетта гипотезу о равенстве дисперсий логарифмов долговечностей пяти нормальных генеральных, если значения выборочных среднеквадратических отклонений логарифмов долговечностей составляют: 0.15, 0.17, 0.21, 0.25, 0.27 при объемах 10, 12, 15, 9, 11 соответственно. m количество выборок выборочная дисперсия следовательно, нулевая гипотеза об однородности ряда дисперсий подтверждается.

20 Проверка гипотезы о равенстве средних двух генеральных совокупностей Критерий Стьюдента (t- критерий) Проверить по критерию Стьюдента гипотезу о равенстве средних пределов текучести двух нормальных генеральных совокупностей: 220, 223, 234, 245, 257 МПа 234, 246, 259, 262, 278, 280, 285, 290 МПа Нулевую гипотезу о равенстве средних пределов текучести двух генеральных совокупностей принимают.

21 Проверка гипотезы о равенстве средних ряда генеральных совокупностей. Однофакторный дисперсионный анализ Проверить по критерию Фишера гипотезу о равенстве средних логарифмов долговечностей пяти нормальных генеральных совокупностей, если значения выборочного среднего и среднеквадратического отклонения логарифма долговечности составляют: 7.12, 6.76, 6.94, 7.23, , 0.17, 0.21, 0.25, 0.27 при объемах выборок 10, 12, 15, 9, 11 соответственно. следовательно, гипотезу о равенстве средних логарифмов долговечностей отвергают.


Л.В. Агамиров. Методы статистического анализа результатов научных исследований

Л.В. Агамиров. Методы статистического анализа результатов научных исследований Л.В. Агамиров Методы статистического анализа результатов научных исследований Учебно-методическое пособие для научных работников, инженеров и студентов технических вузов Оглавление. Общие положения...

Подробнее

Лекция 4. Параметрические и непараметрические критерии однородности

Лекция 4. Параметрические и непараметрические критерии однородности Лекция 4. Параметрические и непараметрические критерии однородности Грауэр Л.В., Архипова О.А. CS Center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CSC) о равенстве параметров... Санкт-Петербург,

Подробнее

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ Введение...... 14 ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Основные понятия теории вероятностей... 17 1. Испытания и события... 17 2. Виды случайных событий... 17 3. Классическое определение

Подробнее

Лекция 6. Критерии согласия.

Лекция 6. Критерии согласия. Лекция 6. Критерии согласия. Грауэр Л.В., Архипова О.А. CS Center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CS Center) Критерии согласия... Санкт-Петербург, 2014 1 / 26 Cодержание Содержание 1

Подробнее

Медицинская статистика

Медицинская статистика Лукьянова Е.А. Медицинская статистика Специальность «Лечебное дело» 3 Проверка статистических гипотез Критерии согласия Критерий Стьюдента для связанных выборок Критерий Стьюдента для несвязанных выборок

Подробнее

11. Тесты по математической статистике. Тест Дана выборка ( 3,1,2,3,1,4, 5). Составьте вариационный ряд.

11. Тесты по математической статистике. Тест Дана выборка ( 3,1,2,3,1,4, 5). Составьте вариационный ряд. 11 Тесты по математической статистике Тест 1 P 1 Для любого x имеет место соотношение F x правую часть Заполните Дана выборка ( 3,1,,3,1,4, 5) Составьте вариационный ряд 3 Что оценивают x и выборочная

Подробнее

Лекция 5. Доверительные интервалы

Лекция 5. Доверительные интервалы Лекция 5. Доверительные интервалы Грауэр Л.В., Архипова О.А. CS Center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CSC) Лекция 5. Доверительные интервалы Санкт-Петербург, 2014 1 / 31 Cодержание Содержание

Подробнее

Проверка статистических гипотез. Грауэр Л.В.

Проверка статистических гипотез. Грауэр Л.В. Проверка статистических гипотез Грауэр Л.В. Статистические гипотезы Гипотеза о равенстве математических ожиданий двух генеральных совокупностей Гипотеза о равенстве дисперсий нескольких генеральных совокупностей

Подробнее

Методические указания для проведения практических занятий по теории вероятностей и математической статистике для направления Экономика

Методические указания для проведения практических занятий по теории вероятностей и математической статистике для направления Экономика Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Саратовский государственный университет имени

Подробнее

Лекция 7. Проверка гипотез о равенстве параметров двух нормально распределенных генеральных совокупностей. Однофакторный дисперсионный анализ

Лекция 7. Проверка гипотез о равенстве параметров двух нормально распределенных генеральных совокупностей. Однофакторный дисперсионный анализ Лекция 7. Проверка гипотез о равенстве параметров двух нормально распределенных генеральных совокупностей. Однофакторный дисперсионный анализ Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 013 Буре В.М.,

Подробнее

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна Тема: Математическая статистика Дисциплина: Математика Авторы: Нефедова Г.А.. Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка:. (0;0). (5;5) 3. (0;5) 4. (5;5) 5. (0;0).

Подробнее

Лекция 20. Проверка статистических гипотез

Лекция 20. Проверка статистических гипотез Лекция. Проверка статистических гипотез Понятие о статистических гипотезах и методах их проверки При решении многих задач возникает необходимость оценки того, подчиняется ли распределение генеральной совокупности

Подробнее

Лабораторная работа 2.

Лабораторная работа 2. Компьютерные методы моделирования строительства скважин. Лабораторная работа. ПРОВЕРКА СООТВЕТСТВИЯ ВЫБОРКИ НОРМАЛЬНОМУ ЗАКОНУ РАСПРЕДЕЛЕНИЯ Цель работы: овладение студентом способами построения эмпирической

Подробнее

Надёжность изделий и систем. ракетно-космической техники

Надёжность изделий и систем. ракетно-космической техники МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА

Подробнее

3. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ Основные понятия статистической проверки гипотезы

3. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ Основные понятия статистической проверки гипотезы 3 ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ 3 Основные понятия статистической проверки гипотезы Статистическая проверка гипотез тесно связана с теорией оценивания параметров распределений В экономике, технике, естествознании,

Подробнее

4 Дисперсионный анализ

4 Дисперсионный анализ А.Г. Дьячков, «Задания по математической статистике» Задание 4 4 Дисперсионный анализ В статистических методах анализа данных, которые называются дисперсионным анализом, сравниваются две группы наблюдений:

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Учреждение образования «Гомельский государственный университет имени Франциска Скорины» МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Гомельский государственный университет имени Франциска Скорины» Кафедра высшей математики В.В. БУРАКОВСКИЙ, Н.М.КУРНОСЕНКО ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Подробнее

Контрольное задание

Контрольное задание http://wwwzachetru/ Контрольное задание Задача Построить полигон относительных частот по данным вариационного ряда ( 0): 3 6 7 0 m 8 0 3 3 Решение 3 6 7 0 m 8 0 3 3 m Полигон относительных частот: 0073

Подробнее

Работа 6 Обработка и представление результатов прямых измерений при наличии группы равно рассеянных многократных наблюдений.

Работа 6 Обработка и представление результатов прямых измерений при наличии группы равно рассеянных многократных наблюдений. 1 Работа 6 Обработка и представление результатов прямых измерений при наличии группы равно рассеянных многократных наблюдений. 1 ЦЕЛЬ РАБОТЫ Ознакомление с методикой обработки и представления результатов

Подробнее

, где s 2 эмпирическая дисперсия.

, где s 2 эмпирическая дисперсия. Числа в первой строке обозначить x 1, x 2,..., x 10, Во второй строке обозначить y 1, y 2,..., y 10, На самом деле все двадцать чисел моделируются как нормальные числа с одними и теми же параметрами Задания.

Подробнее

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов 7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Линейная регрессия Метод наименьших квадратов ( ) Линейная корреляция ( ) ( ) 1 Практическое занятие 7 КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Для решения практических

Подробнее

Корреляция. u n. Методические указания

Корреляция. u n. Методические указания Методические указания Корреляция Регрессией Y на X или условным математическим ожиданием случайной величины Y относительно случайной величины X называется функция вида М (Y/ x)=f(x). Регрессией X на Y

Подробнее

План лекций 1 семестр

План лекций 1 семестр План лекций 1 семестр 1. Введение. 1.1. Предмет, метод и задачи статистики; источники статистической информации. 1.2. Кратка история развития статистики. Структура статистических органов на современном

Подробнее

Оглавление. Предисловие авторов.. 3 Предисловие редактора..6 Как читать эту книгу Глава 1. Основные понятия прикладной статистики...

Оглавление. Предисловие авторов.. 3 Предисловие редактора..6 Как читать эту книгу Глава 1. Основные понятия прикладной статистики... Оглавление Предисловие авторов.. 3 Предисловие редактора..6 Как читать эту книгу... 13 Глава 1. Основные понятия прикладной статистики...15 1.1. Случайная изменчивость... 15 1.2. События и их вероятности...

Подробнее

Лекция 6. Критерии согласия.

Лекция 6. Критерии согласия. Лекция 6. Критерии согласия. Грауэр Л.В., Архипова О.А. CS Center Санкт-Петербург, 2015 Грауэр Л.В., Архипова О.А. (CSC) Критерии согласия... Санкт-Петербург, 2015 1 / 35 Cодержание Содержание 1 Критерии

Подробнее

j n n ij Р i вероятность попадания объекта в i-строку, Р j вероятность попадания объекта в j-столбец,

j n n ij Р i вероятность попадания объекта в i-строку, Р j вероятность попадания объекта в j-столбец, 3 Методы статистической обработки данных 3. Анализ таблиц сопряженности. Для исследования взаимосвязи пары качественных признаков между собой применяется анализ таблиц сопряженности. Таблица сопряженности

Подробнее

Обработка и анализ результатов моделирования

Обработка и анализ результатов моделирования Обработка и анализ результатов моделирования Известно, моделирование проводится для определения тех или иных характеристик системы (например, качества системы обнаружения полезного сигнала в помехах, измерения

Подробнее

Лекция 4. Лемма Неймана-Пирсона. Две гипотезы: нулевая простая, альтернативная сложная. Последовательный критерий Вальда

Лекция 4. Лемма Неймана-Пирсона. Две гипотезы: нулевая простая, альтернативная сложная. Последовательный критерий Вальда Лекция 4. Лемма Неймана-Пирсона. Две гипотезы: нулевая простая, альтернативная сложная. Последовательный критерий Вальда Грауэр Л.В., Архипова О.А. CS center Санкт-Петербург, 2015 Грауэр Л.В., Архипова

Подробнее

Статистика (функция выборки)

Статистика (функция выборки) Статистика (функция выборки) Материал из Википедии свободной энциклопедии Статистика (в узком смысле) это измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения. В

Подробнее

Определение Вероятность ошибки первого рода называется уровнем значимости α.

Определение Вероятность ошибки первого рода называется уровнем значимости α. Лекция 9. Статистическая проверка статистических гипотез. Общие принципы проверки гипотез. Понятия статистической гипотезы (простой и сложной), нулевой и конкурирующей гипотезы, ошибок первого и второго

Подробнее

Идентификация законов распределения случайных величин

Идентификация законов распределения случайных величин Лабораторное занятие Идентификация законов распределения случайных величин Пусть в (статистическом) эксперименте доступна наблюдению случайная величина, распределение которой P неизвестно полностью или

Подробнее

ГОСТ Соединения трубопроводов резьбовые. Порядок проведения испытаний на вибропрочность

ГОСТ Соединения трубопроводов резьбовые. Порядок проведения испытаний на вибропрочность ГОСТ 27456-87 Соединения трубопроводов резьбовые. Порядок проведения испытаний на вибропрочность Принявший орган: Госстандарт СССР Дата введения 01.01.1989 ИНФОРМАЦИОННЫЕ ДАННЫЕ 1. РАЗРАБОТАН И ВНЕСЕН

Подробнее

Подбор подходящего теоретического распределения

Подбор подходящего теоретического распределения Лекция Подбор подходящего теоретического распределения При наличии числовых характеристик случайной величины (математического ожидания, дисперсии, коэффициента вариации) законы ее распределения могут быть

Подробнее

2 Распределение вероятностей N (a, σ)

2 Распределение вероятностей N (a, σ) А.Г. Дьячков, «Задания по математической статистике» Задание 2 2 Распределение вероятностей N (a, σ) 2. Определения и обозначения Согласно определению, непрерывная случайная величина ξ имеет стандартное

Подробнее

Теория вероятностей и математическая статистика Конспект лекций

Теория вероятностей и математическая статистика Конспект лекций Министерство образования и науки РФ ФБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Теория вероятностей и математическая статистика

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

Содержание. Предисловие... 9

Содержание. Предисловие... 9 Содержание Предисловие... 9 Введение... 12 1. Вероятностно-статистическая модель и задачи математической статистики...12 2. Терминология и обозначения......15 3. Некоторые типичные статистические модели...18

Подробнее

ПРИКЛАДНАЯ МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ПРИКЛАДНАЯ МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления

Подробнее

С.Гланц МЕДИКО-БИОЛОГИЧЕСКАЯ СТАТИСТИКА McGraw-Hill, 1994; М.: Практика, с. В книге описаны все основные методы, которыми пользуется

С.Гланц МЕДИКО-БИОЛОГИЧЕСКАЯ СТАТИСТИКА McGraw-Hill, 1994; М.: Практика, с. В книге описаны все основные методы, которыми пользуется С.Гланц МЕДИКО-БИОЛОГИЧЕСКАЯ СТАТИСТИКА McGraw-Hill, 1994; М.: Практика, 1998. 459 с. В книге описаны все основные методы, которыми пользуется современная статистика, как параметрические, так и непараметрические:

Подробнее

Теория вероятностей и статистика

Теория вероятностей и статистика Теория вероятностей и статистика Тема 8. Статистическая проверка гипотез Белов А.И. Уральский федеральный университет Екатеринбург, 2018 Содержание 1 Статистическая гипотеза 2 Ошибки первого и второго

Подробнее

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ООО «Резольвента», www.resolventa.ru, resolventa@lst.ru, (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

4 Проверка параметрических гипотез

4 Проверка параметрических гипотез 4 Проверка параметрических гипотез Статистическая гипотеза Параметрическая гипотеза 3 Критерии проверки статистических гипотез Статистической называют гипотезу о виде неизвестного распределения или о параметрах

Подробнее

Для удобства вычислений генеральной средней и среднего квадратического отклонения составляем таблицу. σ = 874,02 874,020 29,200 = 21,380

Для удобства вычислений генеральной средней и среднего квадратического отклонения составляем таблицу. σ = 874,02 874,020 29,200 = 21,380 Задание. По выборочным данным оценить генеральную среднюю, генеральную дисперсию и среднее квадратическое отклонение. Построить полигон относительных частот. Эти же данные разбить на 5 интервалов. По интервальному

Подробнее

7 Корреляционный и регрессионный анализ

7 Корреляционный и регрессионный анализ 7 Корреляционный и регрессионный анализ. Корреляционный анализ статистических данных.. Регрессионный анализ статистических данных. Статистические связи между переменными можно изучать методами дисперсионного,

Подробнее

4. Методом моментов найти оценки параметров α и β плотности

4. Методом моментов найти оценки параметров α и β плотности Экзаменационный билет по курсу: ИБМ, 3-й семестр (поток Грешилова А.А.). Случайные события. Определение вероятности.. Найти распределение дискретной случайной величины ξ, принимающей значения x с вероятности

Подробнее

σ которого известен, σ = σ и проверим, можно ли считать

σ которого известен, σ = σ и проверим, можно ли считать .8. Постановка задачи проверки статистических гипотез Пример _кз Задачу проверки статистических гипотез рассмотрим на примере. Пример _кз (двусторонний критерий). В результате многократных измерений некоторого

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

3 Доверительные интервалы

3 Доверительные интервалы 1 АГ Дьячков, «Задания по математической статистике» Задание 3 3 Доверительные интервалы 31 Доверительные интервалы параметров нормальной выборки 311 Математическая модель Нормальная выборка x = (x 1,

Подробнее

Медицинская статистика Специальность «Лечебное дело» Проверка статистических гипотез Критерии согласия

Медицинская статистика Специальность «Лечебное дело» Проверка статистических гипотез Критерии согласия Медицинская статистика Специальность «Лечебное дело» Проверка статистических гипотез Критерии согласия Определение статистической гипотезы Статистическая гипотеза - предположение о виде распределения или

Подробнее

Полное исследование выборки

Полное исследование выборки Полное исследование выборки ЗАДАНИЕ. Требуется для решения: - Построить интервальный ряд распределения, для каждого интервала подсчитать локальные, а также накопленные частоты, построить вариационный ряд.

Подробнее

А.И.Кибзун, Е.Р.Горяинова, А.В.Наумов, А.Н.Сиротин ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. БАЗОВЫЙ КУРС С ПРИМЕРАМИ И ЗАДАЧАМИ М.

А.И.Кибзун, Е.Р.Горяинова, А.В.Наумов, А.Н.Сиротин ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. БАЗОВЫЙ КУРС С ПРИМЕРАМИ И ЗАДАЧАМИ М. А.И.Кибзун, Е.Р.Горяинова, А.В.Наумов, А.Н.Сиротин ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. БАЗОВЫЙ КУРС С ПРИМЕРАМИ И ЗАДАЧАМИ М.: ФИЗМАТЛИТ, 2002. - 224 с. Книга предназначена для начального

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ это распределение числа успехов наступлений определенного события в серии из n испытаний при условии, что для каждого из n испытаний вероятность успеха имеет одно и то же значение

Подробнее

СТАТИСТИЧЕСКИЕ МЕТОДЫ И МОДЕЛИ

СТАТИСТИЧЕСКИЕ МЕТОДЫ И МОДЕЛИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» В.Н. КОСТИН, Н.А. ТИШИНА СТАТИСТИЧЕСКИЕ

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа 3 Парная регрессия Оглавление Парная регрессия... 3 Метод наименьших квадратов (МНК)... 3 Интерпретация уравнения регрессии... 4 Оценка качества построенной

Подробнее

СТАТИСТИЧЕСКАЯ ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ

СТАТИСТИЧЕСКАЯ ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ СТАТИСТИЧЕСКАЯ ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ Одной из важнейших задач биологических и медицинских исследований является получение данных о результатах действия внешних факторов на живой объект. Для решения

Подробнее

3. Проверка статистических гипотез Основные положения теории проверки статистических гипотез. На практике часто приходится проверять на основе

3. Проверка статистических гипотез Основные положения теории проверки статистических гипотез. На практике часто приходится проверять на основе 3 Проверка статистических гипотез 3 Основные положения теории проверки статистических гипотез На практике часто приходится проверять на основе выборочных данных различные предположения относительно генеральной

Подробнее

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1.

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1. Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем.. Теория вероятности (задачи 7.0 7.80)... Теоремы умножения

Подробнее

Расчетно-графическая работа. Математическая статистика

Расчетно-графическая работа. Математическая статистика Расчетно-графическая работа Математическая статистика Выборки сделаны из генеральной совокупности, распределенной по нормальному закону. Для заданной статистической совокупности: - составить интервальный

Подробнее

Распределение Стьюдента

Распределение Стьюдента Лекция 2 Распределение Стьюдента Доверительный интервал в программе «Описательная статистика» Моделирование нормального распределения Распределение ХИ-квадрат Критерии согласия 1 Распределение Стьюдента

Подробнее

В.И. Гнатюк, 2014 Глава 4 Параграф Оценка адекватности моделирования

В.И. Гнатюк, 2014 Глава 4 Параграф Оценка адекватности моделирования В.И. Гнатюк, 4 Глава 4 Параграф 4 4.4. Оценка адекватности моделирования Оценка адекватности динамической адаптивной модели электропотребления техноценоза [9,] включает две основные процедуры. Первая заключается

Подробнее

Задание 6. Обработка экспериментальной информации об отказах изделий

Задание 6. Обработка экспериментальной информации об отказах изделий Задание 6. Обработка экспериментальной информации об отказах изделий Цель работы: изучение методики обработки экспериментальной информации об отказах изделий и расчета показателей надежности. Ключевые

Подробнее

Теория вероятностей и математическая статистика

Теория вероятностей и математическая статистика Частное образовательное учреждение высшего образования «Ростовский институт защиты предпринимателя» (РИЗП) РАССМОТРЕНО И СОГЛАСОВАНО на заседании кафедры «Бухгалтерский учет и экономика» 11 от 30.06.2017

Подробнее

такая, что ' - ее функцией плотности. Свойства функции плотности

такая, что ' - ее функцией плотности. Свойства функции плотности Демидова ОА, Ратникова ТА Сборник задач по эконометрике- Повторение теории вероятностей Случайные величины Определение Случайными величинами называют числовые функции, определенные на множестве элементарных

Подробнее

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия.

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия. Квантили Выборочная квантиль x p порядка p (0 < p < 1) определяется как элемент вариационного ряда выборки x (1),, x () с номером [p]+1, где [a] целая часть числа а В статистической практике используется

Подробнее

Задачи для самостоятельных занятий по дисциплине курса. "Основы биологической статистики"

Задачи для самостоятельных занятий по дисциплине курса. Основы биологической статистики Задачи для самостоятельных занятий по дисциплине курса биостатистики Тематика зачетных вопросов по дисциплине "Основы биологической статистики" Задачи для самостоятельных занятий по дисциплине курса "Основы

Подробнее

Костанайский государственный университет им. А. Байтурсынова. Шилова Н.И. Основы статистической обработки результатов исследований

Костанайский государственный университет им. А. Байтурсынова. Шилова Н.И. Основы статистической обработки результатов исследований Костанайский государственный университет им. А. Байтурсынова Шилова Н.И. Основы статистической обработки результатов исследований Цель: Определить задачи математической статистики; ознакомиться с основными

Подробнее

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика»

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» Задача 1. ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0,

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

Задачи по математической статистике

Задачи по математической статистике Задачи по математической статистике Задача. По данным распределения возрастного состава участников революционного движения в России 70-х годов 9-го века была построена следующая таблица Возраст 7-3 3-9

Подробнее

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1 Другие ИДЗ Рябушко можно найти на странице http://mathpro.ru/dz_ryabushko_besplatno.html ИДЗ-8. Найти закон распределения указанной случайной величины X и ее функцию распределения F (X ). Вычислить математическое

Подробнее

Анализ двух выборок. Рис.25. Упрощенная классификация статистических критериев различия

Анализ двух выборок. Рис.25. Упрощенная классификация статистических критериев различия Анализ двух выборок После определения основных выборочных характеристик стоит задача о выявлении достоверных различий между двумя выборками. Для этого проводят проверку статистической гипотезы о принадлежности

Подробнее

Проверка статистических гипотез

Проверка статистических гипотез Проверка статистических гипотез 1. Статистические гипотезы; 2. Критерии проверки гипотез; 3. Проверка параметрических гипотез; 4. Критерий Пирсона Завершить показ Статистические гипотезы. Статистические

Подробнее

УДК ФОРМИРОВАНИЕ ПРОГРАММ ЭКВИВАЛЕНТНЫХ ИСПЫТАНИЙ НЕСУЩИХ КОНСТРУКЦИЙ НА РЕСУРС

УДК ФОРМИРОВАНИЕ ПРОГРАММ ЭКВИВАЛЕНТНЫХ ИСПЫТАНИЙ НЕСУЩИХ КОНСТРУКЦИЙ НА РЕСУРС УДК 669 + 693 ФОРМИРОВАНИЕ ПРОГРАММ ЭКВИВАЛЕНТНЫХ ИСПЫТАНИЙ НЕСУЩИХ КОНСТРУКЦИЙ НА РЕСУРС ЛА Шефер В статье рассматривается методика определения уровня нагружения несущей системы конструкции при проведении

Подробнее

ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ

ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

Johann Carl Friedrich Gauß

Johann Carl Friedrich Gauß ПРИЛОЖЕНИЕ 1 Все вероятности равны 50%. Либо случится, либо нет. Мерфология, Логические предложения Кольварда Типовые распределения При проверке гипотез широкое применение находит ряд теоретических законов

Подробнее

Для студентов, аспирантов, преподавателей, научных сотрудников и инженеров

Для студентов, аспирантов, преподавателей, научных сотрудников и инженеров Ивановский Р. И. Теория вероятностей и математическая статистика. Основы, прикладные аспекты с примерами и задачами в среде Mathcad. СПб.: БХВ- Петербург, 2008. 528 с.: ил. + CD-ROM (Учебное пособие) В

Подробнее

Проверка статистических гипотез

Проверка статистических гипотез Проверка статистических гипотез 1 Основные понятия. Нулевая гипотеза (H 0 ) утверждение о параметре генеральной совокупности (параметрах генеральных совокупностей) или распределении, которое необходимо

Подробнее

А.Н. Гайдадин, С.А. Ефремова, Н.Н.Бакумова

А.Н. Гайдадин, С.А. Ефремова, Н.Н.Бакумова ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ЛАБОРАТОРИЯ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ХТФ КАФЕДРА ХИМИИ И ТЕХНОЛОГИИ ПЕРЕРАБОТКИ ЭЛАСТОМЕРОВ А.Н. Гайдадин, С.А.

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Определение вероятности.. 8 1. Классическое и статистическое определения вероятности.. 8 2. Геометрические вероятности... 12 Глава вторая. Основные

Подробнее

6. КРИТЕРИИ ЗНАЧИМОСТИ И ПРОВЕРКА ГИПОТЕЗ

6. КРИТЕРИИ ЗНАЧИМОСТИ И ПРОВЕРКА ГИПОТЕЗ Проверка статистических гипотез 37 6. КРИТЕРИИ ЗНАЧИМОСТИ И ПРОВЕРКА ГИПОТЕЗ 6.. Введение В этой главе рассматривается группа статистических методов, которые получили наибольшее распространение в статистических

Подробнее

СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ СУМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ А.М. Назаренко, О.А. Шовкопляс, О.А. Литвиненко МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО КУРСУ «ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Подробнее

Лекция 3. Доверительные интервалы

Лекция 3. Доверительные интервалы Лекция 3. Доверительные интервалы Грауэр Л.В., Архипова О.А. CS Center Санкт-Петербург, 2015 Грауэр Л.В., Архипова О.А. (CSC) Лекция 3. Доверительные интервалы Санкт-Петербург, 2015 1 / 41 Cодержание Содержание

Подробнее

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии.

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Пусть имеется нормально распределенная случайная величина N,, определенная на множестве объектов

Подробнее

Тесты по дисциплине «Математика (математические методы в психологии)»

Тесты по дисциплине «Математика (математические методы в психологии)» МАОУ ВО «КРАСНОДАРСКИЙ МУНИЦИПАЛЬНЫЙ МЕДИЦИНСКИЙ ИНСТИТУТ ВЫСШЕГО СЕСТРИНСКОГО ОБРАЗОВАНИЯ» Кафедра педагогики и психологии Тесты по дисциплине «Математика (математические методы в психологии)» 1. Какую

Подробнее

Лекция 2. Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента

Лекция 2. Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента Лекция 2 Доверительный интервал в программе «Описательная статистика» Распределение Стьюдента Доверительный интервал Задача на практике - при ограниченной выборке оценить точность и надежность вычисления

Подробнее

Математика (Статистика, корреляция и регрессия)

Математика (Статистика, корреляция и регрессия) Федеральное агентство воздушного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

ЗНАЧИМОСТЬ УРАВНЕНИЯ РЕГРЕССИИ И КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ

ЗНАЧИМОСТЬ УРАВНЕНИЯ РЕГРЕССИИ И КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ ЗНАЧИМОСТЬ УРАВНЕНИЯ РЕГРЕССИИ И КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ Проверить значимость уравнения регрессии значит установить, соответствует ли построенное уравнение регрессии экспериментальным данным и достаточно

Подробнее

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):. Кафедра Общие сведения. Направление подготовки Экономика Математики и математических методов в экономике

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра ВВТиС

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра ВВТиС МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ 1... 13 ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙ... 13 1. Определение теории вероятностей... 13 2. Некоторые примеры... 14 3. Устойчивость частот в массовых статистических

Подробнее

12. Интервальные оценки параметров распределения

12. Интервальные оценки параметров распределения МВДубатовская Теория вероятностей и математическая статистика Лекция 7 Интервальные оценки параметров распределения Для выборок малого объема точечные оценки могут значительно отличаться от оцениваемых

Подробнее

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние,

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние, Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Геолого-геофизический факультет Кафедра минералогии и петрографии

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Геолого-геофизический факультет Кафедра минералогии и петрографии ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Геолого-геофизический факультет Кафедра минералогии и петрографии МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ГЕОХИМИИ Часть II Рабочая программа

Подробнее

Элементы теории оценок и проверки гипотез

Элементы теории оценок и проверки гипотез Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Лекция 10. Распределение? 2.

Лекция 10. Распределение? 2. Распределение?. Пусть имеется n независимых случайных величин N 1, N,..., N n, распределенных по нормальному закону с математическим ожиданием, равным нулю, и дисперсией, равной единице. Тогда случайная

Подробнее

Лабораторная работа 4 Применения MATHCAD для решения задач по проверке статистических гипотез

Лабораторная работа 4 Применения MATHCAD для решения задач по проверке статистических гипотез МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ. О.Ю.Пелевин МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ О.Ю.Пелевин МЕТОДИЧЕСКАЯ РАЗРАБОТКА по курсу «Теория вероятностей и математическая статистика» для студентов физического

Подробнее

ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ Методические указания

ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ Методические указания ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ Методические указания Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина ОБРАБОТКА СТАТИСТИЧЕСКИХ

Подробнее

Дополнительные главы теории вероятностей и математической статистики

Дополнительные главы теории вероятностей и математической статистики МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Подробнее

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика Лекция 3 7 6 Разложение оценок коэффициентов на неслучайную и случайную компоненты Регрессионный анализ позволяет определять оценки коэффициентов регрессии Чтобы сделать выводы по полученной модели необходимы

Подробнее