ЛЕКЦИЯ N21. Полный дифференциал, частные производные и дифференциалы высших порядков.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ЛЕКЦИЯ N21. Полный дифференциал, частные производные и дифференциалы высших порядков."

Транскрипт

1 ЛЕКЦИЯ N Полный дифференциал, частные производные и дифференциалы высших порядков Полный дифференциал Частные дифференциалы Частные производные высших порядков Дифференциалы высших порядков 4Производные от сложных функций 4 Полный дифференциал Частные дифференциалы Если функция z=f(, ) дифференцируема, то ее полный дифференциал dz равен dz=a +B () z z Замечая, что A=, B =, запишем формулу () в следующем виде z z dz= + () Распространим понятие дифференциала функции на независимые переменные, положив дифференциалы независимых переменных равными их приращениям: d= ; d= После этого формула полного дифференциала функции примет вид z z dz= d + d () d + d Пример Пусть =ln(+ ) Тогда dz= d + d = Аналогично, если u=f(,,, n ) есть дифференцируемая функция n независимых n переменных, то du= d ( d = ) = Выражение d z=f (, )d (4) называется частным дифференциалом функции z=f(, ) по переменной ; выражение d z=f (, )d (5) называется частным дифференциалом функции z=f(, ) по переменной Из формул (), (4) и (5) следует, что полный дифференциал функции является суммой ее частных дифференциалов: dz=d z+d z Отметим, что полное приращение z функции z=f(, ), вообще говоря, не равно сумме частных приращений Если в точке (, ) функция z=f(, ) дифференцируема и дифференциал dz 0 в этой точке, то ее полное приращение z= z z + + α (, ) + β (, ) отличается от своей линейной части dz= z z + только на сумму последних слагаемых α +β, которые при 0 и 0 являются бесконечно малыми более высокого порядка, чем слагаемые линейной части Поэтому при dz 0 линейную часть приращения дифференцируемой функции называют главной частью приращения функции и пользуются приближенной формулой z dz, которая будет тем более точной, чем меньшими по абсолютной величине будут приращения аргументов,97 Пример Вычислить приближенно arctg( ),0

2 Решение Рассмотрим функцию f(, )=arctg( ) Применяя формулу f(х 0 + х,у 0 + у) f(х 0, у 0 ) + dz, получим arctg( + ) arctg( ) + [ arctg( )] + [ arctg( )] или + + arctg( ) arctg( ) ( ) + ( ) Положим =, =, тогда =-0,0, =0,0 Поэтому, ( 0,0 0,0 arctg ) arctg( ) + ( 0,0) 0,0 = arctg 0,0 = + 0,0 + ( ) + ( ) π = 0,05 0,0 0,75 4 Можно показать, что ошибка, получающаяся при применении приближенной формулы z dz не превосходит числа = М ( + ), где М наибольшее значение абсолютных величин вторых частных производных f (, ), f (, ), f (, ) при изменении аргументов от до + и от до + Частные производные высших порядков Если функция u=f(,, z) имеет в некоторой (открытой) области D частную производную по одной из переменных, то найденная производная, сама являясь функцией от,, z, может в свою очередь в некоторой точке ( 0, 0, z 0 ) иметь частные производные по той же или по любой другой переменной Для исходной функции u=f(,, z) эти производные будут частными производными второго порядка Если первая производная была взята, например, по, то ее производная по,, z обозначается так: f ( 0, 0, z0) f ( 0, 0, z0) f ( 0, 0, z0 ) = ; = ; = или u, u, u z z z Аналогично определяют производные третьего, четвертого и так далее порядков Заметим, что частная производная высшего порядка, взятая по различным переменным, например, ; называется смешанной частной производной Пример u= 4 z, тогда, u =4 z ; u = 4 z ; u z = 4 z; u = z ; u =6 4 z ; u zz = 4 ; u = z ; u = z ; u z = 4 z; u z =8 z; u z =6 4 z; u z =6 4 z Заметим, что смешанные производные, взятые по одним и тем же переменным, но в разном порядке, совпадают Это свойство верно не для всех, вообще говоря, функций, но оно имеет место в широком классе функций Теорема Предположим, что ) функция f(, ) определена в (открытой) области D, ) в этой области существуют первые производные f и f, а также вторые смешанные производные f и f и наконец, ) эти последние производные f и f, как функции и, непрерывны в некоторой точке ( 0, 0 ) области D Тогда в этой точке f ( 0, 0 )=f ( 0, 0 ) Доказательство Рассмотрим выражение

3 f ( 0 +, 0 f ( 0 +, 0) f ( 0, 0 + f ( 0, 0) W=, где, отличны от нуля, например, положительны, и притом настолько малы, что в D содержится весь прямоугольник [ 0, 0 +; 0, 0 +] Введем вспомогательную функцию от : f (, 0 f (, 0) ϕ()=, которая в промежутке [ 0, 0 +] в силу () имеет производную: f f ϕ (, 0 + ) (, 0) ()= и, следовательно, непрерывна С помощью этой функции f ( 0 +, 0 f ( 0 +, 0) f ( 0, 0 f ( 0, 0 ) выражение W, которое равно W= [ ] можно переписать в виде: ϕ ( 0 + ) ϕ ( 0) W= Так как для функции ϕ() в промежутке [ 0, 0 +] выполняются все условия теоремы Лагранжа, то мы можем, по формуле конечных приращений, преобразовать выражение W f так: W=ϕ ( 0 + θ, 0 f ( 0 + θ, 0) ( 0 +θ)= (0<θ<) Пользуясь существованием второй производной f (, ), снова применим формулу конечных приращений, на этот раз к функции от : f ( 0 +θ, ) в промежутке [ 0, 0 +] Получим W=f ( 0 +θ, 0 +θ ), (0<θ <) Но выражение W содержит и, с одной стороны, и и, с другой, одинаковым образом Поэтому, можно поменять их роли и, введя вспомогательную функцию: Ψ()= f ( 0 +, ) f ( 0, ), путем аналогичных рассуждений получить результат: W=f ( 0 +θ, 0 +θ ) (0<θ, θ <) Из сопоставления () и (), находим f ( 0 +θ, 0 +θ )=f ( 0 +θ, 0 +θ ) Устремив теперь и к нулю, перейдем в этом равенстве к пределу В силу ограниченности множителей θ, θ, θ, θ, аргументы и справа, и слева стремятся к 0, 0 А тогда, в силу (), получим: f ( 0, 0 )=f ( 0, 0 ), что и требовалось доказать Таким образом, непрерывные смешанные производные f и f всегда равны Общая теорема о смешанных производных Пусть функция u=f(,,, n ) от переменных определена в открытой n-мерной области D и имеет в этой области всевозможные частные производные до (n-)-го порядка включительно и смешанные производные n-го порядка, причем все эти производные непрерывны в D При этих условиях значение любой n-ой смешанной производной не зависит от того порядка, в котором производятся последовательные дифференцирования Дифференциалы высших порядков Пусть в области D задана непрерывная функция u=f(,,, х ), имеющая непрерывные частные производные первого порядка Тогда, du= d + d + + d

4 Мы видим, что du также является некоторой функцией от,, Если предположить существование непрерывных частных производных второго порядка для u, то du будет иметь непрерывные частные производные первого порядка и можно говорить о полном дифференциале от этого дифференциала du, d(du), который называется дифференциалом второго порядка (или вторым дифференциалом) от u; он обозначается d u Подчеркнем, что приращения d, d,, d при этом рассматриваются как постоянные и остаются одними и теми же при переходе от одного дифференциала к следующему (причем d, d будут нулями) Итак, d u=d(du)=d( d + d + + d ) = d( ) d + d( ) d + + d( ) d или d u = ( d + d + d + + d ) d + + ( d + d + = d + d + + d + dd + dd + + dd + + Аналогично, определяется дифференциал третьего порядка d u и так далее Если для функции u существуют непрерывные частные производные всех порядков до n-го включительно, то существование n-го дифференциала обеспечено Но выражения для них становятся все более сложными Можно упростить запись Вынесем в выражении первого дифференциала «букву u» за скобки Тогда, запись будет символической: du=( d + d + + d ) u ; d u=( d + d + + d ) u ; d n n u=( d + d + + d ) u, которую надлежит понимать так: сначала «многочлен», стоящий в скобках, формально, возводится по правилам алгебры в степень, затем все полученные члены «умножаются» на u (которое n дописывается в числителях при ), и только после этого всем символам возвращается их значение как производных и дифференциалов u d ) d u 4Производные от сложных функций Пусть мы имеем функцию u=f(,, z), определенную в области D, причем каждая из переменных,, z в свою очередь, является функцией от переменной t в некотором промежутке: =ϕ(t), =ψ(t), z=λ(t) Пусть, кроме того, при изменении t точки (,, z) не выходят за пределы области D Подставив значения, и z в функцию u, получим сложную функцию: u=f(ϕ(t), ψ(t), λ(t)) Предположим, что u имеет по, и z непрерывные частные производные u, u и u z и что t, t и z t существуют Тогда можно доказать существование производной сложной функции и вычислить ее Придадим переменной t некоторое приращение t, тогда, и z получат соответственно приращения, и z, функция же u получит приращение u Представим приращение функции u в форме: (это можно сделать, так как мы предположили существование непрерывных частных производных u, u и u z ) u=u +u +u z z+α +β +χ z, где α, β, χ 0 при,, z 0 Разделим обе части равенства на t, получим u z z = u + u + uz + α + β + χ t t t t t t t 4

5 Устремим теперь приращение t к нулю: тогда,, z будут стремиться к нулю, так как функции,, z от t непрерывны (мы предположили существование производных t, t, z t ), а потому, α, β, χ тоже стремятся к нулю В пределе получаем u t =u t +u t +u z z t () Видим, что при сделанных предположениях производная сложной функции действительно существует Если воспользоваться дифференциальным обозначением, то du d d dz () будет иметь вид: = + + () dt dt dt z dt Рассмотрим теперь случай зависимости,, z от нескольких переменных t: =ϕ(t, v), =ψ(t, v), z=χ(t, v) Кроме существования и непрерывности частных производных функции f(,, z), мы предполагаем здесь существование производных от функций,, z по t и v Этот случай существенно не отличается от уже рассмотренного, так как при вычислении частной производной функции от двух переменных мы одну из переменных фиксируем, и у нас остается функция только от одной переменной, формула ()будет та z же, а () нужно переписать в виде: = + + ( а ) t t t z t z = + + ( б ) v v v z v Пример u= ; =ϕ(t)=t ; =ψ(t)=cos t u t = - t + ln t = - t- ln sint 5

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x)

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x) Приложение Определение производной Пусть и значения аргумента, а f ) и f ) - ( ( соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

6.1 Определения, предварительные сведения

6.1 Определения, предварительные сведения 6. Неявные функции 6.1 Определения, предварительные сведения Зависимость одной переменной от другой (или от других) не обязательно может быть выражена при помощи так называемого явного представления, когда

Подробнее

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности. 5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 Дифференциальное исчисление функций одной

Подробнее

6. Дифференциал функции 1. Определение и геометрический смысл

6. Дифференциал функции 1. Определение и геометрический смысл 6. Дифференциал функции 1. Определение и геометрический смысл ОПРЕДЕЛЕНИЕ. Функция y = f(x) называется дифференцируемой в точке x 0, если ее приращение в этой точке может быть записано как сумма линейной

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает

Подробнее

И.Л. Фаустова, Е.Г. Пахомова ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Учебное пособие

И.Л. Фаустова, Е.Г. Пахомова ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Учебное пособие М И Н И С Т Е Р С Т В О О Б Р А З О В А Н И Я И Н А У К И Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

Лекция 2.7. Производные и дифференциалы высших порядков

Лекция 2.7. Производные и дифференциалы высших порядков 1 Лекция 7 Производные и дифференциалы высших порядков Аннотация: Вводится понятие дифференцируемой функции, дается геометрическая интерпретация первого дифференциала и доказывается его инвариантность

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ. называется функцией двух переменных xy,, если каждой паре значений x, Область определения. D - замкнутая область

~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ. называется функцией двух переменных xy,, если каждой паре значений x, Область определения. D - замкнутая область ~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ 3 Функция двух переменных, область определения, способы задания и геометрический смысл. Определение: z f, называется функцией двух переменных,, если каждой паре значений,

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Лекция 4. Дифференцирование сложных функций Неявное дифференцирование

Лекция 4. Дифференцирование сложных функций Неявное дифференцирование СА Лавренченко wwwlawrencenkoru Лекция 4 Дифференцирование сложных функций Неявное дифференцирование Вспомним правило дифференцирования для функций одной переменной также называемое цепным правилом (см

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ЛЕКЦИЯ 18. Дифференциал функции в точке. Производная сложной и обратной функции.

ЛЕКЦИЯ 18. Дифференциал функции в точке. Производная сложной и обратной функции. ЛЕКЦИЯ 8 Дифференциал функции в точке Производная сложной и обратной функции Дифференциал функции в точке Пусть функция f () определена в некоторой окрестности точки Если приращение функции f () можно

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ:

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: 11 Функциональная связь Предел функции 1 Производная функции 1 Механический физический и геометрический смысл производной 14 Основные

Подробнее

ЛЕКЦИЯ 7. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. 1. Понятие производной функции

ЛЕКЦИЯ 7. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. 1. Понятие производной функции ЛЕКЦИЯ 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 1 Понятие производной функции Рассмотрим функцию у=f(), определенную на интервале (а;в) Возьмем любое значение х (а;в) и зададим аргументу

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

Практическая работа 12 Нахождение частных производных и полного дифференциала функции.

Практическая работа 12 Нахождение частных производных и полного дифференциала функции. Практическая работа Нахождение частных производных и полного дифференциала функции. Цель работы: закрепить умения находить частные производные первого и второго порядка и полный дифференциал функции. Оборудование

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

2 Дифференцируемость функций многих переменных. точке. Достаточные условия дифференцируемости

2 Дифференцируемость функций многих переменных. точке. Достаточные условия дифференцируемости В.В. Жук, А.М. Камачкин Дифференцируемость функций многих переменных. Дифференцируемость функции в точке. Достаточные условия дифференцируемости в терминах частных производных. Дифференцирование сложной

Подробнее

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем -

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - { теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - теорема Коши - формула конечных приращений - правило Лопиталя

Подробнее

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ].

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ]. Лекция 8 Определённый интеграл Определенный интеграл Римана Пусть f ( ) некоторая функция, определенная на отрезке [, ] Произведем разбиение R отрезка [, ] на п частей: = < 1 < K < n = Выберем на каждом

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Область определения данной функции определяется неравенством x 3x 2. 0 являются числа x =, x 4. Так как ветви

Область определения данной функции определяется неравенством x 3x 2. 0 являются числа x =, x 4. Так как ветви Вариант Найти область определения функции Область определения данной функции определяется неравенством > Корнями уравнения являются числа Так как ветви параболы направлены вверх то неравенство > выполняется

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

Пределы и непрерывность

Пределы и непрерывность Пределы и непрерывность. Предел функции Пусть функция = f ) определена в некоторой окрестности точки = a. При этом в самой точке a функция не обязательно определена. Определение. Число b называется пределом

Подробнее

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е.

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е. Приложение. Определение первообразной функции Определение. Дифференцируемая функция F() называется первообразной для функции f() на заданном промежутке, если для всех из этого промежутка. справедливо равенство

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Лекция2. Дифференциальные уравнения первого порядка

Лекция2. Дифференциальные уравнения первого порядка Лекция. Дифференциальные уравнения первого порядка Уравнения с разделяющимися переменными... Однородные уравнения... 3 Линейные уравнения первого порядка.... 7 Линейные однородные дифференциальные уравнения....

Подробнее

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен: уметь применять таблицу производных и правила дифференцирования для вычисления производных элементарных функций находить производные

Подробнее

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ.

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Подробнее

«Пределы, непрерывность. Производные»

«Пределы, непрерывность. Производные» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский

Подробнее

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений»

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» Задание Выясните, являются ли функции ( ) e и e решениями дифференциального уравнения d ( ) d 0 на промежутке ( ; )..

Подробнее

Последовательность. n n

Последовательность. n n Последовательность. Определение. Если каждому натуральному числу ( N ) по некоторому закону приведено в соответствие число { }, то этим определена числовая последовательность,,,... (или просто последовательность).

Подробнее

Пределы. Производные. Функции нескольких переменных

Пределы. Производные. Функции нескольких переменных Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

Подробнее

1. Производная ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. 1. Основные определения

1. Производная ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. 1. Основные определения ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. Производная. Основные определения Определение. Производной функции y = f (x) в точке x 0 называется предел отношения приращения этой функции y в точке

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ.

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ. Пусть имеем некоторую функцию y=f(x), определенную на некотором промежутке. Для каждого значения аргумента xиз этого промежутка функция y=f(x)

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора.

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора. ЛЕКЦИЯ N6 Правило Бернулли-Лопиталя Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Раскрытием неопределенностей

Подробнее

Репозиторий БНТУ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Белорусский национальный технический университет

Репозиторий БНТУ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Белорусский национальный технический университет МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра «Высшая математика 1» Г. И. Лебедева Г. А. Романюк И. М. Мартыненко ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Методическое

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Линейная алгебра Лекция 2. Определители квадратных матриц

Линейная алгебра Лекция 2. Определители квадратных матриц Линейная алгебра Лекция. Определители квадратных матриц Введение Определитель или детерминант одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной

Подробнее

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 8.1. Функции нескольких переменных. Частные производные П л а н 1. Понятие функции двух и нескольких переменных.. Предел и непрерывность

Подробнее

Лекция Неопределенный интеграл

Лекция Неопределенный интеграл Лекция..3. Неопределенный интеграл Аннотация: Неопределенный интеграл определяется как множество первообразных функций подынтегральной функции. Рассматриваются свойства неопределенного интеграла, приводится

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ. Понятие производных и дифференциалов высших порядков

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ. Понятие производных и дифференциалов высших порядков ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ Понятие производных и дифференциалов высших порядков Производная f ( называется производной первого порядка (или

Подробнее

Предел функции. 4 1 Понятие предела функции

Предел функции. 4 1 Понятие предела функции Глава 4 Предел функции 4 1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

Лекция Интеграл как функция верхнего предела

Лекция Интеграл как функция верхнего предела СА Лавренченко wwwlwrencenkoru Лекция Интеграл как функция верхнего предела Формула Ньютона-Лейбница Рекомендуется, чтобы студенты перед прослушиванием этой лекции повторили лекцию 5 о первообразных из

Подробнее

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им ВС Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ ЕФ КАЛИНИЧЕНКО ЛЕКЦИИ ПО ВЫЧИСЛЕНИЮ ОПРЕДЕЛЕННЫХ

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

Пределы. 6.1 Определение предела последовательности и

Пределы. 6.1 Определение предела последовательности и Студент должен знать: определение предела функции; свойства пределов; понятие бесконечно малых функций; понятие ограниченных и бесконечно больших функций; определение непрерывности функции в точке; сравнение

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3 Лекции 56 Глава 6 Производная функции 6 Понятие производной Пусть функция определена и непрерывна на некотором промежутке X Взяв значение X придадим аргументу приращение так что и новое значение не выходит

Подробнее

Основы теории специальных функций

Основы теории специальных функций Основы теории специальных функций Необходимость изучения специальных функций математической физики связана с двумя основными обстоятельствами. Во-первых, при разработке математической модели физического

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ''Оренбургский государственный

Подробнее

7. Экстремумы функций нескольких переменных

7. Экстремумы функций нескольких переменных 7. Экстремумы функций нескольких переменных 7.. Локальные экстремумы Пусть функция f(x,..., x n ) определена на некотором открытом множестве D R n. Точка M D называется точкой локального максимума (локального

Подробнее

Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Лекция 7 Производная функции Правила и формулы дифференцирования П л а н Задачи, приводящие к понятию производной Понятие производной Основные

Подробнее

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Первообразная и неопределённый интеграл Основная задача дифференциального исчисления состоит в нахождении производной (или дифференциала) данной функции. Интегральное исчисление

Подробнее

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн.

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Решение типового варианта заданий по теме. "Дифференциальное исчисление функции одной переменной" Автор: ассистент кафедры высшей математики БГУИР

Решение типового варианта заданий по теме. Дифференциальное исчисление функции одной переменной Автор: ассистент кафедры высшей математики БГУИР Решение типового варианта заданий по теме "Дифференциальное исчисление функции одной переменной" Автор: ассистент кафедры высшей математики БГУИР Василюк Людмила Ивановна Содержание Задание Задание Задание

Подробнее

Методологические особенности формулы Тейлора в курсе математического анализа

Методологические особенности формулы Тейлора в курсе математического анализа Методологические особенности формулы Тейлора в курсе математического анализа # январь Кандаурова И Е УДК: 57 Россия МГТУ им НЭ Баумана hadaur@gyrplaru Введение Классический курс математического анализа

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию:

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию: Вариант 7 Найти область определения функции : y + / lg Область определения данной функции определяется следующими условиями:, >, те > / Далее, знаменатель не должен обращаться в нуль: или Объединяя результаты,

Подробнее

Область определения данной функции определяется неравенством 5x x 6> 0 являются числа x =, x 3. Так как ветви параболы

Область определения данной функции определяется неравенством 5x x 6> 0 являются числа x =, x 3. Так как ветви параболы Вариант 5 Найти область определения функции lg5 Область определения данной функции определяется неравенством 5 > Корнями уравнения 5+ являются числа, Так как ветви параболы + 5 направлены вниз, то неравенство

Подробнее

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2 Вариант Найти область определения функции : y + Область определения данной функции определяется неравенством Кроме того знаменатель не должен обращаться в нуль Найдём корни знаменателя: Объединяя результаты

Подробнее

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы ЛАБОРАТОРНАЯ РАБОТА 7 ОБОБЩЕННЫЕ ФУНКЦИИ I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Обозначим через D множество всех бесконечно дифференцируемых финитных функций действительного переменного. Это

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО.

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО. ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО Понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пример: А множество натуральных чисел а В множество квадратов натуральных чисел

Подробнее

Неопределенный интеграл. Вводная часть.

Неопределенный интеграл. Вводная часть. Неопределенный интеграл Вводная часть Определение Функция F( ) называется первообразной для данной функции f( ), если F( ) f( ), или, что то же самое, df f d Данная функция f( ) может иметь различные первообразные,

Подробнее

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее