Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Размер: px
Начинать показ со страницы:

Download "Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»"

Транскрипт

1 Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Выполнил: студент 3-го курса, гр. АК3-51 Ягубов Роман Борисович Проверил: Апельцин Виктор Филиппович г. Москва

2 Оглавление Постановка задачи... 2 Теоретическая часть... 2 Вывод функции ослабления... 2 Корректность задачи, сведенной к интегральному уравнению первого рода... 4 Список литературы... 5 Практическая часть... 6 Сравнение результатов... 6 Выводы... 8 Постановка задачи Целью данной работы является приближенное вычисление функции ослабления, характеризующей распределение интенсивности рассеянного на бесконечном цилиндре произвольного сечения поля плоской электромагнитной волны, и построение на ее основе диаграммы рассеяния. Произвольное сечение цилиндра в декартовых координатах задается функцией вида: В полярных координатах выглядит следующим образом:, Теоретическая часть Вывод функции ослабления Процесс рассеяния плоской электромагнитной волны на гладком металлическом теле вполне адекватно описывается диаграммой рассеянного поля, характеризующей распределение рассеянной энергии по угловым координатам. Общая система стационарных уравнений Максвелла при гармонической зависимости всех векторных полей от времени) { в случае рассеяния Е - поляризованной плоской волны на бесконечном металлическом цилиндре с направляющей, при ее распространении в ортогональном оси цилиндра направлении, сводится к скалярной плоской задаче для уравнения Гельмгольца в полярных координатах относительно z компоненты электрического поля с краевым условием первого рода на границе контура поперечного сечения цилиндра, то есть к задаче вида 1) 2

3 где - волновое число, если из второго уравнения системы Максвелла выразить, подставить в первое уравнение и воспользоваться известным тождеством ) ), с учетом того, что поле имеет отличной от нуля лишь компоненту [1]. Краевая задача 1) может быть поставлена и как полостью однородная, то есть 2) если в качестве возбуждающего поля взять плоскую волну ), распространяющуюся из бесконечно удаленной точки к началу координат так как временная зависимость полей от времени полагается имеющей вид ) ). Несмотря на однородность задачи 2), она имеет нетривиальное решение, так как плоская волна не удовлетворяет условию излучения Зоммерфельда на бесконечности [2]. Выделяя в решении рассеянную волну: удовлетворяющую условию излучения, получим для задачу вида 3) где - контур поперечного сечения цилиндра, описываемый в полярных координатах уравнением, - угол падения плоской волны. Рассеянное поле может быть представлено потенциалом простого слоя: ) [ ] 4) где - функция Ханкеля первого рода, нулевого порядка; - контур, расположенный внутри, и подобный ему:, причем. При этом точки а контуре, а в пространстве, вне контура ; волновое число; декартово расстояние между точками и : ; - вспомогательный ток на контуре, имеющий смысл обычного электрического тока на поверхности металла, если контура и совпадают. Используя 3), краевое условие в задаче 2) можно записать в виде интегрального уравнения первого рода ) [ ] 5) где искомой функцией является ток. Функция Ханкеля, где функции Бесселя и Неймана вычисляются с помощью стандартных процедур из библиотек наиболее распространенных языков программирования. Интегральное уравнение первого рода 5), с гладким ядром хотя и является формально некорректно поставленной задачей, приводит к устойчивым вычислительным процедурам при его замене на систему алгебраических уравнений, если контура и достаточно близки, что обеспечивает в матрице алгебраической системы преобладание главой диагонали. Более подробная запись интегрального уравнения 5): ) [ ] 6) где ; ток, умноженный на дифференциал дуги контура. Если ток найден из уравнения 6) точно или приближенно), то потенциал простого слоя 3) явно описывает поведение рассеянного поля всюду вне контура. Нас будет интересовать дальняя зона, то есть значения при. При этом и, что позволяет заменить функцию Ханкеля ее асимптотикой: Приближая радикал в выражении [ ] [3] 3

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 первыми двумя членами биномиального ряда, получим { } При этом. Следовательно, в дальней зоне рассеянное поле приближенно описывается выражением [ ] [ ] 7) Множитель [ ] перед интегралом в 7), зависящий только от радиуса, и ответственный за порядок убывания амплитуды поля равномерно по при удалении от рассеивающего тела, можно не рассматривать. Остающееся выражение [ ] 8) называют обычно функцией ослабления [4]. Она характеризует распределение интенсивности рассеянного поля по угловой координате для каждого значения полярного радиуса. Модуль этой функции носит название диаграммы рассеяния или диаграммы направленности) и ее приближенное вычисление является основной целью данной работы. Интегральное уравнение первого рода 6) заменяем приближенно алгебраической системой линейных уравнений, вводя равномерные сетки: В результате, получим алгебраическую систему вида ) [ ] 9) Находя с помощью численного метода приближенное решение { } системы 9), получим выражение для диаграммы рассеяния в виде одномерного массива вида [ ] 1) что позволяет строить графики для при различных значениях параметров. Корректность задачи, сведенной к интегральному уравнению первого рода Рассмотрим теперь вопрос о корректности задачи, сведенной к интегральному уравнению первого рода 5). Для этого заменим параметр на,. При этом контуру соответствует значение. Возьмем интегральное уравнение 6) для любого отличного от нуля значения : [ ] 11) и представим ядро ) [ ] интегрального оператора в виде суммы первых двух слагаемых его разложении в ряд Маклорена по переменной, в окрестности точки : [ ] [ ] [ ] [ ] 12) где [ ] - значение переменной, отличное от нуля. Из трех слагаемых формулы 12) лишь первые два имеют особенность при совпадении значений углов и. Первое из них имеет логарифмическую особенность и соответствует ядру обычного потенциала простого слоя. Второе имеет более сильную особенность, аналогичную ядру потенциала двойного слоя. Третье слагаемое, ввиду, является гладким аналитическим ядром без особенностей. 4

5 В соответствии с этим, представим левую часть уравнения 11) в виде [ ] [ ] [ ] 13) Ядро второго слагаемого в более подробной записи имеет вид [ ] [ ] и при переходит в [ ] [ ], 14) cовпадая, с точностью до множителя с [ )]. Здесь - производная по направлению радиус-вектора. То есть, [ ] [ )] 15) Интеграл в 15) является обобщенным потенциалом двойного слоя, у которого ядро продифференцировано по направлению отличному от направления нормали. Из результатов приведенных в литературе по уравнениям с частными производными эллиптического типа [5], следует общая формула для предельного значения такого потенциала, когда точка наблюдения стремится к поверхности: [ ] ) [ ] Следовательно, интегральные операторы в 13) приобретают окончательный вид [ ] ) [ )] [ ] Из них, первый и второй имеют слабо полярные ядра, и являются, следовательно, вполне непрерывными, а последний интегральный оператор с гладким ядром без особенностей. В результате, получаем интегральное уравнение Фредгольма второго рода относительно : ) которое при [ ] [ )] [ ], 16) является корректно поставленной задачей. Список литературы 1. Вайнштейн Л. А. «Электромагнитные волны». М.: «Радио и связь», Зоммерфельд А. «Дифференциальные уравнения в частных производных физики». М.: И.Л., Тихонов А.Н., Самарский А.А. «Уравнения математической физики». М.: «Наука», Марков Г.Т., Петров Б.М., Грудинская Г.П. «Электродинамика и распространение радиоволн». М.: «Сов. Радио», Миранда К. «Уравнения с частными производными эллиптического типа». М.: И.Л.,

6 Практическая часть Сравнение результатов Алгоритм программы на базе среды MathCad 15, осуществляющей численное решение системы 9) и создание одномерного массива 1). Здесь же мы остановимся на анализе полученных результатов. Рассмотрим первоначально вид диаграмм рассеяния при различных углах падения плоской электромагнитной волны. По результатам работы программы получаем следующие результаты: Эти диаграммы направленности получены с учетом того, что число разбиений, волновое число, параметр подобия контуров. 6

7 Произведем сопоставление рассеянных полей при изменении параметра подобия контуров для случая падения волны под углом. Для сравнения введем контур, для которого для всех случаев Значительного расхождение графиков уже не наблюдается при значениях близких к.8. Это говорит о правильном ходе вычислений при удалении вспомогательного контура от основного. 7

8 Наконец, рассмотрим случай изменения числа разбиений при,, и. Как видно из рисунка, чем больше разбиений, тем больше совпадений, что говорит о сходимости приближенного метода Выводы В работе рассмотрена математическая модель стационарной задачи рассеяния плоской Е - поляризованной электромагнитной волны на металлическом ограниченном теле в плоском случае возбуждение бесконечного цилиндра). Рассеянное поле представлено потенциалом простого слоя с плотностью тока, распределенной на вспомогательном контуре, расположенном внутри границы исходной области и подобном ей метод вспомогательных токов). В случае близости такого контура к границе, несмотря на некорректность задачи в такой постановке, численный алгоритм ее решения оказывается устойчивым и сходящимся. 8

Курсовая работа по дисциплине: «дифференциальные уравнения»

Курсовая работа по дисциплине: «дифференциальные уравнения» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович

Подробнее

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного

Подробнее

8. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ И ИЗЛУЧЕНИЕ ДВИЖУЩИХСЯ ЗАРЯДОВ

8. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ И ИЗЛУЧЕНИЕ ДВИЖУЩИХСЯ ЗАРЯДОВ 8 ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ И ИЗЛУЧЕНИЕ ДВИЖУЩИХСЯ ЗАРЯДОВ Рассмотрим электромагнитное поле движущегося произвольным образом точечного заряда Оно описывается запаздывающими потенциалами которые запишем в виде

Подробнее

Московский государственный технический университет им. Н. Э. Баумана.

Московский государственный технический университет им. Н. Э. Баумана. Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ЧИСЛЕННЫЕ МЕТОДЫ» по теме: «Численные методы регуляризации для решения интегрального уравнения Фредгольма

Подробнее

О представлении поля в волноводе в виде суммы полей ТЕ и ТМ.

О представлении поля в волноводе в виде суммы полей ТЕ и ТМ. Журнал технической физики, том XVIII, вып 7, 1948 А Н Тихонов, А А Самарский О представлении поля в волноводе в виде суммы полей ТЕ и ТМ Несмотря на то, что утверждение о возможности разложения произвольного

Подробнее

Решение задачи рассеяния на протяженных цилиндрических телах различного сечения

Решение задачи рассеяния на протяженных цилиндрических телах различного сечения Электронный журнал «Труды МАИ». Выпуск 68 www.a.ru/scece/rudy/ УДК 537.87+6.37 Решение задачи рассеяния на протяженных цилиндрических телах различного сечения Гиголо А. И. * Кузнецов Г. Ю. ** Московский

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

Московский государственный технический университет им. Н. Э. Баумана.

Московский государственный технический университет им. Н. Э. Баумана. Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ» по теме: «РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ 2-ГО РОДА

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Семинары 3-4. Электромагнитные волны. Давление света.

Семинары 3-4. Электромагнитные волны. Давление света. Семинары 3-4 Электромагнитные волны Давление света Основной материал семинара изложен в конспекте лекций по оптике Здесь только дополнительные моменты 1 В вакууме распространяется электромагнитная волна

Подробнее

Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ Уравнение с частными производными это уравнение, содержащее частные производные. В отличие от обыкновенных дифференциальных уравнений (ОДУ), в которых неизвестная

Подробнее

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СО РАН. А.А. Иванов К РАСЧЕТУ ИНДУКТИВНОСТИ И ВЗАИМНОЙ ИНДУКТИВНОСТИ КАТУШЕК ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СО РАН. А.А. Иванов К РАСЧЕТУ ИНДУКТИВНОСТИ И ВЗАИМНОЙ ИНДУКТИВНОСТИ КАТУШЕК ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЕ УЧРЕЖДЕНИЕ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СО РАН А.А. Иванов К РАСЧЕТУ ИНДУКТИВНОСТИ И ВЗАИМНОЙ ИНДУКТИВНОСТИ КАТУШЕК ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ ИЯФ--5 НОВОСИБИРСК К расчету

Подробнее

Глава 2. Методы расчета характеристик рассеяния объектов

Глава 2. Методы расчета характеристик рассеяния объектов Глава. Методы расчета характеристик рассеяния объектов.4.1.1. Основные математические соотношения для расчета электромагнитного поля, рассеянного электрически большой зеркальной антенной с радиопоглощающим

Подробнее

Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА

Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА Решение вопросов организации эффективной добычи полезных ископаемых требует изучения закономерностей движения воды, тепла, распределен

Подробнее

Вопросы к первой части экзамена по курсу Методы математической физики ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения

Вопросы к первой части экзамена по курсу Методы математической физики ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения Вопросы к первой части экзамена по курсу Методы математической физики (2008-2009 учебный год) 1. Сформулируйте лемму о поведении решений уравнения ( k( x) u'( x))' q( x) u = 0, x ( a, b), где k( x) = (

Подробнее

r, т. е. ток проводимости отсутствует, а наличие

r, т. е. ток проводимости отсутствует, а наличие I..3 Основные свойства электромагнитных волн. 1. Поперечность и ортогональность векторов E r и H r Система уравнений Максвелла позволяет корректно описать возникновение и распространение электромагнитных

Подробнее

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)!

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)! 4.Метод парциальных амплитуд.. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: ( +! m ( +! ( + φ ( V ( φ ( (.6 и соответствующее ему граничное условие :!! e! φ ( { e + f (

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Электромагнитные волны.

Электромагнитные волны. Электромагнитные волны. 1. Дифференциальное уравнение электромагнитной волны.. Основные свойства электромагнитных волн. 3. Энергия электромагнитных волн. Вектор Умова-Пойнинга. 4. Излучение диполя. 1.

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. Лекции 1 2 Определители и матрицы. Лекция 1

ОГЛАВЛЕНИЕ ЧАСТЬ I. Лекции 1 2 Определители и матрицы. Лекция 1 ОГЛАВЛЕНИЕ ЧАСТЬ I Лекции 1 2 Определители и матрицы Лекция 1 1.1. Понятие матрицы. Виды матриц... 19 1.1.1. Основные определения... 19 1.1.2. Виды матриц... 19 1.2.* Перестановки и подстановки... 21 1.3.*

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ Бережной Д.В. Тазюков Б.Ф. ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Казанский государственный университет Р.Ф. Марданов ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие Издательство Казанского государственного университета 2007 УДК 517.9

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

.3 Вычисление длины кривой. Длина дуги плоской кривой в прямоугольной системе координат. Пусть функция y = f( x)

.3 Вычисление длины кривой. Длина дуги плоской кривой в прямоугольной системе координат. Пусть функция y = f( x) 6 3 Вычисление длины кривой Длина дуги плоской кривой в прямоугольной системе координат Пусть функция = f определена и непрерывна на отрезке [ ; ] и кривая l график этой функции Требуется найти длину дуги

Подробнее

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ»

Подробнее

Вопросы к первой части экзамена по курсу «Методы математической физики» ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения

Вопросы к первой части экзамена по курсу «Методы математической физики» ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения Вопросы к первой части экзамена по курсу «Методы математической физики» (2013-2014 учебный год) 1. Сформулируйте лемму о поведении решений уравнения ( k( x) u'( x))' q( x) u 0, x ( a, b), где k( x) ( x

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

МИНОБРНАУКИ РОССИИ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

МИНОБРНАУКИ РОССИИ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА» МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Подробнее

10. Векторный и скалярный потенциалы

10. Векторный и скалярный потенциалы Векторный и скалярный потенциалы Уравнения Максвелла это, в общем случае, сложные интегральнодифференциальные уравнения, поэтому непосредственно их решать относительно трудно Были введены две вспомогательные

Подробнее

Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления

Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления УДК 6-5 Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления К.А. Рыбаков В статье вводится понятие спектральных характеристик линейных

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

Всего 66 вопросов. 1 год обучения. Модули 1 2.

Всего 66 вопросов. 1 год обучения. Модули 1 2. ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ к итоговому экзамену по дисциплине «Математический анализ» Прикладная математика На устном экзамене студент получает два теоретических вопроса и две задачи Всего 66 вопросов год

Подробнее

Приложения поверхностного интеграла 1-го типа

Приложения поверхностного интеграла 1-го типа Глава 6 Приложения поверхностного интеграла 1-го типа 6.1 Необходимые сведения На прошлых занятиях мы уже освоили методы вычисления поверхностных интегралов 1-го типа, оперируя при этом преимущественно

Подробнее

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Лекция 4 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Тема: Элементарная кривая Касательная Длина кривой План лекции Понятие и способы задания элементарной кривой Вектор-функция одного переменного Касательная к кривой

Подробнее

Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома

Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома 1 Дифференциальное сечение рассеяния Когда быстрая частица налетает на частицу-мишень, то для того,

Подробнее

E 0 e -i t. rot E = 1 c. c div D = 0, c 2. z 2 + k2 E = 0, 2 E

E 0 e -i t. rot E = 1 c. c div D = 0, c 2. z 2 + k2 E = 0, 2 E 1 Квазистационарные явления 1 1 Квазистационарные явления Урок 6 Скин-эффект Базовые решения - плоскость, шар, цилиндр 11 (Задача 676)Полупространство Z заполнено проводником с проводи- E e -i t мостью

Подробнее

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Лектор: профессор Д. Л. Ткачев. 5 6 семестры

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Лектор: профессор Д. Л. Ткачев. 5 6 семестры УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Лектор: профессор Д. Л. Ткачев 5 6 семестры Некоторые уравнения и системы математической физики. Вывод уравнения малых поперечных колебаний струны. Понятие о начальных данных

Подробнее

Глава 2. Методы расчета характеристик рассеяния объектов

Глава 2. Методы расчета характеристик рассеяния объектов Глава. Методы расчета характеристик рассеяния объектов ческих размеров (каковым является, например, самолет весьма сложно провести достаточно мелкое разбиение поверхности. В этом случае приходится удовлетворяться

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

Лекция 2. Поверхностные интегралы первого рода

Лекция 2. Поверхностные интегралы первого рода С А Лавренченко wwwlawrecekoru Лекция Поверхностные интегралы первого рода Поверхностные интегралы -го рода представляют собой такое же естественное обобщение двойных интегралов, каким криволинейные интеграла

Подробнее

Необходимый минимум по курсу ММФ (2004\2005 уч.г.)

Необходимый минимум по курсу ММФ (2004\2005 уч.г.) ПРОГРАММА КУРСА «МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» (2004-2005 уч.г.) 1. Физические задачи, приводящие к уравнениям в частных производных. 2. Классификация уравнений в частных производных второго порядка. 3.

Подробнее

20. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений

20. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений Варианты заданий 0. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений 0.1. Постановка задачи Рассматривается задача Дирихле для эллиптического уравнения Lu

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

2 ЭЛЕКТРОСТАТИЧЕСКАЯ ТЕОРЕМА ГАУССА

2 ЭЛЕКТРОСТАТИЧЕСКАЯ ТЕОРЕМА ГАУССА 2 ЭЛЕКТРОСТАТИЧЕСКАЯ ТЕОРЕМА ГАУССА Поток вектора напряжённости электростатического поля сквозь поверхность. Используя закон Кулона, можно доказать электростатическую теорему Гаусса. Для этого необходимо

Подробнее

3.6. Поток и циркуляция вектора магнитной индукции.

3.6. Поток и циркуляция вектора магнитной индукции. 1 3.6. Поток и циркуляция вектора магнитной индукции. 3.6.1.Поток вектора магнитной индукции. Как и любое векторное поле, магнитное поле может быть наглядно представлено с помощью линий вектора магнитной

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

УДК :

УДК : Е.М. КАРЧЕВСКИЙ МАТЕМАТИЧЕСКИЕ МОДЕЛИ СПЕКТРАЛЬНОЙ ТЕОРИИ ДИЭЛЕКТРИЧЕСКИХ ВОЛНОВОДОВ Учебное пособие Казань Казанский государственный университет имени В.И. Ульянова-Ленина 2007 Печатается по решению кафедры

Подробнее

Вопросы к первой части экзамена по курсу Методы математической физики ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения

Вопросы к первой части экзамена по курсу Методы математической физики ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения Вопросы к первой части экзамена по курсу Методы математической физики (2010-2011 учебный год) 1. Сформулируйте лемму о поведении решений уравнения ( k( x) u'( x))' q( x) u= 0, x ( a, b), где k( x) = (

Подробнее

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1 ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 007 Управление, вычислительная техника и информатика 1 УДК 519.865 В.В. Поддубный, О.В. Романович МОДИФИКАЦИЯ МЕТОДА ЭЙЛЕРА С УРАВНИВАНИЕМ ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

ГЛАВА 5. Плоские волны

ГЛАВА 5. Плоские волны ГЛАВА 5 Плоские волны Излучатель электромагнитной волны создает вокруг себя фронт этих волн На больших расстояниях от излучателя волну можно считать сферической Но на очень больших расстояниях от излучателя

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ С П ПРЕОБРАЖЕНСКИЙ, СР ТИХОМИРОВ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ 987 ОГЛАВЛЕНИЕ Предисловие Формулировка задания 3 Варианты задания 3 Пример выполнения задания и комментарии

Подробнее

ИНТЕРФЕРЕНЦИЯ РЕАКТИВНЫХ КОМПОНЕНТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ. А.А. Колоколов,

ИНТЕРФЕРЕНЦИЯ РЕАКТИВНЫХ КОМПОНЕНТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ. А.А. Колоколов, Декабрь 1992 г. Том 162, 12 УСПЕХИ ФИЗИЧЕСКИХ НАУК МЕТОДИЧЕСКИЕ ЗАМЕТКИ ИНТЕРФЕРЕНЦИЯ РЕАКТИВНЫХ КОМПОНЕНТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ А.А. Колоколов, (Московский физико-технический институт, Московский станкоинструментальный

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА»

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА» ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА» Тема 1. Множества. Введение в логику. Понятие функции. Кривые второго порядка. Основные понятия о множествах. Символика, ее использование.

Подробнее

ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ

ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ ФИЗИЧЕСКИЕ ОПРЕДЕЛЕНИЯ 1. В каких единицах измеряется электрический заряд в СИ и СГСЭ (ГС)? Как связаны между собой эти единицы для заряда? Заряд протона

Подробнее

~ 1 ~ ФКП. Производная функции комплексного переменного (ФКП), условия Коши - Римана, понятие регулярности ФКП. Изображение и вид комплексного числа.

~ 1 ~ ФКП. Производная функции комплексного переменного (ФКП), условия Коши - Римана, понятие регулярности ФКП. Изображение и вид комплексного числа. ~ ~ ФКП Производная функции комплексного переменного ФКП условия Коши - Римана понятие регулярности ФКП Изображение и вид комплексного числа Вид ФКП: где действительная функция двух переменных действительная

Подробнее

r 2 r. E + = 2κ a, E = 2κ a

r 2 r. E + = 2κ a, E = 2κ a 1. Электростатика 1 1. Электростатика Урок 2 Теорема Гаусса 1.1. (1.19 из задачника) Используя теорему Гаусса, найти: а) поле плоскости, заряженной с поверхностной плотностью σ; б) поле плоского конденсатора;

Подробнее

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

комплексной переменной.

комплексной переменной. А.Г.Свешников, А.Н.Тихонов ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ из серии КУРС ВЫСШЕЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ Под редакцией А. Н. ТИХОНОВА, В. А. ИЛЬИНА, А. Г. СВЕШНИКОВА ВЫПУСК 4 ОГЛАВЛЕНИЕ

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ. ПОСТАНОВКА ЗАДАЧ И ОСНОВНЫЕ АНАЛИТИТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ. ПОСТАНОВКА ЗАДАЧ И ОСНОВНЫЕ АНАЛИТИТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ. ПОСТАНОВКА ЗАДАЧ И ОСНОВНЫЕ АНАЛИТИТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ. Классические уравнения математической физики. Вывод и классификация. Основные краевые задачи

Подробнее

Материалы Международной научно-технической конференции, 2 6 декабря 2013 г. РЕШЕНИЕ ТРЕХМЕРНОЙ ЗАДАЧИ ДИФРАКЦИИ МЕТОДОМ ЭЛЕМЕНТАРНЫХ РАССЕИВАТЕЛЕЙ

Материалы Международной научно-технической конференции, 2 6 декабря 2013 г. РЕШЕНИЕ ТРЕХМЕРНОЙ ЗАДАЧИ ДИФРАКЦИИ МЕТОДОМ ЭЛЕМЕНТАРНЫХ РАССЕИВАТЕЛЕЙ Материалы Международной научно-технической конференции, 2 6 декабря 2013 г. МОСКВА INTERMATIC 2 0 1 3, часть 4 МИРЭА РЕШЕНИЕ ТРЕХМЕРНОЙ ЗАДАЧИ ДИФРАКЦИИ МЕТОДОМ ЭЛЕМЕНТАРНЫХ РАССЕИВАТЕЛЕЙ 2013 г. В.Ю.

Подробнее

1 n α. сходимости обобщенного гармонического ряда

1 n α. сходимости обобщенного гармонического ряда СОДЕРЖАНИЕ КУРСА ВЫСШЕЙ МАТЕМАТИКИ ФТК, 2-ой семестр Матрицы и определители. 1. Понятие матрицы. Основные действия с матрицами и их свойства. 2. Пространство квадратных матриц. Обратная матрица и ее свойства.

Подробнее

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к экзаменам по дисциплине «Математика» I семестр

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к экзаменам по дисциплине «Математика» I семестр 2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к экзаменам по дисциплине «Математика» I Элементы линейной алгебры I семестр 1. Определители. Свойства определителей. 2. Матрицы. Виды

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

3 ПОТЕНЦИАЛЬНЫЙ ХАРАКТЕР ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

3 ПОТЕНЦИАЛЬНЫЙ ХАРАКТЕР ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ 3 ПОТЕНЦИАЛЬНЫЙ ХАРАКТЕР ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В данном разделе мы будем изучать свойство потенциальности на примере электростатического поля в вакууме, созданного неподвижными электрическими зарядами.

Подробнее

ВВЕДЕНИЕ. Классический и регуляризованный операторы Пуассона

ВВЕДЕНИЕ. Классический и регуляризованный операторы Пуассона ВВЕДЕНИЕ При изучении стационарных процессов различной физической природы (колебания теплопроводность диффузия и др обычно приходят к уравнениям эллиптического типа Наиболее распространенным уравнением

Подробнее

Глава 8. Элементы квантовой механики

Глава 8. Элементы квантовой механики Глава 8 Элементы квантовой механики Задачи атомной физики решаются методами квантовой теории которая принципиально отличается от классической механики Решение задачи о движении тела макроскопических размеров

Подробнее

r r E dl ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ L электрического поля. Другими словами,

r r E dl ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ L электрического поля. Другими словами, Сафронов В.П. 2012 ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ. УРАВНЕНИЯ МАКСВЕЛЛА - 1 - Глава 17 ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ Система из четырех уравнений Максвелла полностью описывает электромагнитные процессы. 17.1. ПЕРВАЯ ПАРА

Подробнее

6. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ Уравнения электромагнитного поля в отсутствие источников поля ( ρ = 0, j = 0) могут быть сведены к уравнениям

6. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ Уравнения электромагнитного поля в отсутствие источников поля ( ρ = 0, j = 0) могут быть сведены к уравнениям 6 ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ Уравнения электромагнитного поля в отсутствие источников поля ( ρ = 0 j = 0) могут быть сведены к уравнениям 1 1 H E = 0 H = 0 (61) c t c t Эти уравнения представляют собой волновые

Подробнее

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z 1. Электростатика 1 1. Электростатика Урок 6 Разделение переменных в декартовых координатах 1.1. (Задача 1.49) Плоскость z = заряжена с плотностью σ (x, y) = σ sin (αx) sin (βy), где σ, α, β постоянные.

Подробнее

z удовлетворяют уравнению F ( x,

z удовлетворяют уравнению F ( x, Аналитическая геометрия в пространстве В главе будут рассмотрены некоторые линии и поверхности в пространстве Будем исходить из наглядного представление о линии и поверхности известного из курса математики

Подробнее

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет

Министерство образования и науки Российской Федерации. Федеральное агентство по образованию. Пензенский государственный университет Министерство образования и науки Российской Федерации Федеральное агентство по образованию Пензенский государственный университет Руденко АК, Руденко МН, Семерич ЮС СБОРНИК ЗАДАЧ С РЕШЕНИЯМИ ДЛЯ ПОДГОТОВКИ

Подробнее

ЭФФЕКТИВНЫЙ КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ КОМПОЗИТА ПРИ НЕИДЕАЛЬНОМ КОНТАКТЕ ШАРОВЫХ ВКЛЮЧЕНИЙ И МАТРИЦЫ

ЭФФЕКТИВНЫЙ КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ КОМПОЗИТА ПРИ НЕИДЕАЛЬНОМ КОНТАКТЕ ШАРОВЫХ ВКЛЮЧЕНИЙ И МАТРИЦЫ УДК 54.4 В. С. З а р у б и н, Г. Н. К у в ы р к и н, И. Ю. С а в е л ь е в а ЭФФЕКТИВНЫЙ КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ КОМПОЗИТА ПРИ НЕИДЕАЛЬНОМ КОНТАКТЕ ШАРОВЫХ ВКЛЮЧЕНИЙ И МАТРИЦЫ Построена математическая

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

РАБОЧАЯ ПРОГРАММА дисциплины

РАБОЧАЯ ПРОГРАММА дисциплины ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

Подробнее

ТЕМА 16. УРАВНЕНИЯ МАКСВЕЛЛА

ТЕМА 16. УРАВНЕНИЯ МАКСВЕЛЛА ТЕМА 16 УРАВНЕНИЯ МАКСВЕЛЛА 161 Ток смещения 162 Единая теория электрических и магнитных явлений Максвелла Система уравнений Максвелла 164 Пояснения к теории классической электродинамики 165 Скорость распространения

Подробнее

ОГЛАВЛЕНИЕ. Предисловие к девятому изданию...9 Предисловие к пятому изданию Г Л А В А I ЧИСЛО, ПЕРЕМЕННАЯ, ФУНКЦИЯ

ОГЛАВЛЕНИЕ. Предисловие к девятому изданию...9 Предисловие к пятому изданию Г Л А В А I ЧИСЛО, ПЕРЕМЕННАЯ, ФУНКЦИЯ ОГЛАВЛЕНИЕ Предисловие к девятому изданию.....9 Предисловие к пятому изданию... 11 Г Л А В А I ЧИСЛО, ПЕРЕМЕННАЯ, ФУНКЦИЯ 1. Действительные числа. Изображение действительных чисел точками числовой оси...

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21 1 ЛЕКЦИЯ 21 Электростатика. Медленно меняющиеся поля. Уравнение Пуассона. Решение уравнения Пуассона для точечного заряда. Потенциал поля системы зарядов. Напряженность электрического поля системы зарядов.

Подробнее

Математический анализ

Математический анализ Математический анализ Определённый интеграл Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики Томского политехнического университета. Национальный

Подробнее

Функции Бесселя в задачах математической физики

Функции Бесселя в задачах математической физики Министерство образования и науки РФ Нижегородский государственный университет им. Н.И. Лобачевского» В.С. Гаврилов Н.А. Денисова А.В. Калинин Функции Бесселя в задачах математической физики Учебно методическое

Подробнее

СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ

СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ ООП: 120103.65 Космическая геодезия Дисциплина: Математика Время выполнения теста: 80 минут Количество заданий: 45 ТЕМАТИЧЕСКАЯ СТРУКТУРА АПИМ N ДЕ Наименование

Подробнее

Методические указания

Методические указания Методические указания ЛА Лунёва АМ Макаров ДОМАШНЕЕ ЗАДАНИЕ ПО КУРСУ ОБЩЕЙ ФИЗИКИ ТЕМА «ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ» Под ракцией проф ОС Литвинова ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ Одним из важнейших слствий системы уравнений

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Элементы теории поля

Элементы теории поля Элементы теории поля Пусть Ω некоторая область в R 3. Будем говорить, что в Ω задано скалярное поле, если каждой точке M Ω поставлено в соответствие некоторое число U(M). Примерами скалярных полей могут

Подробнее

3. Используемые методы обучения

3. Используемые методы обучения 3.2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПРЕПОДАВАТЕЛЯМ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ Семестр I Раздел 1. Векторная и линейная алгебра. Практическое занятие 1 1. Цель: Рассмотреть задачи на вычисление определителей второго

Подробнее

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Учебная дисциплина Б.2.1 - Математика Профиль подготовки: Производственный менеджмент Тематика

Подробнее

Решение дифференциальных уравнений в частных производных

Решение дифференциальных уравнений в частных производных Нижегородский государственный университет им. Н.И.Лобачевского Факультет Вычислительной математики и кибернетики Решение дифференциальных уравнений в частных производных При поддержке компании Inel Баркалов

Подробнее

Ключевые слова: растущее тело, теплопроводность, шар, собственные функции, разложение, замкнутое решение.

Ключевые слова: растущее тело, теплопроводность, шар, собственные функции, разложение, замкнутое решение. УДК 539.3 А. В. М а н ж и р о в, С. А. Л ы ч е в, С. И. К у з н е ц о в, И. Ф е д о т о в АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА ТЕПЛОПРОВОДНОСТИ В РАСТУЩЕМ ШАРЕ Работа посвящена исследованию эволюции температурного

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 15

ОГЛАВЛЕНИЕ. Предисловие... 15 ОГЛАВЛЕНИЕ Предисловие... 15 Глава I. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ 1. Матрицы... 16 1.1. Основные понятия... 16 1.2. Действия над матрицами... 17 2. Определители... 20 2.1. Основные понятия... 20 2.2. Свойства

Подробнее

4. ЭЛЕКТРОСТАТИКА Для неподвижных зарядов уравнения электромагнитного поля принимают вид (4.1)

4. ЭЛЕКТРОСТАТИКА Для неподвижных зарядов уравнения электромагнитного поля принимают вид (4.1) 4 ЭЛЕКТРОСТАТИКА Для неподвижных зарядов уравнения электромагнитного поля принимают вид ot E, div E ρ (4 Безвихревой характер поля позволяет ввести скалярный потенциал электрического поля: E gad, для которого

Подробнее

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Интегральные уравнения

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Интегральные уравнения Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Лекции 2007, пункт 4.9. РЕЗОНАНСНОЕ ВЗАИМОДЕЙСТВИЕ СПЕКТРАЛЬНО УЗКИХ ВОЛНОВЫХ ПАКЕТОВ (МОДУЛИРОВАННЫХ ВОЛН)

Лекции 2007, пункт 4.9. РЕЗОНАНСНОЕ ВЗАИМОДЕЙСТВИЕ СПЕКТРАЛЬНО УЗКИХ ВОЛНОВЫХ ПАКЕТОВ (МОДУЛИРОВАННЫХ ВОЛН) Лекции 7, пункт 4.9. РЕЗОНАНСНОЕ ВЗАИМОДЕЙСТВИЕ СПЕКТРАЛЬНО УЗКИХ ВОЛНОВЫХ ПАКЕТОВ (МОДУЛИРОВАННЫХ ВОЛН) До сих пор мы ограничивались рассмотрением элементарных нелинейных взаимодействий с участием трех

Подробнее

Babilua Petre, Nadaraya Elizbar, Shatashvili Albert, Sokhadze Grigol. I. Javakhishvili Tbilisi State University. Donetsk State University

Babilua Petre, Nadaraya Elizbar, Shatashvili Albert, Sokhadze Grigol. I. Javakhishvili Tbilisi State University. Donetsk State University Обращение интеграла Винера и одно статистическое применение Babla Pere Naaraa lzbar Shaashvl Alber Sohaze Grol I Javahshvl Tbls Sae Uvers Does Sae Uvers ABSTRAT В работе доказана теорема об обращении интеграла

Подробнее

5. ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

5. ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ 5. ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ В настоящем разделе рассматривается метод конечных разностей который является одним из наиболее распространенных численных методов

Подробнее