Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»"

Транскрипт

1 Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Выполнил: студент 3-го курса, гр. АК3-51 Ягубов Роман Борисович Проверил: Апельцин Виктор Филиппович г. Москва

2 Оглавление Постановка задачи... 2 Теоретическая часть... 2 Вывод функции ослабления... 2 Корректность задачи, сведенной к интегральному уравнению первого рода... 4 Список литературы... 5 Практическая часть... 6 Сравнение результатов... 6 Выводы... 8 Постановка задачи Целью данной работы является приближенное вычисление функции ослабления, характеризующей распределение интенсивности рассеянного на бесконечном цилиндре произвольного сечения поля плоской электромагнитной волны, и построение на ее основе диаграммы рассеяния. Произвольное сечение цилиндра в декартовых координатах задается функцией вида: В полярных координатах выглядит следующим образом:, Теоретическая часть Вывод функции ослабления Процесс рассеяния плоской электромагнитной волны на гладком металлическом теле вполне адекватно описывается диаграммой рассеянного поля, характеризующей распределение рассеянной энергии по угловым координатам. Общая система стационарных уравнений Максвелла при гармонической зависимости всех векторных полей от времени) { в случае рассеяния Е - поляризованной плоской волны на бесконечном металлическом цилиндре с направляющей, при ее распространении в ортогональном оси цилиндра направлении, сводится к скалярной плоской задаче для уравнения Гельмгольца в полярных координатах относительно z компоненты электрического поля с краевым условием первого рода на границе контура поперечного сечения цилиндра, то есть к задаче вида 1) 2

3 где - волновое число, если из второго уравнения системы Максвелла выразить, подставить в первое уравнение и воспользоваться известным тождеством ) ), с учетом того, что поле имеет отличной от нуля лишь компоненту [1]. Краевая задача 1) может быть поставлена и как полостью однородная, то есть 2) если в качестве возбуждающего поля взять плоскую волну ), распространяющуюся из бесконечно удаленной точки к началу координат так как временная зависимость полей от времени полагается имеющей вид ) ). Несмотря на однородность задачи 2), она имеет нетривиальное решение, так как плоская волна не удовлетворяет условию излучения Зоммерфельда на бесконечности [2]. Выделяя в решении рассеянную волну: удовлетворяющую условию излучения, получим для задачу вида 3) где - контур поперечного сечения цилиндра, описываемый в полярных координатах уравнением, - угол падения плоской волны. Рассеянное поле может быть представлено потенциалом простого слоя: ) [ ] 4) где - функция Ханкеля первого рода, нулевого порядка; - контур, расположенный внутри, и подобный ему:, причем. При этом точки а контуре, а в пространстве, вне контура ; волновое число; декартово расстояние между точками и : ; - вспомогательный ток на контуре, имеющий смысл обычного электрического тока на поверхности металла, если контура и совпадают. Используя 3), краевое условие в задаче 2) можно записать в виде интегрального уравнения первого рода ) [ ] 5) где искомой функцией является ток. Функция Ханкеля, где функции Бесселя и Неймана вычисляются с помощью стандартных процедур из библиотек наиболее распространенных языков программирования. Интегральное уравнение первого рода 5), с гладким ядром хотя и является формально некорректно поставленной задачей, приводит к устойчивым вычислительным процедурам при его замене на систему алгебраических уравнений, если контура и достаточно близки, что обеспечивает в матрице алгебраической системы преобладание главой диагонали. Более подробная запись интегрального уравнения 5): ) [ ] 6) где ; ток, умноженный на дифференциал дуги контура. Если ток найден из уравнения 6) точно или приближенно), то потенциал простого слоя 3) явно описывает поведение рассеянного поля всюду вне контура. Нас будет интересовать дальняя зона, то есть значения при. При этом и, что позволяет заменить функцию Ханкеля ее асимптотикой: Приближая радикал в выражении [ ] [3] 3

4 первыми двумя членами биномиального ряда, получим { } При этом. Следовательно, в дальней зоне рассеянное поле приближенно описывается выражением [ ] [ ] 7) Множитель [ ] перед интегралом в 7), зависящий только от радиуса, и ответственный за порядок убывания амплитуды поля равномерно по при удалении от рассеивающего тела, можно не рассматривать. Остающееся выражение [ ] 8) называют обычно функцией ослабления [4]. Она характеризует распределение интенсивности рассеянного поля по угловой координате для каждого значения полярного радиуса. Модуль этой функции носит название диаграммы рассеяния или диаграммы направленности) и ее приближенное вычисление является основной целью данной работы. Интегральное уравнение первого рода 6) заменяем приближенно алгебраической системой линейных уравнений, вводя равномерные сетки: В результате, получим алгебраическую систему вида ) [ ] 9) Находя с помощью численного метода приближенное решение { } системы 9), получим выражение для диаграммы рассеяния в виде одномерного массива вида [ ] 1) что позволяет строить графики для при различных значениях параметров. Корректность задачи, сведенной к интегральному уравнению первого рода Рассмотрим теперь вопрос о корректности задачи, сведенной к интегральному уравнению первого рода 5). Для этого заменим параметр на,. При этом контуру соответствует значение. Возьмем интегральное уравнение 6) для любого отличного от нуля значения : [ ] 11) и представим ядро ) [ ] интегрального оператора в виде суммы первых двух слагаемых его разложении в ряд Маклорена по переменной, в окрестности точки : [ ] [ ] [ ] [ ] 12) где [ ] - значение переменной, отличное от нуля. Из трех слагаемых формулы 12) лишь первые два имеют особенность при совпадении значений углов и. Первое из них имеет логарифмическую особенность и соответствует ядру обычного потенциала простого слоя. Второе имеет более сильную особенность, аналогичную ядру потенциала двойного слоя. Третье слагаемое, ввиду, является гладким аналитическим ядром без особенностей. 4

5 В соответствии с этим, представим левую часть уравнения 11) в виде [ ] [ ] [ ] 13) Ядро второго слагаемого в более подробной записи имеет вид [ ] [ ] и при переходит в [ ] [ ], 14) cовпадая, с точностью до множителя с [ )]. Здесь - производная по направлению радиус-вектора. То есть, [ ] [ )] 15) Интеграл в 15) является обобщенным потенциалом двойного слоя, у которого ядро продифференцировано по направлению отличному от направления нормали. Из результатов приведенных в литературе по уравнениям с частными производными эллиптического типа [5], следует общая формула для предельного значения такого потенциала, когда точка наблюдения стремится к поверхности: [ ] ) [ ] Следовательно, интегральные операторы в 13) приобретают окончательный вид [ ] ) [ )] [ ] Из них, первый и второй имеют слабо полярные ядра, и являются, следовательно, вполне непрерывными, а последний интегральный оператор с гладким ядром без особенностей. В результате, получаем интегральное уравнение Фредгольма второго рода относительно : ) которое при [ ] [ )] [ ], 16) является корректно поставленной задачей. Список литературы 1. Вайнштейн Л. А. «Электромагнитные волны». М.: «Радио и связь», Зоммерфельд А. «Дифференциальные уравнения в частных производных физики». М.: И.Л., Тихонов А.Н., Самарский А.А. «Уравнения математической физики». М.: «Наука», Марков Г.Т., Петров Б.М., Грудинская Г.П. «Электродинамика и распространение радиоволн». М.: «Сов. Радио», Миранда К. «Уравнения с частными производными эллиптического типа». М.: И.Л.,

6 Практическая часть Сравнение результатов Алгоритм программы на базе среды MathCad 15, осуществляющей численное решение системы 9) и создание одномерного массива 1). Здесь же мы остановимся на анализе полученных результатов. Рассмотрим первоначально вид диаграмм рассеяния при различных углах падения плоской электромагнитной волны. По результатам работы программы получаем следующие результаты: Эти диаграммы направленности получены с учетом того, что число разбиений, волновое число, параметр подобия контуров. 6

7 Произведем сопоставление рассеянных полей при изменении параметра подобия контуров для случая падения волны под углом. Для сравнения введем контур, для которого для всех случаев Значительного расхождение графиков уже не наблюдается при значениях близких к.8. Это говорит о правильном ходе вычислений при удалении вспомогательного контура от основного. 7

8 Наконец, рассмотрим случай изменения числа разбиений при,, и. Как видно из рисунка, чем больше разбиений, тем больше совпадений, что говорит о сходимости приближенного метода Выводы В работе рассмотрена математическая модель стационарной задачи рассеяния плоской Е - поляризованной электромагнитной волны на металлическом ограниченном теле в плоском случае возбуждение бесконечного цилиндра). Рассеянное поле представлено потенциалом простого слоя с плотностью тока, распределенной на вспомогательном контуре, расположенном внутри границы исходной области и подобном ей метод вспомогательных токов). В случае близости такого контура к границе, несмотря на некорректность задачи в такой постановке, численный алгоритм ее решения оказывается устойчивым и сходящимся. 8

Курсовая работа по дисциплине: «дифференциальные уравнения»

Курсовая работа по дисциплине: «дифференциальные уравнения» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович

Подробнее

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного

Подробнее

8. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ И ИЗЛУЧЕНИЕ ДВИЖУЩИХСЯ ЗАРЯДОВ

8. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ И ИЗЛУЧЕНИЕ ДВИЖУЩИХСЯ ЗАРЯДОВ 8 ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ И ИЗЛУЧЕНИЕ ДВИЖУЩИХСЯ ЗАРЯДОВ Рассмотрим электромагнитное поле движущегося произвольным образом точечного заряда Оно описывается запаздывающими потенциалами которые запишем в виде

Подробнее

Московский государственный технический университет им. Н. Э. Баумана.

Московский государственный технический университет им. Н. Э. Баумана. Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ЧИСЛЕННЫЕ МЕТОДЫ» по теме: «Численные методы регуляризации для решения интегрального уравнения Фредгольма

Подробнее

О представлении поля в волноводе в виде суммы полей ТЕ и ТМ.

О представлении поля в волноводе в виде суммы полей ТЕ и ТМ. Журнал технической физики, том XVIII, вып 7, 1948 А Н Тихонов, А А Самарский О представлении поля в волноводе в виде суммы полей ТЕ и ТМ Несмотря на то, что утверждение о возможности разложения произвольного

Подробнее

Решение задачи рассеяния на протяженных цилиндрических телах различного сечения

Решение задачи рассеяния на протяженных цилиндрических телах различного сечения Электронный журнал «Труды МАИ». Выпуск 68 www.a.ru/scece/rudy/ УДК 537.87+6.37 Решение задачи рассеяния на протяженных цилиндрических телах различного сечения Гиголо А. И. * Кузнецов Г. Ю. ** Московский

Подробнее

ДИФРАКЦИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА БЕСКОНЕЧНОМ ДИЭЛЕКТРИЧЕСКОМ ЦИЛИНДРЕ, НАХОДЯЩЕМСЯ ПОД ПЛОСКОЙ ЗЕМНОЙ ПОВЕРХНОСТЬЮ

ДИФРАКЦИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА БЕСКОНЕЧНОМ ДИЭЛЕКТРИЧЕСКОМ ЦИЛИНДРЕ, НАХОДЯЩЕМСЯ ПОД ПЛОСКОЙ ЗЕМНОЙ ПОВЕРХНОСТЬЮ III Всероссийская конференция «Радиолокация и радиосвязь» ИРЭ РАН, 6-30 октября 009 г ДИФРАКЦИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА БЕСКОНЕЧНОМ ДИЭЛЕКТРИЧЕСКОМ ЦИЛИНДРЕ, НАХОДЯЩЕМСЯ ПОД ПЛОСКОЙ ЗЕМНОЙ ПОВЕРХНОСТЬЮ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕРИАЛЫ. II Всероссийской молодежной научной конференции

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕРИАЛЫ. II Всероссийской молодежной научной конференции МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕРИАЛЫ II Всероссийской молодежной научной конференции «МАТЕМАТИЧЕСКОЕ И ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ИНФОРМАЦИОННЫХ,

Подробнее

О принципе излучения

О принципе излучения Журнал экспериментальной и теоретической физики. 948 т. 8 вып. А.Н. Тихонов А.А. Cамарский. О принципе излучения Сформулирован общий принцип излучения для волнового уравнения в том смысле что решениями

Подробнее

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ УДК 535.36 В. И. А л е х н о в и ч, К. И. З а й ц е в, В. Е. К а р а с и к, И. Н. Ф о к и н а МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА РАССЕЯНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ НА

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Уравнение Лапласа в полярной системе координат.

Уравнение Лапласа в полярной системе координат. Линейные и нелинейные уравнения физики Уравнение Лапласа в полярной системе координат. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич 518 Глава 5. Уравнения эллиптического типа 25.2. Разделение

Подробнее

Семинары 3-4. Электромагнитные волны. Давление света.

Семинары 3-4. Электромагнитные волны. Давление света. Семинары 3-4 Электромагнитные волны Давление света Основной материал семинара изложен в конспекте лекций по оптике Здесь только дополнительные моменты 1 В вакууме распространяется электромагнитная волна

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

Московский государственный технический университет им. Н. Э. Баумана.

Московский государственный технический университет им. Н. Э. Баумана. Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ» по теме: «РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ 2-ГО РОДА

Подробнее

Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА

Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА Уравнения математической в ОПИСАНИИ ПРОЦЕССОВ ГОРНОГО ПРОИЗВОДСТВА Решение вопросов организации эффективной добычи полезных ископаемых требует изучения закономерностей движения воды, тепла, распределен

Подробнее

Учебно-исследовательская работа студентов

Учебно-исследовательская работа студентов Московский авиационный институт 1 Учебно-исследовательская работа студентов Цилиндрическая электромагнитная волна 2 Оператор набла (оператор Гамильтона) Оператор набла ( ) в декартовой системе координат

Подробнее

МИНОРСКИЙ В. П. Сборник задач по высшей математике ОГЛАВЛЕНИЕ Аналитическая геомегрия на плоскости

МИНОРСКИЙ В. П. Сборник задач по высшей математике ОГЛАВЛЕНИЕ Аналитическая геомегрия на плоскости МИНОРСКИЙ В. П. Сборник задач по высшей математике: Учеб. пособие для втузов. 13-е изд. М.: Издательство Физико-математической литературы, 2010. 336 с ISBN 9785-94052-184-6. ОГЛАВЛЕНИЕ ИЗ ПРЕДИСЛОВИЯ АВТОРА

Подробнее

ПОВЕДЕНИЕ ВОЛНЫ В ОКРЕСТНОСТИ ФОКУСА И ФУНКЦИИ БЕССЕЛЯ

ПОВЕДЕНИЕ ВОЛНЫ В ОКРЕСТНОСТИ ФОКУСА И ФУНКЦИИ БЕССЕЛЯ В. Кулигин, М. Корнева, Г. Кулигина ПОВЕДЕНИЕ ВОЛНЫ В ОКРЕСТНОСТИ ФОКУСА И ФУНКЦИИ БЕССЕЛЯ В учебниках пишется, что волна в окрестности каустики или в окрестности фокуса меняет фазу. Причина такого мнения

Подробнее

ВОПРОСЫ к экзамену за осенний семестр для студентов I года магистратуры, изучающих курс Методы теоретической физики ЭЛЕКТРОДИНАМИКА

ВОПРОСЫ к экзамену за осенний семестр для студентов I года магистратуры, изучающих курс Методы теоретической физики ЭЛЕКТРОДИНАМИКА ВОПРОСЫ к экзамену за осенний семестр для студентов I года магистратуры, изучающих курс Методы теоретической физики Релятивистская кинематика ЭЛЕКТРОДИНАМИКА 1. Пространство событий и интервал. 2. Преобразования

Подробнее

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач.

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных

Подробнее

Преобразование произвольного тела в сферу комплексного радиуса Якубовский Е.Г.

Преобразование произвольного тела в сферу комплексного радиуса Якубовский Е.Г. Преобразование произвольного тела в сферу комплексного радиуса Якубовский ЕГ e-m uov@rmerru Произвольное тело можно преобразовать с помощью ортогонального преобразования сохраняющего углы в сферическое

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Электромагнитные волны.

Электромагнитные волны. Электромагнитные волны. 1. Дифференциальное уравнение электромагнитной волны.. Основные свойства электромагнитных волн. 3. Энергия электромагнитных волн. Вектор Умова-Пойнинга. 4. Излучение диполя. 1.

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. Лекции 1 2 Определители и матрицы. Лекция 1

ОГЛАВЛЕНИЕ ЧАСТЬ I. Лекции 1 2 Определители и матрицы. Лекция 1 ОГЛАВЛЕНИЕ ЧАСТЬ I Лекции 1 2 Определители и матрицы Лекция 1 1.1. Понятие матрицы. Виды матриц... 19 1.1.1. Основные определения... 19 1.1.2. Виды матриц... 19 1.2.* Перестановки и подстановки... 21 1.3.*

Подробнее

Глава 2. Методы расчета характеристик рассеяния объектов

Глава 2. Методы расчета характеристик рассеяния объектов Глава. Методы расчета характеристик рассеяния объектов.4.1.1. Основные математические соотношения для расчета электромагнитного поля, рассеянного электрически большой зеркальной антенной с радиопоглощающим

Подробнее

Основы теории специальных функций

Основы теории специальных функций Основы теории специальных функций Необходимость изучения специальных функций математической физики связана с двумя основными обстоятельствами. Во-первых, при разработке математической модели физического

Подробнее

Вопросы к первой части экзамена по курсу Методы математической физики ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения

Вопросы к первой части экзамена по курсу Методы математической физики ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения Вопросы к первой части экзамена по курсу Методы математической физики (2008-2009 учебный год) 1. Сформулируйте лемму о поведении решений уравнения ( k( x) u'( x))' q( x) u = 0, x ( a, b), где k( x) = (

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ к самостоятельной работе студентов по курсу «Физика СВЧ» 1. Элементы теории поля

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ к самостоятельной работе студентов по курсу «Физика СВЧ» 1. Элементы теории поля ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ к самостоятельной работе студентов по курсу «Физика СВЧ» 1 Элементы теории поля 11 Подсчитать поток вектора A = 5/ rlr сквозь сферическую поверхность радиуса r = Центр сферы совпадает

Подробнее

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СО РАН. А.А. Иванов К РАСЧЕТУ ИНДУКТИВНОСТИ И ВЗАИМНОЙ ИНДУКТИВНОСТИ КАТУШЕК ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СО РАН. А.А. Иванов К РАСЧЕТУ ИНДУКТИВНОСТИ И ВЗАИМНОЙ ИНДУКТИВНОСТИ КАТУШЕК ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЕ УЧРЕЖДЕНИЕ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СО РАН А.А. Иванов К РАСЧЕТУ ИНДУКТИВНОСТИ И ВЗАИМНОЙ ИНДУКТИВНОСТИ КАТУШЕК ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ ИЯФ--5 НОВОСИБИРСК К расчету

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Казанский государственный университет Р.Ф. Марданов ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие Издательство Казанского государственного университета 2007 УДК 517.9

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)!

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)! 4.Метод парциальных амплитуд.. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: ( +! m ( +! ( + φ ( V ( φ ( (.6 и соответствующее ему граничное условие :!! e! φ ( { e + f (

Подробнее

Воронежская государственная технологическая академия, Воронеж

Воронежская государственная технологическая академия, Воронеж ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 009. Т. 50, N- 6 19 УДК 59.; 5; 517.946 РЕШЕНИЕ ЗАДАЧИ О КРУЧЕНИИ УПРУГОГО СТЕРЖНЯ s-угольного СЕЧЕНИЯ МЕТОДОМ РАСШИРЕНИЯ ГРАНИЦ А. Д. Чернышов Воронежская государственная

Подробнее

r, т. е. ток проводимости отсутствует, а наличие

r, т. е. ток проводимости отсутствует, а наличие I..3 Основные свойства электромагнитных волн. 1. Поперечность и ортогональность векторов E r и H r Система уравнений Максвелла позволяет корректно описать возникновение и распространение электромагнитных

Подробнее

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ»

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу 1. Дайте определение конечного предела последовательности. Приведите пример последовательности,

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

5. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА (ПО ПЛОЩАДИ ПОВЕРХНОСТИ) 1. Задача, приводящая к понятию поверхностного интеграла I рода

5. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА (ПО ПЛОЩАДИ ПОВЕРХНОСТИ) 1. Задача, приводящая к понятию поверхностного интеграла I рода 5 ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА ПО ПЛОЩАДИ ПОВЕРХНОСТИ Поверхностный интеграл I рода представляет собой такое же обобщение двойного интеграла каким криволинейный интеграл I рода является по отношению к

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы.

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Рассмотрим несколько вариантов разностной аппроксимации линейного уравнения колебаний:

Подробнее

5.2. УРАВНЕНИЕ ШРЁДИНГЕРА

5.2. УРАВНЕНИЕ ШРЁДИНГЕРА 5 УРАВНЕНИЕ ШРЁДИНГЕРА Основным динамическим уравнением квантовой механики описывающим эволюцию состояния микрочастицы во времени является уравнение Шрѐдингера: () Ĥ оператор Гамильтона в общем случае

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ

ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ Бережной Д.В. Тазюков Б.Ф. ЧИСЛЕННОЕ РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие

Подробнее

Программные требования к зачету по курсу Электродинамика

Программные требования к зачету по курсу Электродинамика Программные требования к зачету по курсу Электродинамика (5 семестр) 1.1. Уравнения Максвелла и их физическое обоснование. Сила Лоренца. При ответе на вопрос билета необходимо ввести понятия объемной плотности

Подробнее

Программа к экзамену по курсу Электродинамика

Программа к экзамену по курсу Электродинамика Программа к экзамену по курсу Электродинамика (6 семестр) 1.1. Усреднение микроскопических уравнений Максвелла. Векторы поляризации и намагничения среды При ответе на вопрос билета необходимо обосновать

Подробнее

МИНОБРНАУКИ РОССИИ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

МИНОБРНАУКИ РОССИИ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА» МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Подробнее

Всего 66 вопросов. 1 год обучения. Модули 1 2.

Всего 66 вопросов. 1 год обучения. Модули 1 2. ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ к итоговому экзамену по дисциплине «Математический анализ» Прикладная математика На устном экзамене студент получает два теоретических вопроса и две задачи Всего 66 вопросов год

Подробнее

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения.

Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения. Глава Введение Лекция Понятие дифференциального уравнения Основные определения Определение Дифференциальным уравнением (ДУ) называют уравнение, в котором неизвестная функция находится под знаком производной

Подробнее

Вопросы к первой части экзамена по курсу «Методы математической физики» ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения

Вопросы к первой части экзамена по курсу «Методы математической физики» ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения Вопросы к первой части экзамена по курсу «Методы математической физики» (2013-2014 учебный год) 1. Сформулируйте лемму о поведении решений уравнения ( k( x) u'( x))' q( x) u 0, x ( a, b), где k( x) ( x

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ Уравнение с частными производными это уравнение, содержащее частные производные. В отличие от обыкновенных дифференциальных уравнений (ОДУ), в которых неизвестная

Подробнее

Лекция 4. Идеальная несжимаемая жидкость.

Лекция 4. Идеальная несжимаемая жидкость. Лекция 4. Идеальная несжимаемая жидкость. Жидкость называется идеальной, если коэффициенты вязкости равны нулю. Предположим, что ρt, x является константой. Тогда уравнения, описывающие движение идеальной

Подробнее

ГЛАВА 5. Плоские волны

ГЛАВА 5. Плоские волны ГЛАВА 5 Плоские волны Излучатель электромагнитной волны создает вокруг себя фронт этих волн На больших расстояниях от излучателя волну можно считать сферической Но на очень больших расстояниях от излучателя

Подробнее

Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома

Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома Лекция 3. Дифференциальное сечение рассеяния. Формула Резерфорда. Неустойчивость классического атома 1 Дифференциальное сечение рассеяния Когда быстрая частица налетает на частицу-мишень, то для того,

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

.3 Вычисление длины кривой. Длина дуги плоской кривой в прямоугольной системе координат. Пусть функция y = f( x)

.3 Вычисление длины кривой. Длина дуги плоской кривой в прямоугольной системе координат. Пусть функция y = f( x) 6 3 Вычисление длины кривой Длина дуги плоской кривой в прямоугольной системе координат Пусть функция = f определена и непрерывна на отрезке [ ; ] и кривая l график этой функции Требуется найти длину дуги

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

Глава 2. Методы расчета характеристик рассеяния объектов

Глава 2. Методы расчета характеристик рассеяния объектов Глава. Методы расчета характеристик рассеяния объектов ческих размеров (каковым является, например, самолет весьма сложно провести достаточно мелкое разбиение поверхности. В этом случае приходится удовлетворяться

Подробнее

Необходимый минимум по курсу ММФ (2004\2005 уч.г.)

Необходимый минимум по курсу ММФ (2004\2005 уч.г.) ПРОГРАММА КУРСА «МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» (2004-2005 уч.г.) 1. Физические задачи, приводящие к уравнениям в частных производных. 2. Классификация уравнений в частных производных второго порядка. 3.

Подробнее

2 ЭЛЕКТРОСТАТИЧЕСКАЯ ТЕОРЕМА ГАУССА

2 ЭЛЕКТРОСТАТИЧЕСКАЯ ТЕОРЕМА ГАУССА 2 ЭЛЕКТРОСТАТИЧЕСКАЯ ТЕОРЕМА ГАУССА Поток вектора напряжённости электростатического поля сквозь поверхность. Используя закон Кулона, можно доказать электростатическую теорему Гаусса. Для этого необходимо

Подробнее

10. Векторный и скалярный потенциалы

10. Векторный и скалярный потенциалы Векторный и скалярный потенциалы Уравнения Максвелла это, в общем случае, сложные интегральнодифференциальные уравнения, поэтому непосредственно их решать относительно трудно Были введены две вспомогательные

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). 1. Кафедра Общие сведения 2. Направление подготовки 3. Дисциплина (модуль) 4. Количество этапов формирования

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

3.6. Поток и циркуляция вектора магнитной индукции.

3.6. Поток и циркуляция вектора магнитной индукции. 1 3.6. Поток и циркуляция вектора магнитной индукции. 3.6.1.Поток вектора магнитной индукции. Как и любое векторное поле, магнитное поле может быть наглядно представлено с помощью линий вектора магнитной

Подробнее

E 0 e -i t. rot E = 1 c. c div D = 0, c 2. z 2 + k2 E = 0, 2 E

E 0 e -i t. rot E = 1 c. c div D = 0, c 2. z 2 + k2 E = 0, 2 E 1 Квазистационарные явления 1 1 Квазистационарные явления Урок 6 Скин-эффект Базовые решения - плоскость, шар, цилиндр 11 (Задача 676)Полупространство Z заполнено проводником с проводи- E e -i t мостью

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

1 Принцип сжимающих отображений 2

1 Принцип сжимающих отображений 2 Содержание 1 Принцип сжимающих отображений Применения принципа сжимающих отображений для решения линейных интегральных уравнений -го рода 3.1 Уравнения Фредгольма.................................. 3. Уравнения

Подробнее

Система уравнений Максвелла (5.19) записана для случая, когда сторонние источники электромагнитного поля отсутствуют, а именно:

Система уравнений Максвелла (5.19) записана для случая, когда сторонние источники электромагнитного поля отсутствуют, а именно: 6. Граничные условия для нормальных составляющих векторов B и D. Что собой представляет физически область контакта двух сред? Какая модель области контакта сред используется в электродинамике?. Почему

Подробнее

Уравнение Лапласа в декартовой системе координат.

Уравнение Лапласа в декартовой системе координат. Линейные и нелинейные уравнения физики Уравнение Лапласа в декартовой системе координат. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич 25. Разделение переменных в уравнении Лапласа 511

Подробнее

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Лекция 4 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Тема: Элементарная кривая Касательная Длина кривой План лекции Понятие и способы задания элементарной кривой Вектор-функция одного переменного Касательная к кривой

Подробнее

Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления

Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления УДК 6-5 Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления К.А. Рыбаков В статье вводится понятие спектральных характеристик линейных

Подробнее

20. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений

20. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений Варианты заданий 0. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений 0.1. Постановка задачи Рассматривается задача Дирихле для эллиптического уравнения Lu

Подробнее

ИНТЕРФЕРЕНЦИЯ РЕАКТИВНЫХ КОМПОНЕНТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ. А.А. Колоколов,

ИНТЕРФЕРЕНЦИЯ РЕАКТИВНЫХ КОМПОНЕНТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ. А.А. Колоколов, Декабрь 1992 г. Том 162, 12 УСПЕХИ ФИЗИЧЕСКИХ НАУК МЕТОДИЧЕСКИЕ ЗАМЕТКИ ИНТЕРФЕРЕНЦИЯ РЕАКТИВНЫХ КОМПОНЕНТ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ А.А. Колоколов, (Московский физико-технический институт, Московский станкоинструментальный

Подробнее

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2007 Управление, вычислительная техника и информатика 1 ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 007 Управление, вычислительная техника и информатика 1 УДК 519.865 В.В. Поддубный, О.В. Романович МОДИФИКАЦИЯ МЕТОДА ЭЙЛЕРА С УРАВНИВАНИЕМ ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ

ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ ФИЗИЧЕСКИЕ ОПРЕДЕЛЕНИЯ 1. В каких единицах измеряется электрический заряд в СИ и СГСЭ (ГС)? Как связаны между собой эти единицы для заряда? Заряд протона

Подробнее

r 2 r. E + = 2κ a, E = 2κ a

r 2 r. E + = 2κ a, E = 2κ a 1. Электростатика 1 1. Электростатика Урок 2 Теорема Гаусса 1.1. (1.19 из задачника) Используя теорему Гаусса, найти: а) поле плоскости, заряженной с поверхностной плотностью σ; б) поле плоского конденсатора;

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

ЭФФЕКТИВНЫЙ КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ КОМПОЗИТА ПРИ НЕИДЕАЛЬНОМ КОНТАКТЕ ШАРОВЫХ ВКЛЮЧЕНИЙ И МАТРИЦЫ

ЭФФЕКТИВНЫЙ КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ КОМПОЗИТА ПРИ НЕИДЕАЛЬНОМ КОНТАКТЕ ШАРОВЫХ ВКЛЮЧЕНИЙ И МАТРИЦЫ УДК 54.4 В. С. З а р у б и н, Г. Н. К у в ы р к и н, И. Ю. С а в е л ь е в а ЭФФЕКТИВНЫЙ КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ КОМПОЗИТА ПРИ НЕИДЕАЛЬНОМ КОНТАКТЕ ШАРОВЫХ ВКЛЮЧЕНИЙ И МАТРИЦЫ Построена математическая

Подробнее

Билет 6 1. Дифференциалы высших порядков функции нескольких переменных. Формула Тейлора. 2. Интегрирующий множитель, его нахождение в частных случаях.

Билет 6 1. Дифференциалы высших порядков функции нескольких переменных. Формула Тейлора. 2. Интегрирующий множитель, его нахождение в частных случаях. Математика 2 Билет 1 Лектор Конев В.В. 1. Дифференцирование сложной функции нескольких переменных. 2. Дифференциальные уравнения 1-го порядка, основные понятия (определение, решение уравнения, общее и

Подробнее

Дифракция Фраунгофера от цилиндрического источника упругих волн

Дифракция Фраунгофера от цилиндрического источника упругих волн Динамические системы, вып. 28 (2010), 183 187 УДК 539.3 Дифракция Фраунгофера от цилиндрического источника упругих волн А. Р. Сницер Таврический национальный университет им. В.И.Вернадского, НИИ Проблем

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

1.3. Теорема Гаусса.

1.3. Теорема Гаусса. 1 1.3. Теорема Гаусса. 1.3.1. Поток вектора через поверхность. Поток вектора через поверхность одно из важнейших понятий любого векторного поля, в частности электрического d d. Рассмотрим маленькую площадку

Подробнее

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ С П ПРЕОБРАЖЕНСКИЙ, СР ТИХОМИРОВ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ 987 ОГЛАВЛЕНИЕ Предисловие Формулировка задания 3 Варианты задания 3 Пример выполнения задания и комментарии

Подробнее

~ 1 ~ ФКП. Производная функции комплексного переменного (ФКП), условия Коши - Римана, понятие регулярности ФКП. Изображение и вид комплексного числа.

~ 1 ~ ФКП. Производная функции комплексного переменного (ФКП), условия Коши - Римана, понятие регулярности ФКП. Изображение и вид комплексного числа. ~ ~ ФКП Производная функции комплексного переменного ФКП условия Коши - Римана понятие регулярности ФКП Изображение и вид комплексного числа Вид ФКП: где действительная функция двух переменных действительная

Подробнее

Лекция 2. Поверхностные интегралы первого рода

Лекция 2. Поверхностные интегралы первого рода С А Лавренченко wwwlawrecekoru Лекция Поверхностные интегралы первого рода Поверхностные интегралы -го рода представляют собой такое же естественное обобщение двойных интегралов, каким криволинейные интеграла

Подробнее

ФФКЭ, III курс, Теория поля, поток C. Фомичева. Тестовые вопросы

ФФКЭ, III курс, Теория поля, поток C. Фомичева. Тестовые вопросы ФФКЭ, III курс, Теория поля, поток C. Фомичева Тестовые вопросы 1. Запишите прямое и обратное преобразования Лоренца для t и x от инерциальной системы отсчета K к системе K, при движении системы K со скоростью

Подробнее

Конспект лекций по методам математической физики, 4 семестр

Конспект лекций по методам математической физики, 4 семестр Конспект лекций по методам математической физики, 4 семестр Зайцев Ю.В., лектор Кошелев В.Н. 20 июня 2006 г. Аннотация Данные лекции читались В.Н. Кошелевым на радиофизическом факультете ННГУ им. Лобачевского

Подробнее

1 n α. сходимости обобщенного гармонического ряда

1 n α. сходимости обобщенного гармонического ряда СОДЕРЖАНИЕ КУРСА ВЫСШЕЙ МАТЕМАТИКИ ФТК, 2-ой семестр Матрицы и определители. 1. Понятие матрицы. Основные действия с матрицами и их свойства. 2. Пространство квадратных матриц. Обратная матрица и ее свойства.

Подробнее

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Лектор: профессор Д. Л. Ткачев. 5 6 семестры

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Лектор: профессор Д. Л. Ткачев. 5 6 семестры УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Лектор: профессор Д. Л. Ткачев 5 6 семестры Некоторые уравнения и системы математической физики. Вывод уравнения малых поперечных колебаний струны. Понятие о начальных данных

Подробнее

6. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ Уравнения электромагнитного поля в отсутствие источников поля ( ρ = 0, j = 0) могут быть сведены к уравнениям

6. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ Уравнения электромагнитного поля в отсутствие источников поля ( ρ = 0, j = 0) могут быть сведены к уравнениям 6 ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ Уравнения электромагнитного поля в отсутствие источников поля ( ρ = 0 j = 0) могут быть сведены к уравнениям 1 1 H E = 0 H = 0 (61) c t c t Эти уравнения представляют собой волновые

Подробнее

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса.

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Для численного решения нелинейных задач в различных ситуациях используют как линейные, так и нелинейные схемы. Устойчивость соответствующих

Подробнее

Вопросы к первой части экзамена по курсу Методы математической физики ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения

Вопросы к первой части экзамена по курсу Методы математической физики ( учебный год) 1. Сформулируйте лемму о поведении решений уравнения Вопросы к первой части экзамена по курсу Методы математической физики (2010-2011 учебный год) 1. Сформулируйте лемму о поведении решений уравнения ( k( x) u'( x))' q( x) u= 0, x ( a, b), где k( x) = (

Подробнее

Приложения поверхностного интеграла 1-го типа

Приложения поверхностного интеграла 1-го типа Глава 6 Приложения поверхностного интеграла 1-го типа 6.1 Необходимые сведения На прошлых занятиях мы уже освоили методы вычисления поверхностных интегралов 1-го типа, оперируя при этом преимущественно

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Math-NetR Общероссийский математический портал В Ф Бутузов Н Т Левашова А А Мельникова Контрастная структура типа ступеньки в сингулярно возмущенной системе уравнений с различными степенями малого параметра

Подробнее

4. ЭЛЕКТРОСТАТИКА Для неподвижных зарядов уравнения электромагнитного поля принимают вид (4.1)

4. ЭЛЕКТРОСТАТИКА Для неподвижных зарядов уравнения электромагнитного поля принимают вид (4.1) 4 ЭЛЕКТРОСТАТИКА Для неподвижных зарядов уравнения электромагнитного поля принимают вид ot E, div E ρ (4 Безвихревой характер поля позволяет ввести скалярный потенциал электрического поля: E gad, для которого

Подробнее

Математический анализ

Математический анализ 1. Цель и задачи дисциплины Математический анализ Целью освоения дисциплины «Математический анализ» является формирование у будущих специалистов знаний и умения применять математический аппарат и математические

Подробнее

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение 1. Электростатика 1 1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Уравнение для потенциала с источниками зарядами) уравнение Пуассона и уравнение без источников уравнение Лапласа Уравнение Пуассона

Подробнее

4 Перечень разделов и (или) тем дисциплины и их дидактическое содержание Наименование раздела

4 Перечень разделов и (или) тем дисциплины и их дидактическое содержание Наименование раздела 1. Целью изучения дисциплины является: подготовка высокопрофессионального специалиста владеющего математическими знаниями, умениями и навыками применять математику как инструмент логического анализа, численных

Подробнее