МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ"

Транскрипт

1 ВЕСТИ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ ЧЕРНОЗЕМЬЯ () УДК 39.3 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РЕШЕНИЕ ПЛОСКИХ ЗАДАЧ АНИЗОТРОПНОЙ УПРУГОСТИ МЕТОДОМ ГРАНИЧНЫХ СОСТОЯНИЙ Липецкий государственный технический университет В.Б. Пеньков, Д.А. Иванычев Метод граничных состояний применен для решения плоских задач теории анизотропной упругости. Разработана методология построения базисов пространств состояний для плоской односвязной области, опирающаяся на общее решение плоской задачи для анизотропного упругого материала. Построены и представлены конкретные решения плоских задач решения первой основной задачи для тела сложной формы в условиях одноосного растяжения и второй основной задачи для тела прямоугольной формы в плане. Все разработанные к настоящему времени методы решения задач теории анизотропной упругости имеют свои достоинства и недостатки. Метод граничных состояний (МГС) является новым эффективным, компьютерноориентированным методом решения краевых задач уравнений математической физики. Он обеспечивает возможность построения решения основных задач механики для тел разнообразных геометрических конфигураций простыми средствами. Кроме этой особенности МГС имеет еще и достоинство - он является общим. Эффективность МГС в задачах статики изотропных тел определена рядом присущих методу черт []: - исходный базис пространства состояний строится для класса топологически эквивалентных тел: ограниченных односвязных, неограниченных односвязных, двусвязных и т.п.; - «тело в смысле МГС», под которым понимается ортонормированный базис внутренних состояний, строится однократно и может использоваться для решения различных краевых задач: первой, второй, основных контактной и смешанной и др.; - «скелет» задачи - матрица коэффициентов разрешающей системы уравнений - рассчитывается единожды и может использоваться без изменения при варьировании граничных условий; - в случае основных задач «скелет» задачи представляет собой единичную матрицу, и решение сводится к рутинному вычислению квадратур; - граничные условия содержатся в результирующем граничном состоянии, что служит основой проверки адекватности решения; - решение имеет аналитическую форму, что позволяет легко проводить анализ и является базой для тестирования промежуточных результатов счета. Постановка задачи и формирование решения. Метод граничных состояний опирается на фундаментальное или общее решение для среды. В случае плоских задач анизотропной упругости общее решение составляют построенные Лехницким [] формулы комплексного представления, которые в случае различных корней характеристического уравнения: Re[ z z ]; Re[ z z ]; Re[ z z ]; u Re[p z p z ]; v Re[q z q z ]. p a a a ; 6 p a a a ; 6 q a a / a 6 ; q a a / a, 6 3

2 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ () где z, z - обобщенные комплексные переменные;, - комплексные корни характеристического уравнения [,3], определенные параметрами анизотропии (если и оба корня чисто мнимые, то среда является ортотропной с плоскостями упругой симметрии, нормальными рассматриваемой; если i то среда является изотропной); 3 df z ; d z ; z ; z ; df d F F F - функция напряжений; функции z, z определены над областями D и D соответственно в комплексных плоскостях z, z. Если в физической плоскости O тело занимает область D, то D и D получаются из D соответствующими аффинными преобразованиями; константы интегрирования u, v отвечают за смещение и поворот тела как целого [3]. Внутреннее состояние определяется наборами компонент вектора перемещений, тензоров деформаций и напряжений. {u, v},{,, },{,, }. Базисные наборы внутренних состояний можно конструировать, генерируя возможные варианты для аналитических функций. В случае ограниченного односвязного сечения тела можно использовать фундаментальную систему многочленов Вейерштрасса: k z, k, z z. k z iz, : k,,... k iz Скалярное произведение в пространстве внутренних состояний выражает внутреннюю энергию упругого деформирования, ds. D На границе тела напряжения оставляют «след» в виде поверхностных усилий p, p, которые вкупе с граничными значениями перемещений образуют граничное состояние {u, v},{p, p }. В пространстве граничных состояний Г скалярное произведение выражает работу внешних сил:, p u p v dl. D В силу теорем Бетти, Сомильяны и принципа возможных перемещений оба пространства, Г сопряжены гильбертовым изоморфизмом, что позволяет отыскание внутреннего состояния свести к построению изоморфного ему граничного состояния. Последнее существенно зависит от краевых условий; в общем случае проблема сводится к разрешающей системе уравнений относительно коэффициентов Фурье разложения искомых состояний в ряд по элементам ортонормированного базиса, но в случаях первой и второй основных задач сводится к рутинному вычислению контурных интегралов. Соответственно, при заданных на границе перемещениях u, v либо усилиях p, p коэффициенты Фурье рассчитываются так: c p u p v dl ; j j j D. j j c j pu pv dl D Решение задач для односвязной плоской области. Тестирование метода граничных состояний для плоских задач анизотропной упругости заключалось в расчете полей механических характеристик и сопоставлении их с заданными граничными условиями. Первая основная задача. Решение первой основной задачи проводилось для тела кругового в плане тела (рис. ) и для тела сложной формы (рис. 3а). Задавались следующие упругие характеристики (принята безразмерная форма решения): модули Юнга E, E,4 ; модуль сдвига G,7 ; коэффициент Пуассона,; коэффици-

3 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ () 4 4 P Рис.. Граничные условия для кругового тела Линии уровня U Линии уровня U а б Линии уровня U в Линии уровня S Линии уровня Т ma г д Рис.. Изолинии: а компоненты вектора перемещения u ; б компоненты вектора перемещения v ; в вектора перемещения U ; г компоненты напряжения ; д изохромы 33

4 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ () Линии уровня U Линии уровня U а б в Рис. 3. Тело сложной формы: а граничные условия; б изолинии компоненты вектора перемещения u ; в изолинии компоненты вектора перемещения v енты взаимного влияния первого рода,, 7,,,4. На границе кругового тела задавалось одноосное растяжение при воздействии на сектор: p cos[q]; P ; q n, n 4 4. На рис. приведены изолинии различных характеристик напряженно-деформированного состояния. На границе тела сложной формы заданы единичные растягивающие усилия (рис. 3а). Вторая основная задача. В постановке второй основной задачи предполагаются упругие характеристики аналогичные первой. На рис 4 решена задача для тела прямоугольной формы. Перемещения на границе заданы так: u, v,, S 3; u, v /,, S ; u, v,, S ; u, v /,, S. На рис. приведены изолинии вектора перемещения и его компонент. S 4 S S S 3 Рис. 4. Граничные условия второй основной задачи 34

5 ВЕСТИ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ ЧЕРНОЗЕМЬЯ () Линии уровня U Линии уровня U а 4 6 б Линии уровня S Линии уровня T ma в 4 6 г Рис.. Изолинии: а компоненты вектора перемещения u ; б компоненты вектора перемещения ; в компоненты напряжения ; г изохромы q Выводы. Метод граничных состояний в части решения первой и второй основных задач строго обоснован, решение сводится к рутинному вычислению квадратур. Разработана методология построения базисов пространств состояний для плоской односвязной области, исходящая из наличия общего решения для анизотропной среды. Построены конкретные решения плоских задач. При решении простых задач требуется «короткий» (до элементов) базис. БИБЛИОГРАФИЧЕСКИЙ СПИСОК. Пеньков, В.Б. Метод граничных состояний для решения задач линейной механики [Текст] / В. Б. Пеньков, В. В. Пеньков // Дальневосточный математический журнал Т.,. - С Лехницкий, С. Г. Анизотропные пластинки [Текст] / С. Г. Лехницкий - М.: ГИТТЛ, с. 3. Лехницкий, С.Г. Теория упругости анизотропного тела [Текст] / С. Г. Лехницкий - М.: Наука, с. Ключевые слова: плоская анизотропия, метод граничных состояний, основные задачи, базис пространства, пространство внутренних состояний, пространство граничных состояний. Сведения об авторах: Пеньков Виктор Борисович, доктор физикоматематических наук, профессор Липецкого государственного технического университета. Иванычев Дмитрий Алексеевич, аспирант кафедры теоретической механики Липецкого государственного технического университета. Адрес: г. Липецк, ул. Московская, 3. 3

Новосибирский государственный технический университет, Новосибирск

Новосибирский государственный технический университет, Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 3. Т. 44, N- 4 35 УДК 539.3 ФУНДАМЕНТАЛЬНЫЕ РЕШЕНИЯ В ЗАДАЧАХ ИЗГИБА АНИЗОТРОПНЫХ ПЛАСТИН В. Н. Максименко, Е. Г. Подружин Новосибирский государственный технический

Подробнее

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ УДК 59. Х.Г. Киямов кандидат технических наук доцент кафедры прикладной математики Н.М. Якупов доктор технических наук профессор кафедры строительной механики заведующий лабораторией ИММ КазНЦ РАН И.Х.

Подробнее

УДК c Р.Н. Нескородев ЧИСЛЕННО-АНАЛИТИЧЕСКИЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОЙ ВЯЗКОУПРУГОСТИ ДЛЯ АНИЗОТРОПНЫХ СРЕД

УДК c Р.Н. Нескородев ЧИСЛЕННО-АНАЛИТИЧЕСКИЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОЙ ВЯЗКОУПРУГОСТИ ДЛЯ АНИЗОТРОПНЫХ СРЕД ISSN 1683-472 Труды ИПММ НАН Украины. 29. Том 19 УДК 539.3 c 29. Р.Н. Нескородев ЧИСЛЕННО-АНАЛИТИЧЕСКИЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОЙ ВЯЗКОУПРУГОСТИ ДЛЯ АНИЗОТРОПНЫХ СРЕД Разработан численно аналитический

Подробнее

РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК. Ю. М. Волчков,, Д. В. Важева

РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК. Ю. М. Волчков,, Д. В. Важева ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 28. Т. 49, N- 5 69 УДК 539.3 РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК Ю. М. Волчков,, Д. В. Важева Институт гидродинамики им. М.

Подробнее

СИНГУЛЯРНЫЕ РЕШЕНИЯ ДЛЯ АНИЗОТРОПНОЙ ПЛАСТИНЫ С ЭЛЛИПТИЧЕСКИМ ОТВЕРСТИЕМ

СИНГУЛЯРНЫЕ РЕШЕНИЯ ДЛЯ АНИЗОТРОПНОЙ ПЛАСТИНЫ С ЭЛЛИПТИЧЕСКИМ ОТВЕРСТИЕМ 1 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА 5 Т 6, N- 1 УДК 5393 СИНГУЛЯРНЫЕ РЕШЕНИЯ ДЛЯ АНИЗОТРОПНОЙ ПЛАСТИНЫ С ЭЛЛИПТИЧЕСКИМ ОТВЕРСТИЕМ В Н Максименко, Е Г Подружин Новосибирский государственный технический

Подробнее

Основная смешанная задача для сферической полости в упругом пространстве

Основная смешанная задача для сферической полости в упругом пространстве УДК 539.3 Известия Тульского государственного университета Естественные науки. 2014. Вып. 1. Ч.1. С. 207 215 Механика Основная смешанная задача для сферической полости в упругом пространстве В.Б. Пеньков,

Подробнее

Деформированное состояние в точке. Связь между деформациями и напряжениями

Деформированное состояние в точке. Связь между деформациями и напряжениями Деформированное состояние в точке. Связь между деформациями и напряжениями. Деформированным состоянием в точке называется (-ются) ОТВТ: ) совокупность деформаций в точке; ) совокупность нормальных и касательных

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

Аннотация к дисциплине «Механика деформируемого твердого тела»

Аннотация к дисциплине «Механика деформируемого твердого тела» Аннотация к дисциплине «Механика деформируемого твердого тела» 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ 1.1. Цели дисциплины: научить аспиранта разрабатывать математические модели различных механических систем и процессов,

Подробнее

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов УДК 59. РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР 7 И. С. Ахмедьянов Самарский государственный аэрокосмический университет Рассматривается применение

Подробнее

«Векторный и Тензорный анализ» по направлению

«Векторный и Тензорный анализ» по направлению Аннотация рабочей программы дисциплины (модуля) «Векторный и Тензорный анализ» по направлению 14.03.02 Ядерные физика и технологии (профиль Радиационная безопасность человека и окружающей среды) 1. Цели

Подробнее

Институт машиноведения и металлургии ДВО РАН, Комсомольск-на-Амуре

Институт машиноведения и металлургии ДВО РАН, Комсомольск-на-Амуре ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 008. Т. 9, N- УДК 59. ЭВОЛЮЦИЯ ПРОЦЕССА НАРУШЕНИЯ СПЛОШНОСТИ ПРИ РАЗРУШЕНИИ ЛЕДЯНОГО ПОКРОВА В. И. Одиноков, А. М. Сергеева Институт машиноведения и металлургии

Подробнее

Рабочая программа дисциплины (с аннотацией) Математические модели теории упругости

Рабочая программа дисциплины (с аннотацией) Математические модели теории упругости Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Утверждаю: Руководитель ООП А.В. Язенин «_10_» сентября 2015 г. Рабочая программа дисциплины (с аннотацией)

Подробнее

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3.. Напряжения Уровень оценки прочности по нагрузке отличают простота и доступность. Расчеты при этом чаще всего минимальны - требуется определить только саму нагрузку. Для

Подробнее

II. Аннотация 1. Цели и задачи дисциплины Цель освоения дисциплины изучение подходов и методов решения задач, описывающих напряженно-деформированное

II. Аннотация 1. Цели и задачи дисциплины Цель освоения дисциплины изучение подходов и методов решения задач, описывающих напряженно-деформированное II. Аннотация 1. Цели и задачи дисциплины Цель освоения дисциплины изучение подходов и методов решения задач, описывающих напряженно-деформированное состояние элементов технических конструкций. 2.Место

Подробнее

А.И. Соловьев, канд. физ.-мат. наук КРАЕВЫЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ДЛЯ ОРТОТРОПНОЙ ПЛАСТИНЫ, ОСЛАБЛЕННОЙ ДВУМЯ СООСНЫМИ ЭЛЛИПТИЧЕСКИМИ ОТВЕРСТИЯМИ

А.И. Соловьев, канд. физ.-мат. наук КРАЕВЫЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ДЛЯ ОРТОТРОПНОЙ ПЛАСТИНЫ, ОСЛАБЛЕННОЙ ДВУМЯ СООСНЫМИ ЭЛЛИПТИЧЕСКИМИ ОТВЕРСТИЯМИ 4 УДК 539.3 А.И. Соловьев, канд. физ.-мат. наук КРАЕВЫЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ДЛЯ ОРТОТРОПНОЙ ПЛАСТИНЫ, ОСЛАБЛЕННОЙ ДВУМЯ СООСНЫМИ ЭЛЛИПТИЧЕСКИМИ ОТВЕРСТИЯМИ Имеется лишь небольшое число публикаций,

Подробнее

УДК Гоголева О.С. Оренбургский государственный университет

УДК Гоголева О.С. Оренбургский государственный университет УДК 5393 Гоголева ОС Оренбургский государственный университет E-mail: ov08@inboxru ПРИМЕРЫ РЕШЕНИЯ ПЕРВОЙ ОСНОВНОЙ КРАЕВОЙ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ В ПОЛУПОЛОСЕ (СИММЕТРИЧНАЯ ЗАДАЧА) Даются примеры решения

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

Место дисциплины в структуре образовательной программы

Место дисциплины в структуре образовательной программы Место дисциплины в структуре образовательной программы Дисциплина «Алгебра и аналитическая геометрия» является дисциплиной модуля «Математика» Б1.Б.6 базовой части ОПОП по направлению подготовки 02.03.03

Подробнее

Ключевые слова: растущее тело, теплопроводность, шар, собственные функции, разложение, замкнутое решение.

Ключевые слова: растущее тело, теплопроводность, шар, собственные функции, разложение, замкнутое решение. УДК 539.3 А. В. М а н ж и р о в, С. А. Л ы ч е в, С. И. К у з н е ц о в, И. Ф е д о т о в АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА ТЕПЛОПРОВОДНОСТИ В РАСТУЩЕМ ШАРЕ Работа посвящена исследованию эволюции температурного

Подробнее

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика»

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика» Вопросы к вступительным экзаменам в аспирантуру по специальности «05.23.17 Строительная механика» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Основные понятия 1. Задачи сопротивления материалов. Стержень. Основные гипотезы

Подробнее

Дисциплина «Алгебра и геометрия»

Дисциплина «Алгебра и геометрия» Методические материалы для преподавателей. Примерные планы лекционных занятий. Раздел «Алгебра: основные алгебраические структуры, линейные пространства и линейные отображения» Лекция 1 по теме «Комплексные

Подробнее

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации Теория деформированного состояния Понятие о тензоре деформаций, главные деформации Обобщенный закон Гука для изотропного тела Деформация объема при трехосном напряженном состоянии Потенциальная энергия

Подробнее

ПЕРВАЯ ОСНОВНАЯ ОСЕСИММЕТРИЧНАЯ ЗАДАЧА ТЕРМОУПРУГОСТИ ДЛЯ СЖАТОГО СФЕРОИДА С КОНЦЕНТРИЧЕСКОЙ СФЕРИЧЕСКОЙ ПОЛОСТЬЮ

ПЕРВАЯ ОСНОВНАЯ ОСЕСИММЕТРИЧНАЯ ЗАДАЧА ТЕРМОУПРУГОСТИ ДЛЯ СЖАТОГО СФЕРОИДА С КОНЦЕНТРИЧЕСКОЙ СФЕРИЧЕСКОЙ ПОЛОСТЬЮ 92 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2004. Т. 45 N- 1 УДК 539.3 ПЕРВАЯ ОСНОВНАЯ ОСЕСИММЕТРИЧНАЯ ЗАДАЧА ТЕРМОУПРУГОСТИ ДЛЯ СЖАТОГО СФЕРОИДА С КОНЦЕНТРИЧЕСКОЙ СФЕРИЧЕСКОЙ ПОЛОСТЬЮ С. С. Куреннов

Подробнее

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6 Тема 5 Напряженное и деформированное состояние в точке. Лекция 6 Объемное напряженное состояние. 6. Главные напряжения и главные площадки. 6. Площадки экстремальных касательных напряжений. 6. Деформированное

Подробнее

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 26. Т. 47, N- 6 129 УДК 539.3 ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ В. В. Калашников, М. И. Карякин Ростовский

Подробнее

НЕЛИНЕЙНЫЕ ЗАКОНЫ СУХОГО ТРЕНИЯ В КОНТАКТНЫХ ЗАДАЧАХ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ

НЕЛИНЕЙНЫЕ ЗАКОНЫ СУХОГО ТРЕНИЯ В КОНТАКТНЫХ ЗАДАЧАХ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2002. Т. 43, N- 4 161 УДК 539.3 НЕЛИНЕЙНЫЕ ЗАКОНЫ СУХОГО ТРЕНИЯ В КОНТАКТНЫХ ЗАДАЧАХ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ А. Е. Алексеев Институт гидродинамики им. М. А.

Подробнее

ПРОГРАММА ДИСЦИПЛИНЫ ТЕОРИЯ УПРУГОСТИ И ПОЛЯ НАПРЯЖЕНИЙ В МАССИВАХ ГОРНЫХ ПОРОД

ПРОГРАММА ДИСЦИПЛИНЫ ТЕОРИЯ УПРУГОСТИ И ПОЛЯ НАПРЯЖЕНИЙ В МАССИВАХ ГОРНЫХ ПОРОД ПРОГРАММА ДИСЦИПЛИНЫ ТЕОРИЯ УПРУГОСТИ И ПОЛЯ НАПРЯЖЕНИЙ В МАССИВАХ ГОРНЫХ ПОРОД Новосибирск 2009 Программа дисциплины «Теория упругости и поля напряжений в массивах горных пород» составлена в соответствии

Подробнее

. После нахождения искомых коэффициентов разложения, определяются дополнительные напряжения на всех контурах по формулам:

. После нахождения искомых коэффициентов разложения, определяются дополнительные напряжения на всех контурах по формулам: Л.А. Данилова ( )() известных коэффициентов c ( ) в нулевой итерации которого полагается ( ) C ( ). После нахождения искомых коэффициентов разложения определяются дополнительные напряжения на всех контурах

Подробнее

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 0 Энергетические методы определения перемещений 1 Обобщенные силы и перемещения Обобщенной силой (ОС) называется некоторое внешнее силовое воздействие

Подробнее

ПОСТРОЕНИЕ И АНАЛИЗ ТОЧНОГО АНАЛИТИЧЕСКОГО РЕШЕНИЯ ЗАДАЧИ КИРША В РАМКАХ КОНТИНУУМА И ПСЕВДОКОНТИНУУМА КОССЕРА

ПОСТРОЕНИЕ И АНАЛИЗ ТОЧНОГО АНАЛИТИЧЕСКОГО РЕШЕНИЯ ЗАДАЧИ КИРША В РАМКАХ КОНТИНУУМА И ПСЕВДОКОНТИНУУМА КОССЕРА ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 001. Т., N- 15 УДК 539.3.01 ПОСТРОЕНИЕ И АНАЛИЗ ТОЧНОГО АНАЛИТИЧЕСКОГО РЕШЕНИЯ ЗАДАЧИ КИРША В РАМКАХ КОНТИНУУМА И ПСЕВДОКОНТИНУУМА КОССЕРА М. А. Кулеш, В. П. Матвеенко,

Подробнее

Вестник КРСУ Том

Вестник КРСУ Том МЕХАНИКА УДК 539.30 РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ ИЗОТРОПНОЙ И АНИЗОТРОПНОЙ ПОЛУПЛОСКОСТИ ОТ ДЕЙСТВИЯ НАГРУЗКИ С ТРЕУГОЛЬНОЙ ЭПЮРОЙ Б. Жумабаев, А.А. Аманалиев, А.A. Ширяева Определено и исследовано напряженно-деформированное

Подробнее

комплексной переменной.

комплексной переменной. А.Г.Свешников, А.Н.Тихонов ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ из серии КУРС ВЫСШЕЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ Под редакцией А. Н. ТИХОНОВА, В. А. ИЛЬИНА, А. Г. СВЕШНИКОВА ВЫПУСК 4 ОГЛАВЛЕНИЕ

Подробнее

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОДОЛЬНЫХ КОЛЕБАНИЙ И ЭВОЛЮЦИОННЫЕ УРАВНЕНИЯ ДЛЯ ЛИНЕЙНО-ВЯЗКОУПРУГОГО СТЕРЖНЯ. Аршинов Г.А. канд. физ.-мат.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОДОЛЬНЫХ КОЛЕБАНИЙ И ЭВОЛЮЦИОННЫЕ УРАВНЕНИЯ ДЛЯ ЛИНЕЙНО-ВЯЗКОУПРУГОГО СТЕРЖНЯ. Аршинов Г.А. канд. физ.-мат. УДК 60 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОДОЛЬНЫХ КОЛЕБАНИЙ И ЭВОЛЮЦИОННЫЕ УРАВНЕНИЯ ДЛЯ ЛИНЕЙНО-ВЯЗКОУПРУГОГО СТЕРЖНЯ Аршинов ГА канд физ-мат наук Кубанский государственный аграрный университет Математическая модель

Подробнее

Радченко А.В. 1, Радченко П.А. 2

Радченко А.В. 1, Радченко П.А. 2 Влияние ориентации механических свойств композиционных материалов на динамическое разрушение преград из них при высокоскоростном нагружении Радченко А.В. 1 Радченко П.А. 2 1 Томский государственный архитектурно-строительный

Подробнее

Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ

Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ Вестник ПГТУ. Механика. 9. 5 УДК 539.3: 534. Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ Предлагается

Подробнее

Анализ напряжённо-деформированного состояния в точке твёрдого тела

Анализ напряжённо-деформированного состояния в точке твёрдого тела МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им РЕ АЛЕКСЕЕВА»

Подробнее

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ»

Подробнее

Вопросы и задачи. оретические вопросы. 1. Дайте определение линейного пространства.

Вопросы и задачи. оретические вопросы. 1. Дайте определение линейного пространства. Вопросы и задачи оретические вопросы ормулировки 1. Дайте определение линейного пространства. 2. Дайте определение подпространства линейного пространства и сформулируйте критерий линейного подпространства.

Подробнее

3. Используемые методы обучения

3. Используемые методы обучения 3.2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПРЕПОДАВАТЕЛЯМ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ Семестр I Раздел 1. Векторная и линейная алгебра. Практическое занятие 1 1. Цель: Рассмотреть задачи на вычисление определителей второго

Подробнее

1. Цели и задачи дисциплины

1. Цели и задачи дисциплины 1 Цели и задачи дисциплины Целью изучения дисциплины «Основы теории упругости» является изучение и приобретение знаний, умений и навыков по постановке и решению прочностных задач методами классической

Подробнее

Конечно-элементная реализация линейных задач механики сетчатых полимеров, взаимодействующих со средой растворителя

Конечно-элементная реализация линейных задач механики сетчатых полимеров, взаимодействующих со средой растворителя УДК 9.8:4.64 Н.К. Салихова, Е.Я. Денисюк Институт механики сплошных сред УрО РАН, Пермь, Россия Конечно-элементная реализация линейных задач механики сетчатых полимеров, взаимодействующих со средой растворителя

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ УПРУГОСТИ

ЭЛЕМЕНТЫ ТЕОРИИ УПРУГОСТИ РОСЖЕЛДОР Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ростовский государственный университет путей сообщения» (ФГБОУ ВПО РГУПС) ТВ Суворова ЭЛЕМЕНТЫ

Подробнее

АННОТАЦИЯ программы дисциплины Алгебра и аналитическая геометрия направления Прикладная математика и информатика.

АННОТАЦИЯ программы дисциплины Алгебра и аналитическая геометрия направления Прикладная математика и информатика. АННОТАЦИЯ программы дисциплины Алгебра и аналитическая геометрия направления 01.03.02 Прикладная математика и информатика. 1. Цели освоения дисциплины Целями освоения дисциплины Алгебра и аналитическая

Подробнее

Отчет по лабораторной работе 2

Отчет по лабораторной работе 2 САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Отчет по лабораторной работе 2 «Задач о концентрации напряжений (задача Кирша)» Выполнил: студент 3 курса кафедры «Теоретическая Механика»

Подробнее

Реализация лагранжевой формулировки определяющих соотношений изотропного гиперупругого материала Генки в пакете MSC.Marc

Реализация лагранжевой формулировки определяющих соотношений изотропного гиперупругого материала Генки в пакете MSC.Marc Реализация лагранжевой формулировки определяющих соотношений изотропного гиперупругого материала Генки в пакете MSC.Marc С.Н. Коробейников, А.Ю. Ларичкин Новосибирский государственный университет, Институт

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. Лекции 1 2 Определители и матрицы. Лекция 1

ОГЛАВЛЕНИЕ ЧАСТЬ I. Лекции 1 2 Определители и матрицы. Лекция 1 ОГЛАВЛЕНИЕ ЧАСТЬ I Лекции 1 2 Определители и матрицы Лекция 1 1.1. Понятие матрицы. Виды матриц... 19 1.1.1. Основные определения... 19 1.1.2. Виды матриц... 19 1.2.* Перестановки и подстановки... 21 1.3.*

Подробнее

Дисциплина «Математический анализ в агроинженерии»

Дисциплина «Математический анализ в агроинженерии» Дисциплина «Математический анализ в агроинженерии» 1. Цель и задачи дисциплины Место дисциплины в структуре основной профессиональной образовательной программы Дисциплина «Математический анализ в агроинженерии»

Подробнее

УДК Гребенюк С. Н., Бова А. А. РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ РЕЗИНОВОГО ВИБРОИЗОЛЯТОРА Запорожский национальный университет

УДК Гребенюк С. Н., Бова А. А. РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ РЕЗИНОВОГО ВИБРОИЗОЛЯТОРА Запорожский национальный университет УДК 539.3 Гребенюк С. Н. Бова А. А. РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ РЕЗИНОВОГО ВИБРОИЗОЛЯТОРА Запорожский национальный университет В статье приведены результаты расчета напряженно-деформированного

Подробнее

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/cience/trudy/ УДК 539.3 Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе поперечном сдвиге

Подробнее

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск 138 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2003. Т. 44, N- 5 УДК 539.3 НЕКОТОРЫЕ ОБРАТНЫЕ ЗАДАЧИ О ДЕФОРМИРОВАНИИ И РАЗРУШЕНИИ ФИЗИЧЕСКИ НЕЛИНЕЙНЫХ НЕОДНОРОДНЫХ СРЕД И. Ю. Цвелодуб Институт гидродинамики

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

ЗАДАНИЕ N 1 Формула вычисления определителя третьего порядка следующие произведения: 1) aek 2) cdk 3) bfd 4) adf

ЗАДАНИЕ N 1 Формула вычисления определителя третьего порядка следующие произведения: 1) aek 2) cdk 3) bfd 4) adf ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Б1.ДВ.2.1 Аналитическая геометрия Примерные тестовые задания Тест 1 ЗАДАНИЕ N 1 Формула вычисления

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики

Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики Модуль М-6. ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ В СТЕРЖНЕВЫХ КОНСТРУКЦИЯХ 1.Методические

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

ПРОГРАМММА вступительных испытаний (собеседование) на магистерское направление Прикладная математика и информатика

ПРОГРАМММА вступительных испытаний (собеседование) на магистерское направление Прикладная математика и информатика МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Челябинский государственный университет» (ФГБОУ ВО «ЧелГУ») УТВЕРЖДАЮ: Председатель приемной комиссии,

Подробнее

УДК Сергеева А. М. МОДЕЛИРОВАНИЕ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА. (Институт машиноведения и металлургии ДВО РАН)

УДК Сергеева А. М. МОДЕЛИРОВАНИЕ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА. (Институт машиноведения и металлургии ДВО РАН) ВЕСТНИК ЧГПУ им. И. Я. ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 59. Сергеева А. М. МОДЕЛИРОВАНИЕ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА (Институт машиноведения и металлургии ДВО РАН) Применяя теорию малых упругопластических

Подробнее

Электронный учебно-методический комплекс «Статика и динамика плоских стержневых систем» по курсу «Сопротивление материалов»

Электронный учебно-методический комплекс «Статика и динамика плоских стержневых систем» по курсу «Сопротивление материалов» З.Н. Соколовский, С.А. Макеев Омский государственный технический университет Электронный учебно-методический комплекс «Статика и динамика плоских стержневых систем» по курсу «Сопротивление материалов»

Подробнее

ОСОБЕННОСТИ РАЗРУШЕНИЯ ТЕЛ С ПРЕИМУЩЕСТВЕННОЙ ОРИЕНТАЦИЕЙ ПРОЧНОСТНЫХ СВОЙСТВ ПРИ УДАРЕ

ОСОБЕННОСТИ РАЗРУШЕНИЯ ТЕЛ С ПРЕИМУЩЕСТВЕННОЙ ОРИЕНТАЦИЕЙ ПРОЧНОСТНЫХ СВОЙСТВ ПРИ УДАРЕ ОСОБЕННОСТИ РАЗРУШЕНИЯ ТЕЛ С ПРЕИМУЩЕСТВЕННОЙ ОРИЕНТАЦИЕЙ ПРОЧНОСТНЫХ СВОЙСТВ ПРИ УДАРЕ П.А. РАДЧЕНКО 1 А.В. РАДЧЕНКО 1 2 1 Институт физики прочности и материаловедения СО РАН г. Томск Россия 2 Томский

Подробнее

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 5 193 УДК 539.3 ОБ УРАВНЕНИЯХ КОНЕЧНОГО ИЗГИБА ТОНКОСТЕННЫХ КРИВОЛИНЕЙНЫХ ТРУБ С. В. Левяков Сибирский научно-исследовательский институт авиации

Подробнее

Математический анализ

Математический анализ 1. Цель и задачи дисциплины Математический анализ Целью освоения дисциплины «Математический анализ» является формирование у будущих специалистов знаний и умения применять математический аппарат и математические

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Московский государственный университет имени М.В. Ломоносова В.А. Ильин, В.А. Садовничий, Бл.Х. Сендов МАТЕМАТИЧЕСКИЙ АНАЛИЗ УЧЕБНИК В 2 частях Часть 2 2-е издание, переработанное и дополненное Под редакцией

Подробнее

АФФИННЫЕ ПРЕОБРАЗОВАНИЯ ТРЕХМЕРНЫХ АНИЗОТРОПНЫХ СРЕД И ЯВНЫЕ ФОРМУЛЫ ДЛЯ ФУНДАМЕНТАЛЬНЫХ МАТРИЦ

АФФИННЫЕ ПРЕОБРАЗОВАНИЯ ТРЕХМЕРНЫХ АНИЗОТРОПНЫХ СРЕД И ЯВНЫЕ ФОРМУЛЫ ДЛЯ ФУНДАМЕНТАЛЬНЫХ МАТРИЦ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2006. Т. 47, N- 2 95 УДК 539.375 АФФИННЫЕ ПРЕОБРАЗОВАНИЯ ТРЕХМЕРНЫХ АНИЗОТРОПНЫХ СРЕД И ЯВНЫЕ ФОРМУЛЫ ДЛЯ ФУНДАМЕНТАЛЬНЫХ МАТРИЦ С. Лангер, С. А. Назаров, М. Шпековиус-Нойгебауер

Подробнее

МКЭ в расчетах подпорных стен с учетом нелинейных свойств грунта

МКЭ в расчетах подпорных стен с учетом нелинейных свойств грунта Актаукенова Гулнур Сарбасовна (ЕНУ им. Л.Н.Гумилева. г.астана) МКЭ в расчетах подпорных стен с учетом нелинейных свойств грунта Numrcal calculaton of gravty rtanng wall and analyss of strss-strand condton

Подробнее

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб Введение Настоящая программа базируется на основных разделах следующих дисциплин: Математика; Физика; Теоретическая механика; Сопротивление материалов; Теория упругости и пластичности; Статика, динамика

Подробнее

1 n α. сходимости обобщенного гармонического ряда

1 n α. сходимости обобщенного гармонического ряда СОДЕРЖАНИЕ КУРСА ВЫСШЕЙ МАТЕМАТИКИ ФТК, 2-ой семестр Матрицы и определители. 1. Понятие матрицы. Основные действия с матрицами и их свойства. 2. Пространство квадратных матриц. Обратная матрица и ее свойства.

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

А. В. Бенин, О. В. Козьминская, Н. И. Невзоров, И. Б. Поварова, И. И. Рыбина. ТЕОРИЯ УПРУГОСТИ Задачи и примеры. Учебное пособие

А. В. Бенин, О. В. Козьминская, Н. И. Невзоров, И. Б. Поварова, И. И. Рыбина. ТЕОРИЯ УПРУГОСТИ Задачи и примеры. Учебное пособие ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Государственное образовательное учреждение высшего профессионального образования "ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ " (ПГУПС) А.

Подробнее

y = равносильно системе двух равенств: , a обозначают, соответственно, матрицу

y = равносильно системе двух равенств: , a обозначают, соответственно, матрицу Тензоры Тензоры объединяют целый ряд понятий, находящих применение в физике и математике, в частности, в аналитической геометрии Частными случаями тензоров являются векторы, линейные операторы, квадратичные

Подробнее

1. Рассматривается оболочка вращения, срединная поверхность которой представляет собой катеноид поверхность, образуемую вращением цепной линии.

1. Рассматривается оболочка вращения, срединная поверхность которой представляет собой катеноид поверхность, образуемую вращением цепной линии. УДК 59.7 НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ КАТЕНОИДНОЙ ОБОЛОЧКИ ВРАЩЕНИЯ ИЗ ОРТОТРОПНОГО МАТЕРИАЛА М.С. Ганеева З.В. Скворцова ganeeva@kfti.knc.ru ara.skvortsova@mail.ru Для катеноидной оболочки из

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 2 3 1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА В связи с возросшей ролью математики в современной науке и технике будущие экологи, инженеры нуждаются в серьезной математической подготовке. Изучение математики развивает логическое

Подробнее

Глава 4. Функции одной переменной 69

Глава 4. Функции одной переменной 69 ОГЛАВЛЕНИЕ Предисловие 3 Введение 5 Часть первая. Математический анализ функций одной переменной 10 Глава I. Вещественные числа 10 1. Множества. Обозначения. Логические символы 10 2. Вещественные числа

Подробнее

ОСОБЕННОСТИ ДИНАМИЧЕСКОГО РАЗРУШЕНИЯ ПРЕГРАДЫ В ЗАВИСИМОСТИ ОТ АНИЗОТРОПИИ ЕЕ МЕХАНИЧЕСКИХ СВОЙСТВ

ОСОБЕННОСТИ ДИНАМИЧЕСКОГО РАЗРУШЕНИЯ ПРЕГРАДЫ В ЗАВИСИМОСТИ ОТ АНИЗОТРОПИИ ЕЕ МЕХАНИЧЕСКИХ СВОЙСТВ ОСОБЕННОСТИ ДИНАМИЧЕСКОГО РАЗРУШЕНИЯ ПРЕГРАДЫ В ЗАВИСИМОСТИ ОТ АНИЗОТРОПИИ ЕЕ МЕХАНИЧЕСКИХ СВОЙСТВ М.Н. Кривошеина ИФПМ СО РАН, г. Томск e-mal: marnа_nkr@mal.ru М.А. Козлова ИФПМ СО РАН, г. Томск e-mal:

Подробнее

Тычина К.А. В в е д е н и е.

Тычина К.А. В в е д е н и е. www.tchina.pro Тычина К.А. I В в е д е н и е. «Теоретическая механика» разработала уравнения равновесия тел, считая их абсолютно твёрдыми и неразрушимыми. Курс «Сопротивление материалов», следующий шаг

Подробнее

ВЕРИФИКАЦИЯ ПРОГРАММНОГО КОМПЛЕКСА ANSYS. ЗАДАЧИ МЕХАНИКИ РАЗРУШЕНИЯ

ВЕРИФИКАЦИЯ ПРОГРАММНОГО КОМПЛЕКСА ANSYS. ЗАДАЧИ МЕХАНИКИ РАЗРУШЕНИЯ ВЕРИФИКАЦИЯ ПРОГРАММНОГО КОМПЛЕКСА ANSYS. ЗАДАЧИ МЕХАНИКИ РАЗРУШЕНИЯ Руководитель: Ю. Д. Байчиков Автор доклада: Е. А. Суренский Введение Вопросы хрупкого разрушения конструкции как при проектировании,

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ. ПО УЧЕБНОЙ ДИСЦИПЛИНЕ Дополнительные главы алгебры и анализа. Бакалавр

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ. ПО УЧЕБНОЙ ДИСЦИПЛИНЕ Дополнительные главы алгебры и анализа. Бакалавр Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Карачаево-Черкесский государственный университет имени У.Д.Алиева» Кафедра алгебры и геометрии ФОНД

Подробнее

Лекция 6. Унитарность. Характеры представлений.

Лекция 6. Унитарность. Характеры представлений. МФТИ-НМУ, 2017г. Введение в теорию групп Лекция 6. Унитарность. Характеры представлений. В квантовой механике обычно встречаются унитарные пространства, т.е. пространства, в которых есть (положительно

Подробнее

Лекция 4 Предельные группы симметрии Кюри. Физические явления, описываемые этими группами

Лекция 4 Предельные группы симметрии Кюри. Физические явления, описываемые этими группами Лекция 4 Предельные группы симметрии Кюри. Физические явления, описываемые этими группами Пьер Кюри (1859 1906) ПРЕДЕЛЬНЫЕ ГРУППЫ симметрии Кюри. Условия существования сферических треугольников, содержащие

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

Методические рекомендации (материалы) преподавателям

Методические рекомендации (материалы) преподавателям Методические рекомендации (материалы) преподавателям Целью лекций является изложение теоретического материала и иллюстрация его примерами и задачами. Основным теоретическим результатам должны сопутствовать

Подробнее

Образцы базовых задач по ЛА

Образцы базовых задач по ЛА Образцы базовых задач по ЛА Метод Гаусса Определенные системы линейных уравнений Решите систему линейных уравнений методом Гаусса x 6 y 6 8, 6 x 6 y 6 Решите систему линейных уравнений методом Гаусса 6

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 4. ОБЪЕМНОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ И ТЕОРИИ ПРОЧНОСТИ

Подробнее

Лекция 3. Плоская задача теории упругости.

Лекция 3. Плоская задача теории упругости. Лекция 3 Плоская задача теории упругости. 3.1 Плоское напряженное состояние. 3. Плоская деформация. 3.3 Основные уравнения плоской задачи. 3.4 Использование функции напряжений 3.5 Решение плоской задачи

Подробнее

Л.Д.Ландау, Е.М.Лифшиц ТЕОРИЯ УПРУГОСТИ Теория упругости излагается как часть теоретической физики. Наряду с традиционными вопросами рассматриваются

Л.Д.Ландау, Е.М.Лифшиц ТЕОРИЯ УПРУГОСТИ Теория упругости излагается как часть теоретической физики. Наряду с традиционными вопросами рассматриваются Л.Д.Ландау, Е.М.Лифшиц ТЕОРИЯ УПРУГОСТИ Теория упругости излагается как часть теоретической физики. Наряду с традиционными вопросами рассматриваются макроскопическая теория теплопроводности и вязкости

Подробнее

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2008. Т. 49, N- 1 157 УДК 539.3 О РАЗНОМОДУЛЬНОЙ ТЕОРИИ УПРУГОСТИ И. Ю. Цвелодуб Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail:

Подробнее

Применение численных методов для моделирования напряженнодеформированного. массивов горных пород с учетом неоднородности

Применение численных методов для моделирования напряженнодеформированного. массивов горных пород с учетом неоднородности Применение численных методов для моделирования напряженнодеформированного состояния массивов горных пород с учетом неоднородности Горный институт КНЦ РАН Аспирант Дмитриев Сергей Владимирович Моделирование

Подробнее

КОМПЬЮТЕРНЫЙ АНАЛИЗ ВЛИЯНИЯ ПУСТОТ В ГРУНТОВОМ ОСНОВАНИИ НА ОСАДКУ ФУНДАМЕНТА В.Е. Быховцев, С.В. Торгонская

КОМПЬЮТЕРНЫЙ АНАЛИЗ ВЛИЯНИЯ ПУСТОТ В ГРУНТОВОМ ОСНОВАНИИ НА ОСАДКУ ФУНДАМЕНТА В.Е. Быховцев, С.В. Торгонская Проблемы физики, математики и техники, 2 (11), 2012 УДК 531:004.925 ИНФОРМАТИКА КОМПЬЮТЕРНЫЙ АНАЛИЗ ВЛИЯНИЯ ПУСТОТ В ГРУНТОВОМ ОСНОВАНИИ НА ОСАДКУ ФУНДАМЕНТА В.Е. Быховцев, С.В. Торгонская Гомельский государственный

Подробнее

1. МЕТОД КООРДИНАТ В ПРОСТРАНСТВЕ

1. МЕТОД КООРДИНАТ В ПРОСТРАНСТВЕ Календарно- тематический план по математике для 11 класса 20 /20 учебный год 5 часов в неделю алгебра всего 170 часов 4 часа в неделю геометрия 136 часов всего 306 часов Колво Дата Название темы часов

Подробнее

Интегральное исчисление (неопределённый интеграл). 1. Понятие первообразной и неопределённого интеграла.

Интегральное исчисление (неопределённый интеграл). 1. Понятие первообразной и неопределённого интеграла. Интегральное исчисление (неопределённый интеграл). 1. Понятие первообразной и неопределённого интеграла. 2. Задача интегрального исчисления. Свойства первообразных. Свойства неопределённого интеграла.

Подробнее

Билет 1. Билет Вектор. Ковариантные и контравариантные компоненты вектора. Инвариантное определение вектора. 2. Закон сохранения импульса

Билет 1. Билет Вектор. Ковариантные и контравариантные компоненты вектора. Инвариантное определение вектора. 2. Закон сохранения импульса Билет 1. 1. Криволинейные координаты в R 3. Базис. Кобазис (взаимный базис). 2. Закон сохранения полной энергии ρ de dt + div q = P D, P D = 1 2 привести к дивергентному виду i,j p ji ( v i x j + v j x

Подробнее

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Липецкий государственный технический университет» Утверждаю Директор МИ В.Б.Чупров 2013 г. (Номер

Подробнее

1. Предмет сопротивления материалов. Реальный объект и расчетная схема.

1. Предмет сопротивления материалов. Реальный объект и расчетная схема. 1. Предмет сопротивления материалов. Реальный объект и расчетная схема. Методами со противления материалов выполняются расчеты, на основании кото рых определяются необходимые размеры деталей машин и конструкций

Подробнее

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ по дисциплине

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ по дисциплине МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Подробнее

Тычина К.А. III. К р у ч е н и е

Тычина К.А. III. К р у ч е н и е Тычина К.А. tychina@mail.ru К р у ч е н и е Крутящим называют момент, вектор которого направлен вдоль оси стержня. Кручением называется такое нагружение стержня, при котором в его поперечных сечениях возникает

Подробнее

1 ОБЩИЕ ПОЛОЖЕНИЯ ПО ПРОВЕДЕНИЮ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ПРИЕМУ В МАГИСТРАТУРУ НА НАПРАВЛЕНИЕ «Прикладная математика»

1 ОБЩИЕ ПОЛОЖЕНИЯ ПО ПРОВЕДЕНИЮ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ПРИЕМУ В МАГИСТРАТУРУ НА НАПРАВЛЕНИЕ «Прикладная математика» 3 1 ОБЩИЕ ПОЛОЖЕНИЯ ПО ПРОВЕДЕНИЮ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ПРИЕМУ В МАГИСТРАТУРУ НА НАПРАВЛЕНИЕ 01.04.04 «Прикладная математика» 1.1 Настоящая Программа, составленная в соответствии с федеральным государственным

Подробнее