Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов"

Транскрипт

1 Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают способность конструкции и ее элементов незначительно изменять форму и размеры при нагружении, т.е. при заданных нагрузках деформации не должны превышать определенной величины, устанавливаемой в соответствии с требованиями, предъявляемыми к конструкции. Устойчивостью называют способность конструкции или ее элементов сохранять исходную форму упругого равновесия при действии нагрузки. Сила мера физического взаимодействия двух тел. Характеризуется точкой приложения, величиной и направлением действия. Внешними силами называют силы взаимодействия между рассматриваемым элементом конструкции и связанными с ним телами. Если внешние силы являются результатом, контактного взаимодействия данного тела с другими телами, то они приложены только к точкам поверхности тела в месте контакта и называются поверхностными силами. Величина нагрузки, приходящаяся на единицу площади, называется интенсивностью нагрузки. Она обозначается обычно р и измеряется в кг/см 2, кг/м 2 или т/м 2. Часто нагрузку, распределенную по поверхности, приводят к главной плоскости, в результате чего получается нагрузка, распределенная по линии, или погонная нагрузка. Интенсивностью такой нагрузки (кг/см, кг/м, т/м) называют величину нагрузки, приходящуюся на единицу длины линии. Интенсивность может быть переменной по этой длине. Характер изменения нагрузки обычно показывают в виде эпюры (графика) q. В случае равномерно распределенной нагрузки (рис. 36, а) эпюра q прямоугольная (рис. 36, б). При действии гидростатического давления эпюра нагрузки q треугольная (рис. 37). Встречаются эпюры q и более сложного вида. Равнодействующая распределенной нагрузки численно равна площади ее эпюры и приложена в центре ее тяжести. Сосредоточенная сила нагрузка, приложенная по участку, размеры которого значительно меньше размеров поверхности тела. Кроме того, встречаются нагрузки, которые могут быть представлены в виде сосредоточенного момента (пары). Моменты обозначают М (кг см или т м). В зависимости от характера приложения сил во времени различают нагрузки статические и динамические. Нагрузка считается статической, если она сравнительно медленно и плавно (хотя бы в течение нескольких секунд) возрастает от нуля до своего конечного значения, а затем остается неизменной. При этом можно пренебречь ускорениями деформируемых масс, а значит, и силами инерции. Динамические нагрузки сопровождаются значительными ускорениями как деформированного тела, так и взаимодействующих с ним тел. При этом возникают силы инерции

2 Л.5 Метод сечений. Виды деформации деталей машин. Под внутренними силами, будем иметь в виду дополнительные силы взаимодействия, возникающие в результате нагружения тела. Внутренние силы часто называют усилиями. Одним из основных методов выявления и вычисления внутренних сил является метод сечений. На каждой стороне сечения получим шесть внутренних силовых факторов (рис. 0, б): три силы (N, Q у, Q z ) и три момента (М х, М у и М z ). Эти величины называют внутренними усилиями в сечении стержня. Усилие N вызывает продольную деформацию стержня (растяжение или сжатие); Q у и Q z сдвиг сторон сечения соответственно в направлении осей у и z, М х кручение стержня; М у и z изгиб стержня в главных плоскостях (zх и ух). Поэтому для усилий и моментов в сечении приняты следующие названия: N продольная или осевая (направленная по оси стержня) сила; Q у и Qz поперечные (реже перерезывающие) силы; М х = М К р крутящий момент; М у, z изгибающие моменты. N численно равно алгебраической сумме проекций на ось стержня (на нормаль к сечению) всех внешних сил, действующих на одну из частей (левую или правую) рассеченного стержня; Q у то же, но на ось у; Q z то же, но на ось z; М кр численно равен алгебраической сумме моментов относительно оси стержня всех внешних сил, действующих на одну из частей (левую или правую) рассеченного стержня; М у то же относительно оси у; z то же, но относительно оси z. Для учета направлений внутренних сил будем считать их положительными, если они направлены: -продольная сила в сторону от сечения; -поперечная сила в левой части бруса вверх, а в правой части вниз; -продольные и поперечные моменты в левой части бруса по часовой стрелке, в правой против. Таким образом, метод сечений позволяет найти все усилия и моменты в любом сечении стержня при действии любой нагрузки. Для этого нужно: 1)найти главные центральные оси поперечных сечений стержня; (Если сечение имеет ось симметрии, то эта ось всегда главная; любая ось, перпендикулярная оси симметрии 2-я гл.ось для точки их пересечения; главные оси, проходящие через центр тяжести сечения главные центральные оси); 2)мысленно провести поперечное сечение стержня в том месте, где нужно найти усилия и моменты; 3)вычислить силы N, Q у, Q z и моменты М кр, М у, z как алгебраические суммы проекций и моментов внешних сил, действующих на одну из частей (левую или правую по отношению к сечению) рассеченного стержня (обычно на ту, где проекции и моменты вычисляются проще).

3 Напряжение. Для характеристики закона изменения внутренних усилий вводят интенсивность внутренних усилий величина нагрузки на единицу площади. Эти величины называют напряжениями в точке у, z проведенного сечения стержня, причем нормальное напряжение; касательное напряжение. Таким образом, напряжением называется внутренняя сила, отнесенная к единице площади в данной точке рассматриваемого сечения. рассматривают еще и полное напряжение, т. е. величину полного усилия, приходящегося на единицу площади. Кроме нормальных напряжений и касательных Деформации. Для определения деформации в какой-либо точке А проведем в недеформированном теле отрезок прямой АВ, исходящий из этой точки в произвольном направлении и имеющий длину s. После деформации точки А и В переместятся и займут положения А 1 и В 1 соответственно, а расстояние s между ними изменится на величину s. Отношение s s / c уменьшая длину отрезка s, в пределе получим s0 называется средней относительной линейной деформацией отрезка АВ. Приближая точку В к точке А, т. е. lim s/ s AB Величина AB представляет собой относительную линейную деформацию в точке А по направлению АВ. Если известно, что расстояние между точками A и B увеличивается, то AB называют относительным удлинением, при уменьшении этого расстояния относительным укорочением.. Для полной характеристики деформации в точке вводят еще и угловые деформации. Если до деформации тела из точки А провести два отрезка АВ и АС, образующих прямой угол, то после перемещения точек вследствие деформации тела отрезки займут положения А 1 В 1 и А 1 С 1, а угол между ними изменится на величину ВАС В 1 А 1 С 1. Приближая точки B и С к точке А, в пределе получим изменение первоначально прямого угла на величину lim(вас В 1 А 1 С 1 )=. Это изменение прямого угла, выраженное в радианах, называется относительной угловой деформацией в точке А в плоскости, где лежат отрезки АВ и АС. В той же точке А относительные угловые деформации в различных плоскостях различны. Обычно относительные угловые деформации определяют в трех взаимно перпендикулярных координатных плоскостях. Тогда их обозначают соответственно через xy, xz, yz. Деформированное состояние в точке тела полностью определяется шестью компонентами деформации тремя относительными линейными деформациями,, и тремя относительными угловыми деформациями xy, xz, yz. BAC x y z

4 Л.6 Растяжение и сжатие. Напряжения и деформации при растяжении-сжатии. Растяжение или сжатие стержня вызывается силами, действующими вдоль его оси. Касательные напряжения в каждой точке поперечного сечения равны нулю. (1) - статическая сторона; (2) - геометрическая сторона. Физическая сторона рассматриваемой задачи заключается в установлении зависимости деформаций от напряжений. При упругих деформациях эта зависимость линейна и называется законом Гука, где Е коэффициент пропорциональности, называемый модулем продольной упругости, модулем упругости первого рода или модулем Юнга. Учитывая постоянство модуля упругости Е для однородного и изотропного материала, а также выражения (2) и (3), находим: Относительное удлинение: В пределах призматического участка стержня длиной l, выполненного из однородного материала (Е = соnst), в сечениях которого действуют одинаковые продольные силы N, удлинение каждой единицы длины одинаково и, следовательно, абсолютное удлинение: Произведение EF в знаменателе называется жесткостью поперечного сечения стержня при растяжении и сжатии и имеет размерность силы. Величину EF/l называют жесткостью cтержня. Разность соответствующих поперечных размеров после деформации и до нее назовем абсолютной поперечной деформацией. Относительная поперечная деформация для изотропных материалов по всем поперечным направлениям одинакова: Между поперечной и продольной относительными деформациями при простом растяжении и сжатии в пределах применимости закона Гука существует постоянное отношение. Абсолютная величина этого отношения назвается коэф. Пуассона: Величины наибольших напряжений из условия надежности работы детали необходимо ограничивать некоторыми допустимыми значениями. Их называют допускаемыми напряжениями. При растяжении и сжатии допускаемые напряжения обозначают соответственно [ + ] и [ _]. Расчет на прочность: на растянутых или сжатых участках стержня находят опасные сечения, в которых напряжения достигают наибольших значений по абсолютной величине, и для этих сечений записывают условие прочности. Используя условие прочности, можно решать три типа задач: по известным нагрузкам для выбранного материала найти надежные с точки зрения прочности размеры поперечного сечения стержня (проектировочный расчет); по известным размерам и материалу детали проверить, может ли она выдержать заданную нагрузку (проверочный расчет); 3)по известным размерам детали, материалу и схеме нагружения определить допустимую величину нагрузки.

5 Л.7 Построение эпюр Графики (диаграммы), показывающие, как изменяются внутренние усилия при переходе от сечения к сечению, называют эпюрами. Правила, применяемые при построении эпюр: 1. Ось (базу), на которой строится эпюра, всегда выбирают так, чтобы она была параллельна или просто совпадала с осью стержня. 2. Ординаты эпюры откладывают от оси эпюры по перпендикуляру. 3. Штриховать эпюры принято линиями, перпендикулярными к базе.. Для усилий и моментов выбирают некоторый масштаб. Ординаты откладывают строго в масштабе. Кроме того, на эпюрах проставляют числа, показывающие величины характерных ординат, а в поле эпюры в кружочке ставят знак усилия. Продольная (осевая) сила считается положительной, если она вызывает растяжение, и отрицательной, если вызывает сжатие. Внешние силы сами по себе ни положительны, ни отрицательны, по каждая дает в выражении для N слагаемое определенного знака.

6 Л.8 Сдвиг и срез Чистый сдвиг возникает тогда, когда из шести компонентов главного вектора внутренних сил и главного момента лишь поперечные силы Q и Q не равны нулю. Поперечная сила в сечении y Q y P. Будем считать, что касательные напряжения равномерно распределены по площади поперечного сечения A полосы, тога P (1) A Величину S (рис.) называют абсолютным сдвигом. Из BAB1 : S tg ; учитывая малость угла, можно принять tg, откуда следует: a S (2), a где называют относительным сдвигом или углом сдвига. Закон Гука при чистом сдвиге: G (3), где G модуль упругости при сдвиге или модуль упругости второго рода (МПа). Относительное удлинение диагонали: (). 2 2G z Тогда, при упругом материале: E G 2 1 Qa Абсолютный сдвиг: S a a (5) G GA Условие прочности на срез: max (6). Условие прочности на смятие: max (7)

7 Л.9 10 Кручение. Эпюры моментов. Напряжения и деформации при кручении. Условия прочности и жесткости. Расчёт деталей машин при кручении. Кручением называется такой вид деформации стержня, при котором в его поперечных сечениях возникает только один внутренний силовой фактор крутящий момент. Все остальные внутренние усилия нормальная и поперечная силы, изгибающий момент при кручении отсутствуют. Построение эпюры моментов: 1) Разобьем вал на участки: I, II, III, IV и V. 2. Пользуясь правилом для определения крутящих моментов, находим: I 0 ; II III кнм; кнм; IV 5 кнм; V 0. поперечного сечения -> d GJ (5), Т.о. dx J Касательные напряжения: d d G G r (1); G G (2) dx dx 2 d da G da (3) dx A A 2 da J A () - полярный момент инерции (6) закон распределения касательных напряжений вдоль радиуса сечения, позволяет определить касательное напряжение в любой точке поперечного сечения. r max (7), где J W W J - полярный момент сопротивления круглого сечения при r кручении, характеризует влияние размеров сечения на способность скручиваемого элемента сопротивляться внешним нагрузкам, не разрушаясь. Если вал имеет постоянный диаметр, а крутящий момент по всей длине стержня не меняется, то угол закручивание будет иметь вид l l (8). GJ называется жесткостью поперечного сечения GJ вала при кручении. Для ступенчатых стержней или же стержней, у которых крутящий момент меняется по длине скачкообразно, угол закручивания между начальным и конечным сечениями вала n i определяется как сумма углов закручивания с постоянным отношением li : l (9) i GJ J i1

8 Для оценки жесткости скручиваемого стержня применяется относительный угол закручивания (10). GJ Условие прочности: max (11). W Условие прочности позволяет решать три задачи: 1. Первая задача состоит в проверке напряжений при заданном моменте и известном диаметре вала. 2. Вторая задача заключается в определении допускаемой величины для момента при заданном диаметре вала и известном допускаемом напряжении. 3. Третья задача, наиболее важная, является задачей проектировочного расчета: при заданном моменте и допускаемом напряжении необходимо найти диаметр вала. Для сплошного сечения вала: d J ; 32 W J d 2 d 16 3 Для полого вала (кольцевое сечение) с внешним диаметром D и внутренним d : D D d 1 J ( Условие жесткости: (12), GJ d D 3 ); D 1 где относительный угол закручивания; допускаемый относительный угол закручивания вала в радианах деленных на метр, нормируемый техническими условиями. Таким образом, для одного и того же вала диаметр определяется дважды: один раз из условия прочности, второй из условия жесткости. Из двух полученных размеров берется больший! W 16 Мощность представляет собой работу в единицу времени (секунду), которая равна работе внешнего момента A P, где угол, на который повернется шкив за одну секунду. За одну n 2n секунду шкив совершит оборотов, следовательно,. Т.о. A n P 75N (кнм/cек), где N N мощность в лошадиных силах. Т.о. 7, 162 (кнм). Учитывая, что одна л.с. равна 0,736 квт и n K выражая внешний момент через мощность K, заданную в киловаттах, получим: 9, 736 (кнм). n Для проектирования можно рекомендовать следующий порядок расчета валов на прочность и жесткость при кручении. По схеме вала и действующим на него скручивающим моментам строят эпюру крутящих моментов по отдельным участкам. Выбирают материал для рассчитываемого вала и определяют для этого материала допускаемое напряжение [ ]. Записывают условие прочности для участка вала с максимальным значением крутящего момента (согласно эпюре моментов).


Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными Растяжение (сжатие) элементов конструкций. Определение внутренних усилий, напряжений, деформаций (продольных и поперечных). Коэффициент поперечных деформаций (коэффициент Пуассона). Гипотеза Бернулли и

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

главному вектору R, R, R и главному

главному вектору R, R, R и главному Лекция 08 Общий случай сложного сопротивления Косой изгиб Изгиб с растяжением или сжатием Изгиб с кручением Методики определения напряжений и деформаций, использованные при решении частных задач чистого

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

Билет 1 N J. 2.Какая из эпюр Q, M соответствует заданной балке? Эпюры Q + 3. Какой деформации подвергается заданный брус? а) центрального растяжения;

Билет 1 N J. 2.Какая из эпюр Q, M соответствует заданной балке? Эпюры Q + 3. Какой деформации подвергается заданный брус? а) центрального растяжения; Билет. По какой формуле определяются напряжения при центральном растяжении, сжатии? N N,,.Какая из эпюр Q, соответствует заданной балке? г) Эпюры. Какой деформации подвергается заданный брус? центрального

Подробнее

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3.1. Сопротивление материалов. Задачи и определения. Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Первая задача сопротивления

Подробнее

7. ВНУТРЕННИЕ СИЛЫ УПРУГОСТИ Введение в механику деформируемых тел. Задачи расчетов на прочность Основные понятия, гипотезы и принципы

7. ВНУТРЕННИЕ СИЛЫ УПРУГОСТИ Введение в механику деформируемых тел. Задачи расчетов на прочность Основные понятия, гипотезы и принципы 7. ВНУТРЕННИЕ СИЛЫ УПРУГОСТИ 7.1. Введение в механику деформируемых тел. Задачи расчетов на прочность 7.1.1. Основные понятия, гипотезы и принципы Внутренние силы упругости, возникающие в звеньях и элементах

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

7. СОДЕРЖАНИЕ ТЕСТОВЫХ ЗАДАНИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ «ПРИКЛАДНАЯ МЕХАНИКА» (СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ) Вопрос Ответ Правильный

7. СОДЕРЖАНИЕ ТЕСТОВЫХ ЗАДАНИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ «ПРИКЛАДНАЯ МЕХАНИКА» (СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ) Вопрос Ответ Правильный . Прочность это. Жесткость это. Устойчивость это 4. К допущениям о свойствах материала элементов конструкций не относится 5. Пластина это способность материала сопротивляться действию нагрузок, не разрушаясь

Подробнее

ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ТЕСТЫ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ ОСНОВНЫЕ ПОЛОЖЕНИЯ, МЕТОД СЕЧЕНИЙ, НАПРЯЖЕНИЯ Вариант 1.1 1. Прямой брус нагружается внешней силой F. После снятия нагрузки его форма и размеры полностью восстанавливаются.

Подробнее

Часть 1 Сопротивление материалов

Часть 1 Сопротивление материалов Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению

Подробнее

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г)

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г) ПРИЛОЖЕНИЕ 1 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Задача 1 Ступенчатый брус из стали Ст нагружен, как показано на рис. П.1.1, а. Из условия прочности подобрать размеры поперечного сечения. Построить эпюру перемещения

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

Указания к выполнению контрольной работы 3

Указания к выполнению контрольной работы 3 Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе

Подробнее

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Осевое растяжение-сжатие.

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Осевое растяжение-сжатие. 3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3.2. Осевое растяжение-сжатие. Растяжением или сжатием называют такой вид деформации бруса (стержня), при котором в его поперечных сечениях возникает только один внутренний

Подробнее

Контрольные вопросы по сопротивлению материалов

Контрольные вопросы по сопротивлению материалов Контрольные вопросы по сопротивлению материалов 1. Основные положения 2. Каковы основные гипотезы, допущения и предпосылки положены в основу науки о сопротивлении материалов? 3. Какие основные задачи решает

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Подробнее

Расчет на жесткость при кручении

Расчет на жесткость при кручении Расчет на жесткость при кручении 1. Для круглого стержня, работающего на кручение, произведение жесткостью называется ОТВЕТ: 1) поперечного сечения на кручение; 2) поперечного сечения на растяжение-сжатие;

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

МПа, предел текучести Т 240 МПа и коэффициент запаса прочности по отношению к пределу текучести n Т

МПа, предел текучести Т 240 МПа и коэффициент запаса прочности по отношению к пределу текучести n Т Номер варианта Номер схемы по рис..6 Задача. Ступенчатый брус нагружен силами, и F, направленными вдоль его оси. Заданы длины участков l, l, l и соотношение площадей их поперечных сечений и. Модуль упругости

Подробнее

Внутренние усилия и напряжения

Внутренние усилия и напряжения 1. Внутренние усилия и напряжения Интегральная связь между крутящим моментом Mz и касательными напряжениями имеет вид 2. Если известно нормальное и касательное напряжения в точке сечения, то полное напряжение

Подробнее

ОГБОУ «Кораблинский агротехнологический техникум» РАБОЧАЯ ТЕТРАДЬ. по учебной дисциплине. ОП.02. Техническая механика.

ОГБОУ «Кораблинский агротехнологический техникум» РАБОЧАЯ ТЕТРАДЬ. по учебной дисциплине. ОП.02. Техническая механика. ОГБОУ «Кораблинский агротехнологический техникум» РАБОЧАЯ ТЕТРАДЬ по учебной дисциплине ОП.02. Техническая механика по специальности 23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта»

Подробнее

уравнение изогнутой оси балки и θ tg θ =.

уравнение изогнутой оси балки и θ tg θ =. Лекция 06 Деформации балок при изгибе Теорема Кастильяно При чистом изгибе балки её ось искривляется Перемещение центра тяжести сечения по направлению перпендикулярному к оси балки в её недеформированном

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА Часть I Методические указания и контрольные задания Пенза 00 УДК 5. (075) И85 Методические указания

Подробнее

Итоговый тест, Прикладная механика (сопромат) (2579) 9. (70c.) Под прочностью элемента конструкции понимается (несколько ответов) 1)

Итоговый тест, Прикладная механика (сопромат) (2579) 9. (70c.) Под прочностью элемента конструкции понимается (несколько ответов) 1) Итоговый тест, Прикладная механика (сопромат) (2579) 9. (70c.) Под прочностью элемента конструкции понимается 1) сопротивление 2) внешнему воздействию 3) вплоть до 4) возникновения больших деформаций 5)

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

Решение: Исходные данные: = 2 = 2 = 2

Решение: Исходные данные: = 2 = 2 = 2 Задача 1 Для данного бруса требуется: - вычертить расчетную схему в определенном масштабе, указать все размеры и величины нагрузок; - построить эпюру продольных сил; - построить эпюру напряжений; - для

Подробнее

Контрольные вопросы по сопротивлению материалов

Контрольные вопросы по сопротивлению материалов Контрольные вопросы по сопротивлению материалов 1. Основные положения 2. Каковы основные гипотезы, допущения и предпосылки положены в основу науки о сопротивлении материалов? 3. Какие основные задачи решает

Подробнее

Тычина К.А. В в е д е н и е.

Тычина К.А. В в е д е н и е. www.tchina.pro Тычина К.А. I В в е д е н и е. «Теоретическая механика» разработала уравнения равновесия тел, считая их абсолютно твёрдыми и неразрушимыми. Курс «Сопротивление материалов», следующий шаг

Подробнее

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов»

ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» ВОПРОСЫ к экзамену по курсу «Сопротивление материалов» 1. Историческое развитие учения о сопротивлении материалов. Диаграмма стального образца Ст 3. 2. Диаграмма Ф.Ясинского. 3. Основные понятия курса

Подробнее

Тычина К.А. III. К р у ч е н и е

Тычина К.А. III. К р у ч е н и е Тычина К.А. tychina@mail.ru К р у ч е н и е Крутящим называют момент, вектор которого направлен вдоль оси стержня. Кручением называется такое нагружение стержня, при котором в его поперечных сечениях возникает

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА. Рабочая тетрадь по решению задач

ТЕХНИЧЕСКАЯ МЕХАНИКА. Рабочая тетрадь по решению задач МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

Тестовые задания по учебной дисциплине «Техническая механика» а) статика б) кинематика в) динамика

Тестовые задания по учебной дисциплине «Техническая механика» а) статика б) кинематика в) динамика Тестовые задания по учебной дисциплине «Техническая механика» ТЗ Формулировка и содержание ТЗ 1 Выбрать правильные ответы. Теоретическая механика состоит из разделов: а) статика б) кинематика в) динамика

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

b + a + l + (Рис. 1) (8.2)

b + a + l + (Рис. 1) (8.2) Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

Подробнее

7.8. Упругие силы. Закон Гука

7.8. Упругие силы. Закон Гука 78 Упругие силы Закон Гука Все твердые тела в результате внешнего механического воздействия в той или иной мере изменяют свою форму, так как под действием внешних сил в этих телах изменяется расположение

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

II тур Всероссийской студенческой олимпиады Цетрального и Приволжского федеральных округов по сопротивлению материалов

II тур Всероссийской студенческой олимпиады Цетрального и Приволжского федеральных округов по сопротивлению материалов II тур Всероссийской студенческой олимпиады Цетрального и Приволжского федеральных округов по сопротивлению материалов Задача Для фигуры изображенной на рисунке определить: Центробежный момент инерции

Подробнее

Министерство образования и науки Российской Федерации. Алтайский государственный технический университет им. И.И.Ползунова

Министерство образования и науки Российской Федерации. Алтайский государственный технический университет им. И.И.Ползунова Министерство образования и науки Российской Федерации Алтайский государственный технический университет им. И.И.Ползунова А.И. Алексейцев, Е.В. Черепанова, С.Я. Куранаков ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ УСИЛИЙ

Подробнее

РАСТЯЖЕНИЕ, СЖАТИЕ. N S. n N t n S. N t. Условия равновесия: S + p S =0; S cos p S ; p S=S cos. =p cos ; = p sin. p = cos. 1 sin 2

РАСТЯЖЕНИЕ, СЖАТИЕ. N S. n N t n S. N t. Условия равновесия: S + p S =0; S cos p S ; p S=S cos. =p cos ; = p sin. p = cos. 1 sin 2 Постановка задачи Дано: N, N РАСТЯЖЕНИЕ, СЖАТИЕ. НАПРЯЖЕНИЯ В НАКЛОННЫХ СЕЧЕНИЯХ. =? =? n N t n = cos Условия равновесия: + = cos = cos N t v = cos = sin. cos 1 sin. Следствия: 1) ma = при cos (в поперечных

Подробнее

Задание 1 Построение эпюр при растяжении-сжатии

Задание 1 Построение эпюр при растяжении-сжатии Задание 1 Построение эпюр при растяжении-сжатии Стальной двухступенчатый брус, длины ступеней которого указаны на рисунке 1, нагружен силами F 1, F 2, F 3. Построить эпюры продольных сил и нормальных напряжений

Подробнее

УДК Изгиб и кручение тонкостенных стержней

УДК Изгиб и кручение тонкостенных стержней УДК 624.072.327 Изгиб и кручение тонкостенных стержней Гриценко О.О., Хремли Е.А. (Научный руководитель Башкевич И.В.) Белорусский национальный технический университет Минск, Беларусь Основным признаком

Подробнее

Предельная нагрузка для стержневой системы

Предельная нагрузка для стержневой системы Л е к ц и я 18 НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ Ранее, в первом семестре, в основном, использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной

Подробнее

РАСЧЕТ БРУСЬЕВ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ. Методические указания к выполнению домашнего задания по курсу «Механика материалов и конструкций»

РАСЧЕТ БРУСЬЕВ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ. Методические указания к выполнению домашнего задания по курсу «Механика материалов и конструкций» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» РАСЧЕТ БРУСЬЕВ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ Методические указания к

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

Вариант 11 Задание 1 F1= F2= Задание 4 Fтяж= Задание 5 Задание 2 F1= F2= Задание 3 [ φ0 P1= P2= P3= c=d/d=

Вариант 11 Задание 1 F1= F2= Задание 4 Fтяж= Задание 5 Задание 2 F1= F2= Задание 3 [ φ0 P1= P2= P3= c=d/d= Вариант 11 Определить аналитически и графически реакции стержней, удерживающих грузы весом F 1 =4 кн, F 2 =6 кн. Массой стержней пренебречь. Автомобиль движется по ровной дороге без спусков и подъемов.

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

Расчеты на прочность

Расчеты на прочность Расчеты на прочность Различают два вида расчетов: проектный (проектировочный) и проверочный (поверочный). Проектирование детали можно вести в следующей последовательности: 1. Составляют расчетную схему

Подробнее

Основные понятия сопромата

Основные понятия сопромата Основные понятия сопромата Прикладная наука об инженерных методах расчёта на прочность, жесткость и устойчивость деталей машин и конструкций, называется сопротивлением материалов. Деталь или конструкция

Подробнее

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1.

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1. Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 4а ГОСТ 8509-86) и швеллера 4 (ГОСТ 840-89), требуется: 1. Вычертить сечение в масштабе 1: и указать на нем все оси и

Подробнее

Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения

Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Лекция 2 (продолжение) Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Расчет статически определимых стержней на растяжение-сжатие Пример 1 Круглая колонна диаметра d

Подробнее

ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы)

ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы) В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы) 1 Классификация внутренних силовых факторов

Подробнее

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A Лекция 05 Изгиб Проверка прочности балок Опыт показывает, что при нагружении призматического стержня с прямой осью силами и парами сил, расположенными в плоскости симметрии, наблюдаются деформации изгиба

Подробнее

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ

ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ УТВЕРЖДАЮ Декан факультета сервиса к.т.н., доцент Сумзина Л.В ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ Материаловедение основной образовательной программы высшего образования программы специалитета по направлению

Подробнее

Расчет элементов стальных конструкций.

Расчет элементов стальных конструкций. Расчет элементов стальных конструкций. План. 1. Расчет элементов металлических конструкций по предельным состояниям. 2. Нормативные и расчетные сопротивления стали 3. Расчет элементов металлических конструкций

Подробнее

Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции сечения» Лектор: д.т.н., доцент И.Е.

Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции сечения» Лектор: д.т.н., доцент И.Е. Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции Лектор: д.т.н., доцент И.Е.Лысенко Английский ученый Роберт Гук открыл фундаментальную закономерность между

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации Теория деформированного состояния Понятие о тензоре деформаций, главные деформации Обобщенный закон Гука для изотропного тела Деформация объема при трехосном напряженном состоянии Потенциальная энергия

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Подробнее

ИЗГИБ С КРУЧЕНИЕМ СТЕРЖНЯ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ

ИЗГИБ С КРУЧЕНИЕМ СТЕРЖНЯ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ В. К. Манжосов ИЗГИБ С КРУЧЕНИЕМ СТЕРЖНЯ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ Методические указания Ульяновск 00

Подробнее

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА М-8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ Цель работы: определение модуля сдвига и момента инерции диска методом крутильных колебаний. Приборы и принадлежности:

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

Вопросы к экзамену по прикладной механике

Вопросы к экзамену по прикладной механике Вопросы к экзамену по прикладной механике Основные понятия и определения сопротивления материалов - Задачи науки о сопротивлении материалов, последовательность решения их применительно к тому или иному

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

q Найти усилия, напряжения и осадки при найденном отношении и заданной величине m/n ( или n ). Данные взять из таблицы 6.

q Найти усилия, напряжения и осадки при найденном отношении и заданной величине m/n ( или n ). Данные взять из таблицы 6. Цилиндрические пружины Работа 6 Жесткий брус прикреплен к шарнирно-неподвижной опоре и к двум пружинам с одинаковым средним диаметром и с одинаковым диаметром круглой проволоки d (рис. 6). Пружина имеет

Подробнее

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие Задача 1 Для бруса прямоугольного сечения (рис. 1) определить несущую способность и вычислить перемещение свободного конца бруса. Дано: (шифр 312312) схема 2; l=0,5м; b=15см; h=14см; R p =80МПа; R c =120МПа;

Подробнее

Прикладная механика. Учебное пособие. Санкт-Петербург

Прикладная механика. Учебное пособие. Санкт-Петербург Прикладная механика Учебное пособие Санкт-Петербург 2015 Министерство образования и науки Российской Федерации УНИВЕРСИТЕТ ИТМО А.С. Алышев, А.Г. Кривошеев, К.С. Малых, В.Г. Мельников, Г.И. Мельников ПРИКЛАДНАЯ

Подробнее

Министерство образования и науки Российской Федерации. Ивановский государственный химико-технологический университет. А.Э.

Министерство образования и науки Российской Федерации. Ивановский государственный химико-технологический университет. А.Э. Министерство образования и науки Российской Федерации Ивановский государственный химико-технологический университет А.Э. Козловский Р А С Ч Ё Т Э Л Е М Е Н Т О В К О Н С Т Р У К Ц И Й Н А С Д В И Г И К

Подробнее

Сопротивление материалов

Сопротивление материалов Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Владимирский государственный университет имени

Подробнее

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им НЕ Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

В. К. Манжосов РАСЧЕТ СТЕРЖНЯ ПРИ РАСТЯЖЕНИИ-СЖАТИИ

В. К. Манжосов РАСЧЕТ СТЕРЖНЯ ПРИ РАСТЯЖЕНИИ-СЖАТИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В. К. Манжосов

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана»

Подробнее

дов деформаций может быть сведено к двум основным: растяжение (или сжатие) и сдвиг.

дов деформаций может быть сведено к двум основным: растяжение (или сжатие) и сдвиг. Лекция 16 Силы упругости. Упругие свойства твердых тел. Закон Гука для разных деформаций. Модули упругости, коэффициент Пуассона. Диаграмма напряжений. Упругий гистерезис. Потенциальная энергия упругой

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

Г.А. Тюмченкова РАСТЯЖЕНИЕ И СЖАТИЕ ПРЯМОГО БРУСА

Г.А. Тюмченкова РАСТЯЖЕНИЕ И СЖАТИЕ ПРЯМОГО БРУСА Министерство образования и науки Самарской области Государственное бюджетное профессиональное образовательное учреждение Самарской области «САМАРСКИЙ ЭНЕРГЕТИЧЕСКИЙ КОЛЛЕДЖ» (ГБПОУ «СЭК») Г.А. Тюмченкова

Подробнее

Таблица 3а. Указание: Условие прочности при кручении T. Т наибольший крутящий момент. 3. где

Таблица 3а. Указание: Условие прочности при кручении T. Т наибольший крутящий момент. 3. где Кручение Работа 3 3a На стальном валу имеются один ведущий шкив и три ведомых шкива (рис.3а). Моменты, передаваемые шкивами соответственно равны М, М 1, М 2 и М 3, где М = М 1 + М 2 + М 3. Требуется: Построить

Подробнее

Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения

Лекция 2 (продолжение). Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Лекция 2 (продолжение) Примеры решения на осевое растяжение сжатие и задачи для самостоятельного решения Расчет статически неопределимых стержней при растяжении-сжатии Статически неопределимыми системами

Подробнее

Тест: "Техническая механика "Сопротивление материалов ". Задание #1. Выберите один из 3 вариантов ответа: 1) - Высоте a.

Тест: Техническая механика Сопротивление материалов . Задание #1. Выберите один из 3 вариантов ответа: 1) - Высоте a. Тест: "Техническая механика "Сопротивление материалов ". Задание #1 Деформация l пропорциональна Выберите один из 3 вариантов ответа: 1) - Высоте a 2) - Ширине b 3) + Длине l Задание #2 Для какой части

Подробнее

Решение. При кручении возникает напряженное состояние чистого сдвига,. В соответствии с обобщенным законом Гука

Решение. При кручении возникает напряженное состояние чистого сдвига,. В соответствии с обобщенным законом Гука Задача 1 1 Стержень загружен крутящим моментом На поверхности стержня в точке к была замерена главная деформация Требуется определить угол поворота сечения, в котором приложен момент Решение При кручении

Подробнее

ИНЖЕНЕРНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ. ВНУТРЕННИЕ УСИЛИЯ Геометрические допущения инженерных методов

ИНЖЕНЕРНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ. ВНУТРЕННИЕ УСИЛИЯ Геометрические допущения инженерных методов ИНЖЕНЕРНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ. ВНУТРЕННИЕ УСИЛИЯ 4.. Геометрические допущения инженерных методов Для решения задачи оценки прочности (подробно мы будем говорить об этом в шестой главе) достаточно

Подробнее

2. Какая деформация не исчезает после прекращения действия внешних сил? А) пластическая; Б) упругая; В) остаточная.

2. Какая деформация не исчезает после прекращения действия внешних сил? А) пластическая; Б) упругая; В) остаточная. ТЕСТ 1 І уровня по предмету «Техническая механика» по теме «Деформации» 1. Что называют изменение формы и размеров тела под действием внешних сил? А) упругостью; Б) деформацией; В) пластичностью. 2. Какая

Подробнее

Вариант 1. Задание 1 Определить аналитически и графически реакции стержней, удерживающих грузы весом F 1 =4 кн, F 2 =6 кн. Массой стержней пренебречь.

Вариант 1. Задание 1 Определить аналитически и графически реакции стержней, удерживающих грузы весом F 1 =4 кн, F 2 =6 кн. Массой стержней пренебречь. Вариант 1 Определить аналитически и графически реакции стержней, удерживающих грузы весом F 1 =4 кн, F 2 =6 кн. Массой стержней пренебречь. Балка с шарнирными опорами нагружена парой сил с моментом M=10

Подробнее

ПОСТРОЕНИЕ ЭПЮР ПРОДОЛЬНЫХ УСИЛИЙ, НАПРЯЖЕНИЙ И ПЕРЕМЕЩЕНИЙ ПРИ РАСТЯЖЕНИИ - СЖАТИИ СТЕРЖНЯ ПЕРЕМЕННОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ

ПОСТРОЕНИЕ ЭПЮР ПРОДОЛЬНЫХ УСИЛИЙ, НАПРЯЖЕНИЙ И ПЕРЕМЕЩЕНИЙ ПРИ РАСТЯЖЕНИИ - СЖАТИИ СТЕРЖНЯ ПЕРЕМЕННОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

Подробнее

δ 11 = δ 12 = δ 21 = - 1 δ 22 = 1 δ 12 = δ 21 = 8 6 δ 22 = 82 ) = 505,9

δ 11 = δ 12 = δ 21 = - 1 δ 22 = 1 δ 12 = δ 21 = 8 6 δ 22 = 82 ) = 505,9 4. Определение перемещений. Для определения коэффициентов δ эпюру M умножаем на M : 57 δ = EI ( 2 (h 4 )2 2 3 h 4 + 2 (h 4 )2 2 3 h 4 + 2 (3 4 h)2 2 3 3 4 h) + kei l h 4 h 4 = = 29h3 + lh 2 = h 2 2 (29h

Подробнее

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Глава 8 СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 8.1. Шарнирно закрепленное твердое тело на упругих стержнях Постановка задачи. Определить усилия в стержнях статически неопределимой системы, состоящей из шарнирно

Подробнее

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ПО ПРЕДМЕТУ «ПРИКЛАДНАЯ МЕХАНИКА»

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ПО ПРЕДМЕТУ «ПРИКЛАДНАЯ МЕХАНИКА» МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Кафедра: «Машины и оборудование пищевой промышленности основы механики» РЕФЕРАТИВНАЯ

Подробнее

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ Лекция 17 Энергетические методы расчета упругих систем. Потенциальная энергия деформации. Обобщенные силы и обобщенные перемещения. Основные энергетические уравнения механики (теорема Кастильяно). Метод

Подробнее

Тема 7 Расчет прочности и жесткости простых балок.

Тема 7 Расчет прочности и жесткости простых балок. Тема 7 Расчет прочности и жесткости простых балок. Лекция 8 7.1Основные типы опорных связей и балок. Определение опорных реакций. 7. Внутренние усилия при изгибе 7.3 Дифференциальные зависимости между

Подробнее

Основные понятия, определения

Основные понятия, определения Основные понятия, определения 1. Тело, один размер которого намного превышает два других, называется 2. Сопротивление материалов это наука о элементов конструкций Ответ: 1) прочности, жесткости и однородности;

Подробнее

КН Т. Вариант 1 Вариант 2. Вариант 3 Вариант 4. Вариант 5 Вариант 6. Вариант 7 Вариант 8

КН Т. Вариант 1 Вариант 2. Вариант 3 Вариант 4. Вариант 5 Вариант 6. Вариант 7 Вариант 8 КН 901-11-2Т Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5 Вариант 6 Вариант 7 Вариант 8 Вариант 9 Вариант 10. Вариант 11 Вариант 12 Вариант 13 Вариант 14 Вариант 15 Вариант 16 Вариант 17 Вариант 18

Подробнее

Задача 1. Решение. Рис. 1 Ступенчатый брус

Задача 1. Решение. Рис. 1 Ступенчатый брус Задача 1 Ступенчатый брус (рис. 1) нагружен силами P 1, P 2 и P 3, направленными вдоль его оси. Заданы длины участков a, b и c и площади их поперечных сечений F 1 и F 2. Модуль упругости материала Е 2

Подробнее