«Информационные технологии обработки статистических данных»

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "«Информационные технологии обработки статистических данных»"

Транскрипт

1 «Информационные технологии обработки статистических данных» Москва 2012

2 ОСНОВНЫЕ ПОЛОЖЕНИЯ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

3 Статистические переменные Переменными называются величины, которые можно измерять, контролировать или изменять. В статистике различают зависимые и независимые переменные. Независимыми переменными называются переменные, которые изменяются исследователем. Зависимые переменные - это переменные, которые измеряются или регистрируются. Например, если изучается реакция на новый товар отдельно мужчин и женщин, то при статистической обработке результатов переменная ПОЛ может считаться независимой, а переменная РЕАКЦИЯ НА ТОВАР (выраженная, например, в баллах оценочной шкалы) - зависимой.

4 Шкалы измерений Номинальная шкала. Номинальные переменные используются только для качественной классификации. Например, можно сказать, что респонденты принадлежат к разным национальностям. Типичные примеры номинальных переменных - пол, национальность, цвет, город и т.д. Часто номинальные переменные называют категориальными.

5 Шкалы измерений Порядковая шкала. Порядковые переменные позволяют ранжировать (упорядочить) объекты, указав какие из них в большей или меньшей степени обладают качеством, выраженным данной переменной. Однако они не позволяют сказать "на сколько больше" или "на сколько меньше". Типичный пример порядковой переменной - уровень дохода респондента при предложенных вариантах ответа: низкий, ниже среднего, средний, выше среднего, высокий, очень высокий.

6 Шкалы измерений Интервальная шкала. Интервальные переменные позволяют не только упорядочивать объекты измерения, но и численно выразить и сравнить различия между ними. Нулевая точка отсчета не фиксирована и масштаб измерения может изменяться.

7 Шкалы измерений Относительная шкала. Относительные переменные похожи на интервальные переменные, но дополнительно ко всем свойствам интервальных переменных, их характерной чертой является наличие определенной точки абсолютного нуля. Типичными примерами шкал отношений являются измерения времени или пространства. Известно, что в большинстве статистических процедур не делается различия между свойствами интервальных шкал и шкал отношения. Различие интервальных шкал и шкал отношений для исследований мало существенны, поэтому эти 2 типа шкал часто объединяют в один, который называют метрическими шкалами. Особенностью метрических шкал является наличие единиц измерения и допустимость операции сложения.

8

9 Связи и зависимости между переменными Основной целью статистического исследования является нахождение зависимостей между переменными: В математической статистике выделяют две основные черты каждой зависимости: 1. Величина зависимости Например, если по результатам опроса оказалось, что большинство мужчин имеет доход выше среднего, а большинство женщин - ниже среднего, исследователь может сделать вывод, что зависимость между двумя переменными (ПОЛ и УРОВЕНЬ ДОХОДА) высокая.

10 Связи и зависимости между переменными 2. Надежность зависимости показывает, насколько вероятно, что зависимость, подобная найденной, подтвердится на данных другой выборки, извлеченной из той же самой генеральной совокупности. Надежность найденных зависимостей между переменными выборки можно количественно оценить и представить с помощью стандартной статистической меры (называемой p-уровень или статистический уровень значимости). В математической статистике p-уровень - это показатель, находящийся в убывающей зависимости от надежности результата: более высокий p-уровень соответствует более низкому уровню доверия к найденной в выборке зависимости между переменными. Именно, p-уровень представляет собой вероятность ошибки, связанной с распространением наблюдаемого результата на всю генеральную совокупность. Например, p - уровень, равный 0,05 показывает, что имеется 5%-ная вероятность, что найденная в выборке связь между переменными является лишь случайной особенностью данной выборки. В исследованиях принято p-уровень 0,05 рассматривать как "приемлемую границу" уровня ошибки. Результаты с уровнем значимости 0,01 рассматриваются как статистически значимые, а результаты с уровнем 0,005 или 0,001 как высоко значимые.

11 Величина выборки Размеры выборки зависят от величины зависимости между переменными: если связь между переменными слабая, то для проверки существования зависимости необходимо исследовать выборку достаточно большого объема. Если зависимость в генеральной совокупности очень сильная, тогда она может быть обнаружена с высокой степенью значимости даже на маленькой выборке. На практике при проведении, например, опросов потребителей, ограничиваются размерами выборки в чел., считая такую выборку достаточно значимой.

12 Меры взаимосвязи между переменными В математической статистике существует много различных мер взаимосвязи между переменными. Выбор определенной меры в конкретном исследовании зависит от числа переменных, используемых шкал измерения, природы зависимостей и т.д. Большинство этих мер подчиняются общему принципу: они оценивают наблюдаемую зависимость, сравнивая ее с "максимальной возможной зависимостью" между рассматриваемыми переменными. Обычный способ выполнить такие оценки заключается в том, чтобы посмотреть как варьируются значения переменных и затем подсчитать, какую часть всей имеющейся вариации можно объяснить наличием "общей" ("совместной") вариации двух (или более) переменных. Иначе говоря, сравнивается то "что есть общего в этих переменных", с тем "что потенциально было бы у них общего, если бы переменные были абсолютно зависимы". В терминах математической статистики, эти критерии представляют собой отношение изменчивости, общей для рассматриваемых переменных, к полной изменчивости. Это отношение обычно называется отношением объясненной вариации к полной вариации.

13 Нормальное распределение Распределение многих статистик является нормальным или может быть получено из нормального с помощью некоторых преобразований. Многие случайные величины в природе имеют нормальное распределение. Точная форма нормального распределения (характерная "колоколообразная кривая") определяется только двумя параметрами: средним и стандартным отклонением. Характерное свойство нормального распределения состоит в том, что 68% всех его наблюдений лежат в диапазоне ±1 стандартное отклонение от среднего µ, а диапазон ±2 стандартных отклонения содержит 95% значений.

14 Пример нормального распределения

15 Описательные статистики и проверка статистических гипотез Самой простой описательной статистикой является среднее значение. Среднее - очень информативная мера "центрального положения" наблюдаемой переменной, особенно если сообщается ее доверительный интервал. Доверительный интервал для среднего представляет интервал значений вокруг оценки, где с данным уровнем доверия находится среднее генеральной совокупности. Например, если среднее переменной ВОЗРАСТ РЕСПОНДЕНТА равно 40 (лет), а нижняя и верхняя границы доверительного интервала с уровнем 0.95 равны 20 и 60 соответственно, то с вероятностью 95% интервал с границами 20 и 60 накрывает среднее генеральной совокупности (потребителей). Ширина доверительного интервала зависит от объема или размера выборки, а также от разброса (изменчивости) данных: увеличение размера выборки делает оценку среднего более надежной, а увеличение разброса наблюдаемых значений, напротив, уменьшает надежность оценки. Важно отметить, что вычисление доверительных интервалов основывается на предположении нормальности наблюдаемых величин. Если это предположение не выполнено, то оценка может оказаться плохой, особенно для малых выборок.

16 Распределение переменной Важным способом описания переменной является форма ее распределения, которая показывает, с какой частотой значения переменной попадают в определенные интервалы, выбираемые исследователем. Обычно исследователя интересует, насколько точно распределение можно аппроксимировать нормальным. Простые описательные статистики дают об этом некоторую информацию. Если мода, медиана и среднее близки по своим значениям, значит распределение близко к нормальному. Кроме того существуют два важных показателя вида распределения переменной, позволяющие проверить гипотезу нормальности: асимметрия и эксцесс. Например, если асимметрия (показывающая отклонение распределения от симметричного) существенно отличается от нуля, то распределение несимметрично (нормальное распределение абсолютно симметрично). Асимметрия скошенного вправо распределения положительна, скошенного влево - отрицательна. Эксцесс показывает "остроту пика" распределения, и если он существенно отличен от нуля, то распределение имеет или более закругленный пик, чем нормальное, или, напротив, имеет более острый пик (возможно, имеется несколько пиков). Обычно, если эксцесс положителен, то пик заострен, если отрицательный, то пик закруглен. Эксцесс нормального распределения равен нулю.

17 Пример гистограммы распределения переменной Гистограмма позволяет качественно оценить различные характеристики распределения.

18 Пример гистограммы с наложенной кривой нормального распределения На гистограмме можно увидеть, что распределение бимодально, т.е. имеет 2 пика.

19 Пример диаграммы box-and-whisker plot При проверке статистических гипотез для оценки вида распределения используются также "ящичковые диаграммы" (box-and whisker plot). Они дают общее представление о распределении переменной: высота ящика - разброс значений, черта внутри ящика - медиана или 50%-ный процентиль, нижняя грань - 25%-ный процентиль, верхняя - 75%-ный процентиль. Экстремальные значения, не попавшие внутрь, изображаются вне ящика, и их можно исследовать отдельно.

20 Пример графика на нормальной вероятностной бумаге Для исследования нормальности распределения используется построение графиков на нормальной вероятностной бумаге. На графике выводятся координаты фактических значений переменных (квадратики) и теоретические значения, вычисленные при условии нормальности распределения (прямая линия). Чем ближе фактические значения к этой прямой, тем более нормальным является распределение.

21 Частотные таблицы К методам описательной статистики относится также построение частотных таблиц. Таблицы частот представляют собой простейший метод анализа категориальных (номинальных) переменных. Часто их используют, чтобы просмотреть, каким образом различные группы данных распределены в выборке. Например, если в опросном листе встречается вопрос о количестве детей у респондента, то из частотной таблицы исследователь может выяснить, что 419 опрошенных или 27,6% не имеют детей, 255 (16,8%) имеют одного ребенка и т.д. Кроме того, в таблице приводятся такие показатели, как значимый процент (данные с учетом тех опросных листов, где на этот вопрос даны ошибочные ответы, которые исследователь не может интерпретировать и помечает при проведении расчетов как так называемые "пропущенные" значения), а также кумулятивный (накопленный) процент.

22 Пример частотной таблицы

23 Столбиковая диаграмма к таблице

24 Описательные статистики К данным описательной статистики относятся частоты, проценты, кумулятивный процент, среднее значение, мода (самое часто встречающееся значение), медиана (значение, которое делит упорядоченное множество данных пополам), сумма, стандартное отклонение (наиболее распространенный показатель рассеивания значений относительно среднего значения), минимальное и максимальное значения переменных, вариация (различие значений признака у отдельных единиц совокупности), ранг (разница между максимальным и минимальным значениями) асимметрия (Skewness) и эксцесс (Kurtosis).

25 Корреляция Вычисление корреляции требуется при исследовании зависимости между переменными. Коэффициент корреляция и является мерой такой зависимости. Наиболее известной является корреляция Пирсона. При вычислении корреляции Пирсона предполагается, что переменные измерены, как минимум, в интервальной шкале. В случае, если используются менее информативные шкалы, применяют другие коэффициенты корреляции, как, например, коэффициент корреляции Спирмена. Коэффициенты корреляции изменяются в пределах от до Значение означает, что переменные имеют строгую отрицательную корреляцию, значение означает, соответственно, что переменные имеют строгую положительную корреляцию. Значение коэффициента, равное нулю, означает отсутствие корреляции (т.е. означает, что зависимость установить не удается, а вовсе не отсутствие зависимости!).

26 Коэффициент корреляции Пирсона Наиболее часто используемый коэффициент корреляции Пирсона r называется также линейной корреляцией, т.к. измеряет степень линейной зависимости между переменными. Важно, что значение коэффициента корреляции не зависит от масштаба измерения. Например, корреляция между ростом и весом будет одной и той же, независимо от того, проводились измерения в дюймах и футах или в сантиметрах и килограммах.

27 Вычисление коэффициента корреляции Пирсона для переменных Возраст респондента и Количество лет обучения (уровень образованности)

28 Корреляция Корреляция высокая, если на графике, называемом диаграммой рассеяния зависимость можно представить прямой линией с положительным или отрицательным углом наклона. Эта прямая называется прямой регрессии или прямой, построенной методом наименьших квадратов (сумма квадратов расстояний от наблюдаемых точек до прямой является минимальной).

29 Пример диаграммы рассеяния с наложенной линией наименьших квадратов

30 Корреляция На корреляцию оказывают влияние следующие факторы: 1. Выбросы, т.е. нетипичные, резко выделяющиеся наблюдения. Так как при построении прямой регрессии используется сумма квадратов расстояний наблюдаемых точек до прямой, то выбросы могут существенно повлиять на наклон прямой и, следовательно, на значение коэффициента корреляции. 2. Отсутствие однородности в выборке также является фактором, смещающим выборочную корреляцию. Высокая корреляция может быть следствием, например, разбиения данных на две группы, а вовсе не отражать зависимость между двумя переменными (зависимость может вообще практически отсутствовать). Корреляция Пирсона хорошо подходит для описания линейной зависимости. Отклонения от линейности увеличивают общую сумму квадратов расстояний от регрессионной прямой, даже если она представляет "истинные" и очень тесные связи между переменными.

31 Пример корреляционной зависимости между переменными которую можно описать с помощью кубической функции

32 Корреляция Чтобы оценить зависимость между переменными, нужно знать как величину коэффициента корреляции, так и его значимость. Уровень значимости, вычисленный для каждой корреляции, представляет собой главный источник информации о надежности полученных результатов (как правило, используется 5%-ный уровень значимости). Значимость определенного коэффициента корреляции зависит от объема выборки. Критерий значимости основывается на предположении, что распределение отклонений наблюдений от регрессионной прямой для зависимой переменной является нормальным.

33 Таблицы сопряженности Построение таблиц сопряженности (Crosstabs) позволяет оценить взаимосвязи данных в двумерных или многомерных таблицах. Каждая ячейка таблицы сопряженности содержит информацию о количестве объектов, попадающих в группу, определенную комбинацией двух значений. Например, таблица сопряженности для переменных ПОЛ (sex), ОТНОШЕНИЕ К ЖИЗНИ (life) (значения восторженное, обыденное, унылое) и РАСА (race of respondent) (значения белая, черная, другая).

34 Пример таблицы сопряженности

35 Таблица сопряженности САМООЦЕНКА х ПОЛ Например, насколько важна самооценка для мужчин и для женщин? Из таблицы сопряженности можно узнать, что очень важна самооценка для 193 (19,7%) опрошенных мужчин и для 317 (32,3%) опрошенных женщин или для 510 (51,9%) опрошенных респондентов.

36 Регрессионный анализ Линейный регрессионный анализ позволяет оценить коэффициенты линейного уравнения, содержащего одну или несколько (множественная регрессия) независимых переменных, значения которых используются для прогнозирования значения зависимой переменной. Вычислив коэффициенты такого уравнения, исследователь может получать прогноз значений зависимой переменной. Регрессионный анализ является достаточно сложной статистической процедурой, поэтому ограничимся рассмотрением случая одной зависимой и одной независимой переменной и, соответственно, использования простой линейной регрессии. Например, исследователь хочет предсказать, как будет изменяться уровень образования у респондентов при повышении уровня образования их родителей (предположим, предпринимателя интересует прогноз сбыта товаров для высокообразованных интеллектуалов). При проведении исследования прежде всего необходимо, используя результаты опроса, получить двумерные диаграммы рассеяния для изучаемых данных. Диаграммы рассеяния помогают визуально изучить данные и предположить наличие (отсутствие) линейной взаимосвязи.

37 Диаграмма рассеяния для двух переменных КОЛИЧЕСТВО ЛЕТ ОБУЧЕНИЯ РЕСПОНДЕНТА КОЛИЧЕСТВО ЛЕТ ОБУЧЕНИЯ ОТЦА РЕСПОНДЕНТА

38 Проверка нормальности распределения С использованием гистограммы

39 Проверка нормальности распределения с использованием графика на нормальной вероятностной бумаге

40 Результаты построения регрессионной модели в таблице Model Summary приводится расчетная информация, показывающая насколько хорошо значение зависимой переменной может быть представлено на основе независимой: R - коэффициент корреляции между переменными, R-square - квадрат коэффициента корреляции, показывающий, какая часть изменчивости зависимой переменной может быть объяснена независимой переменной;

41 Результаты построения регрессионной модели Важным показателем является уровень значимости коэффициентов Sig. в таблице ANOVA. Линейная модель зависимости может считаться надежной, если уровень значимости не превышает 0,05 (5%);

42 Результаты построения модели линейной регрессии В таблице Coefficients приведены рассчитанные коэффициенты регрессионной модели.

43 Регрессионная модель Поскольку модель является линейной, ее графическим выражением будет являться прямая y = k * x + B, где x - независимая переменная (в приведенном примере это уровень образования отца); y - зависимая переменная (уровень образования респондента); k - тангенс угла наклона (регрессионный коэффициент); B - постоянная прямой. Из таблицы Coefficients получаем: значение в первой строке (постоянная В) - 9,926; значение коэффициента (k) - 0, 322, и, таким образом, имеем линейную регрессионную модель y = 0,322 *x + 9,926. Полученная модель может быть использована для предсказания уровня образования респондентов при изменении уровня образования их родителей (в приведенном примере - отцов).

03/03 Лекция 8. Интерпретация статистических показателей

03/03 Лекция 8. Интерпретация статистических показателей 03/03 Лекция 8. Интерпретация статистических показателей Типы переменных номинальные (напр. пол); порядковые (напр. уровень образования); метрические непрерывные: интервальный (напр. температура в C) нет

Подробнее

7 Корреляционный и регрессионный анализ

7 Корреляционный и регрессионный анализ 7 Корреляционный и регрессионный анализ. Корреляционный анализ статистических данных.. Регрессионный анализ статистических данных. Статистические связи между переменными можно изучать методами дисперсионного,

Подробнее

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия.

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия. Квантили Выборочная квантиль x p порядка p (0 < p < 1) определяется как элемент вариационного ряда выборки x (1),, x () с номером [p]+1, где [a] целая часть числа а В статистической практике используется

Подробнее

ТЕСТОВЫЙ КОНТРОЛЬ ПО МОДУЛЮ 1

ТЕСТОВЫЙ КОНТРОЛЬ ПО МОДУЛЮ 1 ТЕСТОВЫЙ КОНТРОЛЬ ПО МОДУЛЮ 1 1. Множество объектов, в отношении которого формулируется исследовательская гипотеза а) случайная выборка; б) генеральная совокупность; в) зависимая выборка; г) независимая

Подробнее

Информационные технологии в физической культуре и спорте

Информационные технологии в физической культуре и спорте Информационные технологии в физической культуре и спорте Процессы преобразования информации связаны с информационными технологиями. Технология в переводе с греческого - искусство, умение, а это не что

Подробнее

ТЕСТОВЫЙ КОНТРОЛЬ ПО МОДУЛЮ 2

ТЕСТОВЫЙ КОНТРОЛЬ ПО МОДУЛЮ 2 ТЕСТОВЫЙ КОНТРОЛЬ ПО МОДУЛЮ 2 1. Предположение, проверяемое при помощи научных методов а) научная гипотеза; б) статистическая гипотеза; в) гипотеза исследования; г) задача исследования. 2. Проверяемое

Подробнее

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов 7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Линейная регрессия Метод наименьших квадратов ( ) Линейная корреляция ( ) ( ) 1 Практическое занятие 7 КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Для решения практических

Подробнее

ПАРНАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ

ПАРНАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ ПАРНАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ Парная линейная регрессия регрессионная зависимость между двумя переменными у и х, т е модель вида y a e, где у отклик, х фактор, e - случайная «остаточная» компонента Далее рассмотрим

Подробнее

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние,

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние, Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа Корреляционный анализ Оглавление Понятие корреляционного и регрессионного анализа... 3 Парный корреляционный анализ. Коэффициент корреляции... 4 Задание

Подробнее

Выполнил студент (ИФО 4-2) Карлова А. О. Руководитель проекта к.т.н., доцент Кирьянова Л. В. Проект защищен с оценкой. Фриштер Л. Ю.

Выполнил студент (ИФО 4-2) Карлова А. О. Руководитель проекта к.т.н., доцент Кирьянова Л. В. Проект защищен с оценкой. Фриштер Л. Ю. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ

Подробнее

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Регрессионный анализ Функциональная статистическая и корреляционная зависимости Во многих прикладных (в том числе экономических) задачах

Подробнее

j n n ij Р i вероятность попадания объекта в i-строку, Р j вероятность попадания объекта в j-столбец,

j n n ij Р i вероятность попадания объекта в i-строку, Р j вероятность попадания объекта в j-столбец, 3 Методы статистической обработки данных 3. Анализ таблиц сопряженности. Для исследования взаимосвязи пары качественных признаков между собой применяется анализ таблиц сопряженности. Таблица сопряженности

Подробнее

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика»

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» Задача 1. ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0,

Подробнее

Retinskaya.jimdo.com

Retinskaya.jimdo.com ЛЕКЦИЯ 1 Классификация экспериментальных исследований Определение и свойства функции распределения. Вероятность попадания случайной величины на заданный интервал Квантиль распределения Выборочная функция

Подробнее

ПРИМЕР ВЫПОЛНЕНИЯ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ

ПРИМЕР ВЫПОЛНЕНИЯ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ ПРИМЕР ВЫПОЛНЕНИЯ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ 1,6,63 7 36,9 5 1 1, 8,5,6,19, 3,9,8 1 3,16 3,8,3 3,18 3,,5 1,, 8,73 1,9,7 3,39,76,38 5 3,31 1,9,7 1,85,68,79,37, 1,9 3,7 3,19,76,9

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа 7 Анализ остатков. Автокорреляция Оглавление Свойства остатков... 3 1-е условие Гаусса-Маркова: Е(ε i ) = 0 для всех наблюдений... 3 2-е условие Гаусса-Маркова:

Подробнее

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Математическая статистика занимается методами сбора и обработки статистического материала результатов наблюдений над объектами

Подробнее

Основные понятия и определения

Основные понятия и определения 1 Основные понятия и определения Вспомним основные понятия и определения, которые употреблялись в курсе теории вероятностей. Вероятностный эксперимент (испытание) эксперимент, результат которого не предсказуем

Подробнее

ТЕМА 6 КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

ТЕМА 6 КОРРЕЛЯЦИОННЫЙ АНАЛИЗ ТЕМА 6 КОРРЕЛЯЦИОННЫЙ АНАЛИЗ УТВЕРЖДАЮ: ФИО должность Для свободного использования в образовательных целях Copyright 2017 Академия НАФИ. Москва Все права защищены www.nafi.ru ОГЛАВЛЕНИЕ 1. Корреляция:

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ Основные понятия математической статистики Совокупность - это множество объектов (элементов совокупности), обладающих общим свойством. Объем совокупности - это число

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ это распределение числа успехов наступлений определенного события в серии из n испытаний при условии, что для каждого из n испытаний вероятность успеха имеет одно и то же значение

Подробнее

Лекция. Элементы математической статистики.

Лекция. Элементы математической статистики. Лекция. Элементы математической статистики. План. 1. Статистика как наука. Этапы статистической работы.. I-й этап статистической работы. Генеральная совокупность и выборка. 3. I I-ой этап статистической

Подробнее

Домашнее задание 2. Обработка результатов наблюдений двухмерного случайного вектора

Домашнее задание 2. Обработка результатов наблюдений двухмерного случайного вектора Домашнее задание. Обработка результатов наблюдений двухмерного случайного вектора.1. Содержание и порядок выполнения работы Дана парная выборка (x i ; y i ) объема 50 из двумерного нормально распределенного

Подробнее

Примеры. Иванов О.В. 2005

Примеры. Иванов О.В. 2005 Примеры 1. Менеджер интересуется, зависит ли объем продаж в этом месяце от объема рекламы в этом же периоде? 2. Преподаватель хочет выяснить, есть ли зависимость между количеством часов, потраченных студентом

Подробнее

Лекция 1. Выборочное пространство

Лекция 1. Выборочное пространство Лекция 1. Выборочное пространство Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 1. Выборочное пространство Санкт-Петербург, 2013 1 / 35 Cодержание Содержание 1 Выборка.

Подробнее

Задачи для самостоятельных занятий по дисциплине курса. "Основы биологической статистики"

Задачи для самостоятельных занятий по дисциплине курса. Основы биологической статистики Задачи для самостоятельных занятий по дисциплине курса биостатистики Тематика зачетных вопросов по дисциплине "Основы биологической статистики" Задачи для самостоятельных занятий по дисциплине курса "Основы

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

Российский государственный торгово-экономический университет. Тульский филиал. Кафедра ОМиЕНД. Юдин С.В. МАТЕМАТИКА. Лабораторные работы 1, 2, 3

Российский государственный торгово-экономический университет. Тульский филиал. Кафедра ОМиЕНД. Юдин С.В. МАТЕМАТИКА. Лабораторные работы 1, 2, 3 Российский государственный торгово-экономический университет Тульский филиал Кафедра ОМиЕНД Юдин С.В. МАТЕМАТИКА Лабораторные работы 1,, 3 Методические указания по выполнению Тула - 011 1 Лабораторная

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра ВВТиС

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра ВВТиС МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Математики и математических методов в экономике 2. Направление подготовки 01.03.02

Подробнее

Математика (Статистика, корреляция и регрессия)

Математика (Статистика, корреляция и регрессия) Федеральное агентство воздушного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

В.И. Гнатюк, 2014 Глава 4 Параграф Оценка адекватности моделирования

В.И. Гнатюк, 2014 Глава 4 Параграф Оценка адекватности моделирования В.И. Гнатюк, 4 Глава 4 Параграф 4 4.4. Оценка адекватности моделирования Оценка адекватности динамической адаптивной модели электропотребления техноценоза [9,] включает две основные процедуры. Первая заключается

Подробнее

Тесты по дисциплине «Математика (математические методы в психологии)»

Тесты по дисциплине «Математика (математические методы в психологии)» МАОУ ВО «КРАСНОДАРСКИЙ МУНИЦИПАЛЬНЫЙ МЕДИЦИНСКИЙ ИНСТИТУТ ВЫСШЕГО СЕСТРИНСКОГО ОБРАЗОВАНИЯ» Кафедра педагогики и психологии Тесты по дисциплине «Математика (математические методы в психологии)» 1. Какую

Подробнее

3. РЕГРЕССИОННЫЙ АНАЛИЗ Постановка задачи регрессионного анализа

3. РЕГРЕССИОННЫЙ АНАЛИЗ Постановка задачи регрессионного анализа 55 3 РЕГРЕССИОННЫЙ АНАЛИЗ 3 Постановка задачи регрессионного анализа Экономические показатели функционирования предприятия (отрасли хозяйства) как правило представляются таблицами статистических данных:

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) Общие сведения 1. Кафедра Экономики и управления, социологии и юриспруденции 2. Направление подготовки

Подробнее

Корреляция. Содержание. Коэффициент корреляции

Корреляция. Содержание. Коэффициент корреляции Корреляция Материал из Википедии свободной энциклопедии Корреля ция статистическая взаимосвязь двух или нескольких случайных величин (либо величин которые можно с некоторой допустимой степенью точности

Подробнее

Статистика (функция выборки)

Статистика (функция выборки) Статистика (функция выборки) Материал из Википедии свободной энциклопедии Статистика (в узком смысле) это измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения. В

Подробнее

Методические указания

Методические указания Поволжский государственный технологический университет Кафедра РТиМБС Методические указания к выполнению лабораторной работы 1 по дисциплине «Автоматизация обработки экспериментальных данных» Определение

Подробнее

ПРОВЕРКА ГИПОТЕЗ О ХАРАКТЕРЕ РАСПРЕДЕЛЕНИЯ

ПРОВЕРКА ГИПОТЕЗ О ХАРАКТЕРЕ РАСПРЕДЕЛЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение "Оренбургский государственный университет" Кафедра математических методов и моделей в экономике А.Г. РЕННЕР, О.А.

Подробнее

Задание к Теме 1. Работа с матрицами. Балансовые модели

Задание к Теме 1. Работа с матрицами. Балансовые модели Оглавление Задание к Теме 1. Работа с матрицами. Балансовые модели... 2 Задание к Теме 2. Построение графиков. Исследование статистических функций... 4 Задание к Теме 3. Статистические методы обработки

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Б..ДВ.. Статистический анализ данных Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения. Кафедра Математики и математических методов в экономике.

Подробнее

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):. Кафедра Общие сведения. Направление подготовки Экономика Математики и математических методов в экономике

Подробнее

Процедура Экспресс-оценки

Процедура Экспресс-оценки Процедура Экспресс-оценки Канонические определения рыночной стоимости объекта оценки трактуют ее как наиболее вероятную величину цены по которой данный объект оценки может быть отчужден на открытом рынке

Подробнее

ПЗ 6. Технологии использования Пакета анализа для статистической обработки данных

ПЗ 6. Технологии использования Пакета анализа для статистической обработки данных ПЗ 6. Технологии использования Пакета анализа для статистической обработки данных 1. Испытание гипотез Очень часто генеральная совокупность 1 должна подчиняться некоторым параметрам. Например, фасовочная

Подробнее

1 Цель и задачи учебной дисциплины. 2 Место учебной дисциплины в структуре ООП

1 Цель и задачи учебной дисциплины. 2 Место учебной дисциплины в структуре ООП 1 Цель и задачи учебной дисциплины Задача любой науки состоит в выявлении и исследовании закономерностей, которым подчиняются реальные явления и процессы. Математическая статистика раздел математики, изучающий

Подробнее

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов.

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов. Лекция 5 ЭКОНОМЕТРИКА 5 Проверка качества уравнения регрессии Предпосылки метода наименьших квадратов Рассмотрим модель парной линейной регрессии X 5 Пусть на основе выборки из n наблюдений оценивается

Подробнее

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика Лекция 3 7 6 Разложение оценок коэффициентов на неслучайную и случайную компоненты Регрессионный анализ позволяет определять оценки коэффициентов регрессии Чтобы сделать выводы по полученной модели необходимы

Подробнее

Корреляционный и регрессионный анализ. Понятие корреляции Понятие регрессии Теория и методы корреляционного анализа

Корреляционный и регрессионный анализ. Понятие корреляции Понятие регрессии Теория и методы корреляционного анализа Корреляционный и регрессионный анализ. План. 1. Понятие корреляции. Функциональная и корреляционная зависимость. Графики рассеяния. 2. Коэффициент корреляции и его свойства. Коэффициент детерминации. 3.

Подробнее

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа 46 Глава 9. Регрессионный анализ 9.. Задачи регрессионного анализа Во время статистических наблюдений как правило получают значения нескольких признаков. Для простоты будем рассматривать в дальнейшем двумерные

Подробнее

СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ НА ИЗНАШИВАНИЕ

СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ НА ИЗНАШИВАНИЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ НА ИЗНАШИВАНИЕ Методические

Подробнее

Еще раз об элементарной статистике

Еще раз об элементарной статистике Еще раз об элементарной статистике Теоретические распределения Эмпирическое распределение Критерии согласия Вероятность Теория выборок Доверительный интервал Оценка значимости ПРЕДИСЛОВИЕ Термин «статистика»

Подробнее

Методические указания для проведения практических занятий по теории вероятностей и математической статистике для направления Экономика

Методические указания для проведения практических занятий по теории вероятностей и математической статистике для направления Экономика Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Саратовский государственный университет имени

Подробнее

ВВЕДЕНИЕ В СТАТИСТИКУ. Вопросы: 1. Понятие статистики 2. Статистика как наука 3. Статистические данные 4. Этапы статистического исследования

ВВЕДЕНИЕ В СТАТИСТИКУ. Вопросы: 1. Понятие статистики 2. Статистика как наука 3. Статистические данные 4. Этапы статистического исследования ВВЕДЕНИЕ В СТАТИСТИКУ Вопросы: 1. Понятие статистики 2. Статистика как наука 3. Статистические данные 4. Этапы статистического исследования Слово «статистика» происходит от латинского слова «status» положение

Подробнее

Оглавление. Предисловие авторов.. 3 Предисловие редактора..6 Как читать эту книгу Глава 1. Основные понятия прикладной статистики...

Оглавление. Предисловие авторов.. 3 Предисловие редактора..6 Как читать эту книгу Глава 1. Основные понятия прикладной статистики... Оглавление Предисловие авторов.. 3 Предисловие редактора..6 Как читать эту книгу... 13 Глава 1. Основные понятия прикладной статистики...15 1.1. Случайная изменчивость... 15 1.2. События и их вероятности...

Подробнее

Курсовая работа. Институт экономики и финансов кафедра «Математика»

Курсовая работа. Институт экономики и финансов кафедра «Математика» ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА НИКОЛАЯ II» Институт экономики и финансов кафедра «Математика»

Подробнее

Математическая статистика. Тема: «Статистическое оценивание параметров распределения»

Математическая статистика. Тема: «Статистическое оценивание параметров распределения» Математическая статистика Тема: «Статистическое оценивание параметров распределения» Введение Математическая статистика наука, занимающаяся методами обработки экспериментальных данных, полученных в результате

Подробнее

4. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Задачи и проблемы корреляционного анализа

4. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Задачи и проблемы корреляционного анализа 4. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ 4.. Задачи и проблемы корреляционного анализа Главной задачей корреляционного анализа является оценка взаимосвязи между переменными величинами на основе выборочных данных. Различают

Подробнее

Измерения и обработка результатов измерений Случайные погрешности

Измерения и обработка результатов измерений Случайные погрешности В теории вероятностей изучаются различные законы распределения, каждому из которых соответствует определенная функция плотности вероятности Они получены путем обработки большого числа наблюдений над случайными

Подробнее

ПЛАН-КОНСПЕКТ. ТЕМА 5. МАТЕМАТИКО-СТАТИСТИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ СВЯЗЕЙ

ПЛАН-КОНСПЕКТ. ТЕМА 5. МАТЕМАТИКО-СТАТИСТИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ СВЯЗЕЙ ПЛАН-КОНСПЕКТ. ТЕМА 5. МАТЕМАТИКО-СТАТИСТИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ СВЯЗЕЙ Вопросы: 1. Сущность математико-статистических методов изучения связей 2. Корреляционный анализ 3. Регрессионный анализ 4. Кластерный

Подробнее

Расчетно-графическая работа. Математическая статистика

Расчетно-графическая работа. Математическая статистика Расчетно-графическая работа Математическая статистика Выборки сделаны из генеральной совокупности, распределенной по нормальному закону. Для заданной статистической совокупности: - составить интервальный

Подробнее

Оцените математическое ожидание М x и моду Мо. Задача 3 По данным выборки объема 100 получены следующие данные:

Оцените математическое ожидание М x и моду Мо. Задача 3 По данным выборки объема 100 получены следующие данные: Билет Объем выборки равен 60. определить значение 5 и моду Мо. 5 6 8? Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка: a. (5; 0); б. (0; 5); в. (; 7); г. (; 0). Получены

Подробнее

Лекция 15. Элементы теории корреляции. 1. Функциональная, статистическая и корреляционная зависимости.

Лекция 15. Элементы теории корреляции. 1. Функциональная, статистическая и корреляционная зависимости. Лекция 5. Элементы теории корреляции.. Функциональная, статистическая и корреляционная зависимости. Две случайные величины могут быть связаны функциональной зависимостью, т.е. изменение одной из них по

Подробнее

Построение доверительного интервала для математического ожидания генеральной совокупности

Построение доверительного интервала для математического ожидания генеральной совокупности Построение доверительного интервала для математического ожидания генеральной совокупности В статистике существует два вида оценок: точечные и интервальные. Точечная оценка представляет собой отдельную

Подробнее

МУЛЬТИКОЛЛИНЕАРНОСТЬ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. очень большими. В результате получаются большие дисперсии. X X b X y

МУЛЬТИКОЛЛИНЕАРНОСТЬ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. очень большими. В результате получаются большие дисперсии. X X b X y МУЛЬТИКОЛЛИНЕАРНОСТЬ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ Серьезной проблемой при построении моделей множественной регрессии на основе метода наименьших квадратов (МНК) является мультиколлинеарность Мультиколлинеарность

Подробнее

ПРИМЕРЫ ВОПРОСОВ ТЕСТА

ПРИМЕРЫ ВОПРОСОВ ТЕСТА ПРИМЕРЫ ВОПРОСОВ ТЕСТА 1. Какая из перечисленных фаз исследования считается ключевой, так как ошибки этой фазы труднее исправить. 1. Сбор данных. Организация данных 3. Анализ данных 4. Вероятностные выводы.

Подробнее

Таблица 10 Корреляционная решетка, отражающая зависимость между диаметром и длиной сегментов лимфатических капилляров эпикарда собаки (мкм)

Таблица 10 Корреляционная решетка, отражающая зависимость между диаметром и длиной сегментов лимфатических капилляров эпикарда собаки (мкм) ГЛАВА ДВУХМЕРНЫЙ КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Методы двухмерного корреляционно-регрессионного анализа позволяют определить тесноту и вид зависимостей между парами стереометрических показателей одного

Подробнее

Т.А. Зиновьева. α β. процессе определения соотношений. 2. Закон логнормального распределения 1 (2) катализаторов часто приходится оперировать

Т.А. Зиновьева. α β. процессе определения соотношений. 2. Закон логнормального распределения 1 (2) катализаторов часто приходится оперировать УДК 66.56:54.6 Т.А. Зиновьева СТАТИСТИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ ВЛИЯНИЯ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ ХИМИЧЕСКОГО СОСТАВА НИКЕЛЬ-МЕДЬ-МАРГАНЦЕВЫХ КАТАЛИЗАТОРОВ НА ЭФФЕКТИВНОСТЬ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ОТ ВРЕДНЫХ ВЫБРОСОВ

Подробнее

РЕГРЕССИОННЫЙ АНАЛИЗ

РЕГРЕССИОННЫЙ АНАЛИЗ РЕГРЕССИОННЫЙ АНАЛИЗ Пусть у нас есть серии значений двух параметров. Подразумевается, что у одного и того же объекта измерены два параметра. Нам надо выяснить есть ли значимая связь между этими параметрами.

Подробнее

МНОГОМЕРНЫЕ МЕТОДЫ АНАЛИЗА ДАННЫХ. Что нужно вспомнить из предыдущего курса «БИОСТАТИСТИКА (= БИОМЕТРИЯ)

МНОГОМЕРНЫЕ МЕТОДЫ АНАЛИЗА ДАННЫХ. Что нужно вспомнить из предыдущего курса «БИОСТАТИСТИКА (= БИОМЕТРИЯ) МНОГОМЕРНЫЕ МЕТОДЫ АНАЛИЗА ДАННЫХ Что нужно вспомнить из предыдущего курса «БИОСТАТИСТИКА (= БИОМЕТРИЯ) Общие понятия 1. Выборка и генеральная совокупность репрезентативность (равновероятность), случайность

Подробнее

Выборка. Выборочное пространство. Описательная статистика. Грауэр Л.В.

Выборка. Выборочное пространство. Описательная статистика. Грауэр Л.В. Выборка. Выборочное пространство. Описательная статистика Грауэр Л.В. План лекций Классическая математическая статистика Описательная статистика Точечные и интервальные оценки Проверка статистических гипотез

Подробнее

Линейная регрессионная модель и эмпирическое уравнение регрессии. Метод наименьших квадратов (МНК)

Линейная регрессионная модель и эмпирическое уравнение регрессии. Метод наименьших квадратов (МНК) Линейная регрессионная модель и эмпирическое уравнение регрессии Метод наименьших квадратов (МНК) Предпосылки МНК Анализ точности определения оценок коэффициентов регрессии Обе переменные равноценны нельзя

Подробнее

1. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ

1. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ 1. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ 1.1. Обеспечиваемые компетенции ПК-5 Способность использовать количественные и качественные методы для проведения научных исследований и управления бизнес-процессами

Подробнее

6.7. Статистические испытания

6.7. Статистические испытания Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Подробнее

СТАТИСТИЧЕСКИЙ ВЫВОД. гипотезы. 1. Введение в проблему статистического вывода. 2. Статистические гипотезы. 3. Статистический критерий

СТАТИСТИЧЕСКИЙ ВЫВОД. гипотезы. 1. Введение в проблему статистического вывода. 2. Статистические гипотезы. 3. Статистический критерий СТАТИСТИЧЕСКИЙ ВЫВОД 1. Введение в проблему статистического вывода 2. Статистические гипотезы 3. Статистический критерий 4. Статистическая значимость 5. Классификация статистических критериев 6. Содержательная

Подробнее

Описательная статистика (descriptive statistics) это раздел статистики, занимающийся описанием, организацией и простейшим преобразованием данных

Описательная статистика (descriptive statistics) это раздел статистики, занимающийся описанием, организацией и простейшим преобразованием данных Лекция 2 Описательная статистика (descriptive statistics) это раздел статистики, занимающийся описанием, организацией и простейшим преобразованием данных исследования. Популяция (population) - совокупность

Подробнее

Рабочая программа дисциплины (модуля) Математическая статистика «Социальная работа» Направление подготовки Социальная работа

Рабочая программа дисциплины (модуля) Математическая статистика «Социальная работа» Направление подготовки Социальная работа Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кемеровский государственный университет» Социально-психологический факультет Кафедра социальной работы

Подробнее

Экспериментальный метод построения моделей технологических объектов

Экспериментальный метод построения моделей технологических объектов Экспериментальный метод построения моделей технологических объектов Основным принципом моделирования технологических систем, содержащих стохастические или вероятностные элементы, является разыгрывание

Подробнее

введение в биометрию

введение в биометрию ВВЕДНИЕ В БИОМЕТРИЮ введение в биометрию Предмет биометрии любой биологический объект, изучаемый с применением счета или меры, т.е. с количественной стороны в целях более или менее точной оценки его качественного

Подробнее

ЕЩЕ НЕМНОГО О РАСПРЕДЕЛЕНИИ. к.э.н., доцент Золотов Михаил Михайлович

ЕЩЕ НЕМНОГО О РАСПРЕДЕЛЕНИИ. к.э.н., доцент Золотов Михаил Михайлович ЕЩЕ НЕМНОГО О РАСПРЕДЕЛЕНИИ к.э.н., доцент Золотов Михаил Михайлович 2 ЕЩЕ РАЗ О ГЛАВНОМ Суть всего анализа наиболее точно распространить результаты, полученные при проведении выборки, на совокупность.

Подробнее

Оглавление. От автора... 9

Оглавление. От автора... 9 Оглавление От автора..................................... 9 Глава 1. Терминология......................... 13 1.1. Основные термины математической статистики... 12 1.2. Смысл понятия «случайная величина»..........

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 МАТЕМАТИЧЕСКАЯ

Подробнее

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ООО «Резольвента», www.resolventa.ru, resolventa@lst.ru, (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

Федеральное агентство морского и речного транспорта

Федеральное агентство морского и речного транспорта Федеральное агентство морского и речного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования «МОРСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени адмирала Г.И.

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Определение вероятности.. 8 1. Классическое и статистическое определения вероятности.. 8 2. Геометрические вероятности... 12 Глава вторая. Основные

Подробнее

1. Цели и задачи дисциплины. Рекомендации по изучению дисциплины

1. Цели и задачи дисциплины. Рекомендации по изучению дисциплины 1. Цели и задачи дисциплины. Рекомендации по изучению дисциплины 1.1. Цель дисциплины Цель курса - развить научно-исследовательскую компоненту статистического мышления, т.е. постичь множество специальных

Подробнее

3. Что такое критерии согласия? 4. С помощью какого критерия можно выявить связь между двумя количественными

3. Что такое критерии согласия? 4. С помощью какого критерия можно выявить связь между двумя количественными БИЛЕТЫ К ЭКЗАМЕНУ ПО ПРИКЛАДНОЙ СТАТИСТИКЕ ВАРИАНТ 200013 1. Как записывается выборочное среднее для не сгруппированных данных? 2. Для чего нужно вычислять доверительный интервал оценки? Приведите содержательный

Подробнее

Лекции подготовлены доц. Мусиной М.В. Математическая статистика.

Лекции подготовлены доц. Мусиной М.В. Математическая статистика. Математическая статистика. Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении статистических данных результатах наблюдений. Первая задача математической статистики

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГБОУ ВПО АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ Н.В.НИГЕЙ ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ САМОПОДГОТОВКИ г. Благовещенск

Подробнее

Тема 2.3. Построение линейно-регрессионной модели экономического процесса

Тема 2.3. Построение линейно-регрессионной модели экономического процесса Тема 2.3. Построение линейно-регрессионной модели экономического процесса Пусть имеются две измеренные случайные величины (СВ) X и Y. В результате проведения n измерений получено n независимых пар. Перед

Подробнее

6 КОРРЕЛЯЦИОННО- РЕГРЕССИОНЫЙ АНАЛИЗ

6 КОРРЕЛЯЦИОННО- РЕГРЕССИОНЫЙ АНАЛИЗ 87 6 КОРРЕЛЯЦИОННО- РЕГРЕССИОНЫЙ АНАЛИЗ В математическом анализе зависимость между двумя величинами выражается понятием функции y f(x), где каждому допустимому значению одной переменной соответствует одно

Подробнее

Лекция 1 Генеральная совокупность и выборка. Гистограмма. Оценивание параметров распределения

Лекция 1 Генеральная совокупность и выборка. Гистограмма. Оценивание параметров распределения Медицинская статистика Специальность «Лечебное дело» Лекция 1 Генеральная совокупность и выборка. Гистограмма. Оценивание параметров распределения Литература 1. Е.А. Лукьянова «Медицинская статистика»

Подробнее

Показательное распределение.

Показательное распределение. Показательное распределение. 1) Распределение с.в. X подчинено показательному закону с параметром 5. Записать вычислить M X DX. f x Показательное распределение с параметром имеет плотность вероятности:

Подробнее

Задачи по математической статистике

Задачи по математической статистике Задачи по математической статистике Задача. По данным распределения возрастного состава участников революционного движения в России 70-х годов 9-го века была построена следующая таблица Возраст 7-3 3-9

Подробнее

Методические указания по лабораторной работе. М.В.Морозов (docentmorozov.ru) Горный университет Санкт-Петербург Кафедра МКП

Методические указания по лабораторной работе. М.В.Морозов (docentmorozov.ru) Горный университет Санкт-Петербург Кафедра МКП Методические указания по лабораторной работе. М.В.Морозов (docentmorozov.ru) Образцов И.М., группа МГП-MCMXCIII Горный университет Санкт-Петербург Кафедра МКП Дисциплина: Математические методы моделирования

Подробнее

Элементы математической статистики

Элементы математической статистики Элементы математической статистики Математическая статистика является частью общей прикладной математической дисциплины «Теория вероятностей и математическая статистика», однако задачи, решаемые ею, носят

Подробнее

Курсовая работа. Институт экономики и финансов кафедра «Математика»

Курсовая работа. Институт экономики и финансов кафедра «Математика» ФЕДЕРАЛЬНО ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА НИКОЛАЯ II» Институт экономики и финансов кафедра «Математика»

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Б.Б. Математические методы в исторических исследованиях Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра МиММЭ. Направление подготовки

Подробнее

Вариант 8. Номер семьи Число совместно проживающих членов семьи,

Вариант 8. Номер семьи Число совместно проживающих членов семьи, Задача.Имеются следующие данные: Вариант 8 Номер семьи 3 4 5 6 7 8 9 0 Число совместно проживающих членов семьи, 3 3 4 4 4 5 6 7 7 чел. Годовое потребление электроэнергии, тыс. кв.- час 5 8 0 4 6 9 3 8.

Подробнее

характеристики положения характеристики рассеивания

характеристики положения характеристики рассеивания Числовые характеристики характеристики положения характеристики рассеивания Виды распределений Нормальное Равномерное Биномиальное характеристики положения Математическое ожидание Медиана характеристики

Подробнее