Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа"

Транскрипт

1 46 Глава 9. Регрессионный анализ 9.. Задачи регрессионного анализа Во время статистических наблюдений как правило получают значения нескольких признаков. Для простоты будем рассматривать в дальнейшем двумерные выборки X и Y. Результаты измерений записывают в таблицы а затем их анализируют для того чтобы установить связи между переменными. Связь между случайными величинами часто носит случайный характер. Такая связь называется стохастической или статистической если изменение одной величины вызывает изменение распределения другой величины. Если среднее значение одной случайной величины функционально зависит от значений другой случайной величины то такая статистическая зависимость называется регрессией: M Y X f (регрессия Y на X); M X Y g (регрессия X на Y). Так как законы распределения случайных величин неизвестны то находят их приближенные значения (оценки); например в качестве оценки условного математического ожидания находят условное среднее. Условным средним называется среднее арифметическое наблюдаемых значений Y полученных при одном и том же значении X =. Пример. Если в результате измерений получена таблица X 3 0 Y то условное среднее для = Ответ. 5. Условные средние и являются функциями соответственно от и т.е. f g.

2 47 Первое уравнение называют выборочным уравнением регрессии Y на X а второе уравнение называют выборочным уравнением регрессии X на Y. Для того чтобы найти фактический вид зависимости между случайными величинами результаты наблюдений записанные в таблице переносят на координатную плоскость в виде точек координатами которых являются значения ( ; ) =. (рис.3). у у у Рис.3 Из рис. 3 видно что в случае а) зависимость между X и Y является линейной ( = + ); в случае б) зависимость между X и Y является квадратичной ( = + + c); в случае в) между величинами X и Y зависимости не существует. На практике часто встречаются следующие виды уравнений регрессии: = + = k k + k- k линейное; полиномиальное; гиперболическое; e экспоненциальное. Оценка неизвестных параметров по результатам выборки объемом является основной задачей регрессионного анализа. Для оценки неизвестных параметров уравнения регрессии чаще всего используют метод наименьших квадратов который позволяет получить несмещенные оценки.

3 Определение параметров выборочного уравнения линейной регрессии по несгруппированным данным Пусть в результате независимых испытаний получены пар независимых чисел ( ; ) ( ; ) ( ; ). Заметим что вид зависимости = f() предполагается заранее известным или из теоретических соображений или в результате анализа расположения точек ( ; ) на координатной плоскости. Будем искать линейное выборочное уравнение регрессии Y на X в виде. По выборочным данным можно получить только приближенные значения (оценки) параметров и. Подставим в формулу значения величины = получим «теоретические» результаты Т ( = ). Коэффициенты и найдем методом наименьших квадратов из предположения что опытные и теоретические результаты мало отличаются между собой. В методе наименьших квадратов условие близости опытных и теоретических данных записывается в виде: Т m или более подробно Введем в рассмотрение функцию m. Ф. Эта функция достигает минимума при тех значениях обращаются в нуль частные производные и при которых

4 49 Ф 0 Ф 0. Продифференцируем функцию Ф( ) по каждой переменной и и приравняем производные нулю. В результате получим систему двух уравнений: 0 0 Преобразуем эту систему уравнений и запишем ее в виде Определитель этой системы отличен от нуля и значит решение всегда существует и единственно. Решив эту систему получим значение параметров и и можем записать выборочное уравнение линейной регрессии Y на X. Аналогично находится выборочное уравнение линейной регрессии X на Y где параметры и находят из системы уравнений. Пример. В результате некоторых испытаний получены значения ( ; ) которые представлены в таблице

5 Найти выборочное уравнение линейной регрессии Y на X. Решение. Результаты вычислений записаны в следующей таблице Таким образом для нахождения коэффициентов необходимо решить систему уравнений и уравнения Отсюда Ответ Определение параметров выборочного уравнения линейной регрессии по сгруппированным данным При большом числе испытаний пара значений ( ; j ) может наблюдаться несколько раз. Значения частот j подсчитывают и записывают в двумерную таблицу

6 5 j m m j m k k kj km Эту таблицу называют корреляционной. В этом случае объем выборки находят по формуле k m j j. Пусть уравнение регрессии Y на X имеет вид. Можно показать что параметры и этого уравнения являются решениями системы уравнений где k m j j k j K j j

7 5 k m j j j k k m j. j Пример. В результате некоторых испытаний получены значения ( ; ) частоты для которых представлены в следующей таблице: Найти выборочное уравнение линейной регрессии Y на X. Решение. На пересечении строк и столбцов данной таблицы записаны частоты j для пары ( ; j ) ( = 3 4; j = 3). Промежуточные вычисления представлены в следующей таблице: j = 60 = 600 j j = 344 = 49700

8 53 В верхние части клеток с частотами j записаны произведения j например j = = 00. В столбце записаны суммы частот j для каждой строки например для первой строки = 8. В строке j записаны суммы частот j для каждого столбца например для первого столбца = 6. В столбце записаны произведения чисел из столбцов. В столбце записаны произведения квадратов чисел из столбца на числа. В строке j j записаны произведения чисел из строк j j например 4 6 = 04. Найдем теперь средние арифметические k k j 60 k Для определения величины сложим числа из верхних частей клеток и разделим сумму на = 60: Запишем систему уравнений для нахождения коэффициентов Решение системы найдем по формулам Крамера: и. где

9 В результате получим ; Ответ Выборочный коэффициент корреляции. Выборочное уравнение регрессии для таблиц с постоянной разностью между вариантами Предположим что в результате некоторых испытаний получена корреляционная таблица со значениями частот j для каждой пары значений ( ; ) случайных величин X и Y. Для оценки связи между случайными величинами обычно используется выборочный коэффициент корреляции r где выборочные дисперсии k m j j j. При этом выборочное уравнение линейной регрессии Y на X можно получать по формуле r. c j c ; v Δ j Δ где с и с ложные нули (выбираемые числа расположенные вблизи середины интервалов в которых находится все значения выборки). Таким образом значения и v будут малыми по абсолютной величине.

10 55 Например для корреляционной таблицы X Y = 00 значения 0 0 ; можно также выбрать с 40 с 35. при этом мы получим таблицу с условными вариантами v j = 00 При этом имеют место формулы c где k ; где v c m j v j j v ;

11 56 где в Δ Δ k ; ; где в Δ v Δ m j v j j v. v ; Пример. Получим уравнение регрессии Y на X для корреляционной таблицы рассмотренной выше. Промежуточные вычисления представлены в следующей таблице: v j j = 00 = -85 j v j j v j =8 j v j j v j = 4 = = 8

12 57 В верхние части клеток с частотами j записаны произведения v j j например v В столбце записаны суммы частот j для каждой строки например для третьей строки = 63. В столбце записаны произведения чисел из столбцов и затем найдена сумма этих произведений. В столбце записаны произведения квадратов чисел из столбца на числа а затем подсчитана сумма этих произведений. В строке j записаны суммы частот j для каждого столбца например для первого столбца =. В строке j v j записаны произведения чисел из строк v и j затем найдена сумма этих произведений. В строке j v j записаны произведения квадратов чисел из строк v на числа из строки j а затем подсчитана сумма этих произведений. Таким образом j v j j 8 v j v J j 4 v По формулам квадратические отклонения: 405 v v v посчитаем средние

13 58 v Просуммировав содержимое верхних частей клеток найдем 6 5 j v j j Вычислим выборочный коэффициент корреляции подставив полученные данные в формулу для k m j v j v j r v r в Получим теперь уравнение регрессии вычислив предварительно в в c v c Подставим численное значение в формулу для уравнения регрессии: Получим в r в ; в Окончательно имеем Ответ

Лекция 15. Элементы теории корреляции. 1. Функциональная, статистическая и корреляционная зависимости.

Лекция 15. Элементы теории корреляции. 1. Функциональная, статистическая и корреляционная зависимости. Лекция 5. Элементы теории корреляции.. Функциональная, статистическая и корреляционная зависимости. Две случайные величины могут быть связаны функциональной зависимостью, т.е. изменение одной из них по

Подробнее

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Регрессионный анализ Функциональная статистическая и корреляционная зависимости Во многих прикладных (в том числе экономических) задачах

Подробнее

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость .. Линейная корреляционная зависимость Часто на практике требуется установить вид и оценить силу зависимости изучаемой случайной величины Y от одной или нескольких других величин (случайных или неслучайных).

Подробнее

Лекция 25. Схема построения уравнения линейной регрессии. Корреляционная зависимость

Лекция 25. Схема построения уравнения линейной регрессии. Корреляционная зависимость МДубатовская Теория вероятностей и математическая статистика Лекция 5 Схема построения уравнения линейной регрессии Корреляционная зависимость Ниже приведем схемы практического построения уравнения регрессии

Подробнее

7 Корреляционный и регрессионный анализ

7 Корреляционный и регрессионный анализ 7 Корреляционный и регрессионный анализ. Корреляционный анализ статистических данных.. Регрессионный анализ статистических данных. Статистические связи между переменными можно изучать методами дисперсионного,

Подробнее

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков.

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков. Лекция 8 Тема Сравнение случайных величин или признаков. Содержание темы Аналогия дискретных СВ и выборок Виды зависимостей двух случайных величин (выборок) Функциональная зависимость. Линии регрессии.

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ Основные понятия математической статистики Совокупность - это множество объектов (элементов совокупности), обладающих общим свойством. Объем совокупности - это число

Подробнее

Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация)

Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация) Аппроксимация по МНК Сглаживание экспериментальных зависимостей по методу наименьших квадратов (аппроксимация) Одна из главных задач математической статистики нахождение закона распределения случайной

Подробнее

Корреляционный анализ.

Корреляционный анализ. Корреляционный анализ. Корреляционно-регрессионный анализ выполняется на основе анализа эмпирических данных. Методы такого анализа являются составной частью эконометрики, которая устанавливает и исследует

Подробнее

2 Статистические оценки неизвестных параметров распределения

2 Статистические оценки неизвестных параметров распределения Статистические оценки неизвестных параметров распределения Статистическая оценка неизвестного параметра теоретического распределения Виды статистических оценок 3 Нахождение оценок неизвестных параметров

Подробнее

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов 7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Линейная регрессия Метод наименьших квадратов ( ) Линейная корреляция ( ) ( ) 1 Практическое занятие 7 КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Для решения практических

Подробнее

30. Оценка тесноты любой корреляционной связи.

30. Оценка тесноты любой корреляционной связи. 0 Оценка тесноты любой корреляционной связи Выше рассматривалась теснота линейной корреляционной связи Как оценить тесноту любой корреляционной связи? Пусть данные наблюдений над признаками X и Y сведены

Подробнее

Управление дистанционного обучения и повышения квалификации. Математика ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Управление дистанционного обучения и повышения квалификации. Математика ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по дисциплине

Подробнее

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии Камчатский государственный технический университет Кафедра высшей математики ЭКОНОМЕТРИКА Модель парной регрессии Задания и методические указания для студентов специальностей ФК, БУ, ПИ дневного и заочного

Подробнее

Выполнил студент (ИФО 4-2) Карлова А. О. Руководитель проекта к.т.н., доцент Кирьянова Л. В. Проект защищен с оценкой. Фриштер Л. Ю.

Выполнил студент (ИФО 4-2) Карлова А. О. Руководитель проекта к.т.н., доцент Кирьянова Л. В. Проект защищен с оценкой. Фриштер Л. Ю. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ

Подробнее

7 АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ

7 АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ 0 7 АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ Первоначально данные исследований представляют в виде таблиц. Однако табличные данные не имеют наглядности и не могут быть использованы

Подробнее

Тема 2.3. Построение линейно-регрессионной модели экономического процесса

Тема 2.3. Построение линейно-регрессионной модели экономического процесса Тема 2.3. Построение линейно-регрессионной модели экономического процесса Пусть имеются две измеренные случайные величины (СВ) X и Y. В результате проведения n измерений получено n независимых пар. Перед

Подробнее

Реализация алгоритма построения статистической модели объекта по методу Брандона. Постановка задачи

Реализация алгоритма построения статистической модели объекта по методу Брандона. Постановка задачи Голубев ВО Литвинова ТЕ Реализация алгоритма построения статистической модели объекта по методу Брандона Постановка задачи Статистические модели создают на основании имеющихся экспериментальных данных

Подробнее

РЕГРЕССИОННЫЙ АНАЛИЗ

РЕГРЕССИОННЫЙ АНАЛИЗ РЕГРЕССИОННЫЙ АНАЛИЗ Пусть у нас есть серии значений двух параметров. Подразумевается, что у одного и того же объекта измерены два параметра. Нам надо выяснить есть ли значимая связь между этими параметрами.

Подробнее

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика»

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» Задача 1. ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0,

Подробнее

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние,

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние, Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

Подробнее

Лабораторная работа 6. Построение эмпирической зависимости теплоемкости вещества от температуры.

Лабораторная работа 6. Построение эмпирической зависимости теплоемкости вещества от температуры. Лабораторная работа 6. Построение эмпирической зависимости теплоемкости вещества от температуры. Понятие статистической зависимости Две величины (например, x и y), могут быть независимыми, либо связанными

Подробнее

Задачи по математической статистике

Задачи по математической статистике Задачи по математической статистике Задача. По данным распределения возрастного состава участников революционного движения в России 70-х годов 9-го века была построена следующая таблица Возраст 7-3 3-9

Подробнее

Корреляционный и регрессионный анализ. Понятие корреляции Понятие регрессии Теория и методы корреляционного анализа

Корреляционный и регрессионный анализ. Понятие корреляции Понятие регрессии Теория и методы корреляционного анализа Корреляционный и регрессионный анализ. План. 1. Понятие корреляции. Функциональная и корреляционная зависимость. Графики рассеяния. 2. Коэффициент корреляции и его свойства. Коэффициент детерминации. 3.

Подробнее

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера.

Лекция 2. Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

Подробнее

СБОРНИК ЗАДАНИЙ ПО ТЕМЕ: «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

СБОРНИК ЗАДАНИЙ ПО ТЕМЕ: «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра прикладной математики В.П.

Подробнее

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ООО «Резольвента», www.resolventa.ru, resolventa@lst.ru, (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

ОСНОВЫ РЕГРЕССИОННОГО АНАЛИЗА

ОСНОВЫ РЕГРЕССИОННОГО АНАЛИЗА ОСНОВЫ РЕГРЕССИОННОГО АНАЛИЗА ПОНЯТИЕ КОРРЕЛЯЦИОННОГО И РЕГРЕССИОННОГО АНАЛИЗА Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые

Подробнее

5. Экстремум функции двух переменных.

5. Экстремум функции двух переменных. 88 5. Экстремум функции двух переменных. Точка M (, ) является точкой максимума (минимума) функции z = f(,), если найдется такая окрестность точки M, что для всех точек M(,) из этой окрестности выполняется

Подробнее

ОГЛАВЛЕНИЕ. ЧАСТЬ 1. Случайные события и их вероятности XCQ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5

ОГЛАВЛЕНИЕ. ЧАСТЬ 1. Случайные события и их вероятности XCQ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5 ОГЛАВЛЕНИЕ ПРЕДИСЛОВИЕ 3 ВВЕДЕНИЕ 5 ЧАСТЬ 1. Случайные события и их вероятности Глава 1. Понятие вероятности 1.1. Виды случайных событий. Дискретное множество элементарных событий. Множество исходов опыта

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

Интерполирование функций

Интерполирование функций Постановка задачи, основные понятия Конечные разности и их свойства Интерполяционные многочлены Оценка остаточного члена интерполяционных многочленов Постановка задачи, основные понятия Пусть, то есть

Подробнее

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Учебная дисциплина Б.2.1 - Математика Профиль подготовки: Производственный менеджмент Тематика

Подробнее

Математика (Статистика, корреляция и регрессия)

Математика (Статистика, корреляция и регрессия) Федеральное агентство воздушного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

Лекция 15 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Лекция 15 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Лекция 5 СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ ЦЕЛЬ ЛЕКЦИИ: ввести понятие оценки неизвестного параметра распределения и дать классификацию таких оценок; получить точечные оценки математического

Подробнее

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия.

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия. Квантили Выборочная квантиль x p порядка p (0 < p < 1) определяется как элемент вариационного ряда выборки x (1),, x () с номером [p]+1, где [a] целая часть числа а В статистической практике используется

Подробнее

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ свободные члены, - неизвестные величины. Тема СИСТЕМЫ ЛИНЕЙНЫХУРАВНЕНИЙ Система m линейных уравнений с переменными в общем случае имеет вид: m m m m ) где числа ij i, m, j, ) называются коэффициентами при переменных, i - свободные члены, j -

Подробнее

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ Введение...... 14 ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Основные понятия теории вероятностей... 17 1. Испытания и события... 17 2. Виды случайных событий... 17 3. Классическое определение

Подробнее

Математическая статистика. Тема: «Статистическое оценивание параметров распределения»

Математическая статистика. Тема: «Статистическое оценивание параметров распределения» Математическая статистика Тема: «Статистическое оценивание параметров распределения» Введение Математическая статистика наука, занимающаяся методами обработки экспериментальных данных, полученных в результате

Подробнее

Домашнее задание 2. Обработка результатов наблюдений двухмерного случайного вектора

Домашнее задание 2. Обработка результатов наблюдений двухмерного случайного вектора Домашнее задание. Обработка результатов наблюдений двухмерного случайного вектора.1. Содержание и порядок выполнения работы Дана парная выборка (x i ; y i ) объема 50 из двумерного нормально распределенного

Подробнее

α, β - неизвестные параметры.

α, β - неизвестные параметры. ОПРЕДЕЛЕНИЕ ФОРМЫ СВЯЗИ МЕЖДУ РЕЗУЛЬТИРУЮЩИМ (У) И ОБЪЯСНЯЮЩИМ (Х) ФАКТОРАМИ И РАСЧЕТ ПАРАМЕТРОВ УРАВНЕНИЯ ПАРНОЙ РЕГРЕССИИ Задачу определения парной регрессии можно сформулировать следующим образом: по

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГБОУ ВПО АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ Н.В.НИГЕЙ ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ САМОПОДГОТОВКИ г. Благовещенск

Подробнее

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр 2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр I Элементы линейной алгебры 1. Понятие определителей 2-го и 3-го порядка, их вычисление и

Подробнее

3. РЕГРЕССИОННЫЙ АНАЛИЗ Постановка задачи регрессионного анализа

3. РЕГРЕССИОННЫЙ АНАЛИЗ Постановка задачи регрессионного анализа 55 3 РЕГРЕССИОННЫЙ АНАЛИЗ 3 Постановка задачи регрессионного анализа Экономические показатели функционирования предприятия (отрасли хозяйства) как правило представляются таблицами статистических данных:

Подробнее

3 Операции над матрицами: сложение и вычитание

3 Операции над матрицами: сложение и вычитание Определение детерминанта матрицы Квадратная матрица состоит из одного элемента A = (a ). Определитель такой матрицы равен A = det(a) = a. ( ) a a Квадратная матрица 2 2 состоит из четырех элементов A =

Подробнее

Тема 3. Численные методы решения задачи аппроксимации

Тема 3. Численные методы решения задачи аппроксимации Тема. Численные методы решения задачи аппроксимации Будем считать, что является функцией аргумента. Это означает, что любому значению из области определения поставлено в соответствие значение. На практике

Подробнее

, при уровнях значимости = 0, 05

, при уровнях значимости = 0, 05 Задача скачана с сайта wwwqacademru Задача Имеется информация за лет относительно среднего дохода X и среднего потребления Y (млн руб): Годы 9 9 9 93 94 95 96 97 98 99 X,5,6,3 3,7 4,5 6, 7,3 8,7,,8 Y 8,5,3

Подробнее

Таким образом, точка А является точкой глобального максимума, а точка М- точкой глобального минимума данной функции в замкнутой области D.

Таким образом, точка А является точкой глобального максимума, а точка М- точкой глобального минимума данной функции в замкнутой области D. 66 Таким образом точка А является точкой глобального максимума а точка М- точкой глобального минимума данной функции в замкнутой области D 5 Эмпирические формулы Определение параметров эмпирических формул

Подробнее

Лекция 11. Метод наибольшего правдоподобия. Другие характеристики вариационного ряда.

Лекция 11. Метод наибольшего правдоподобия. Другие характеристики вариационного ряда. 1 Лекция 11 Метод наибольшего правдоподобия Другие характеристики вариационного ряда 1 Метод наибольшего правдоподобия Кроме метода моментов, который изложен в предыдущем параграфе, существуют и другие

Подробнее

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров . СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ.. Понятие о статистической оценке параметров Методы математической статистики используются при анализе явлений, обладающих свойством статистической устойчивости.

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

Методические указания для проведения практических занятий по теории вероятностей и математической статистике для направления Экономика

Методические указания для проведения практических занятий по теории вероятностей и математической статистике для направления Экономика Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Саратовский государственный университет имени

Подробнее

Системы линейных алгебраических уравнений

Системы линейных алгебраических уравнений Системы линейных алгебраических уравнений Рассмотрим систему m линейных алгебраических уравнений с неизвестными b b () m m m bm Система () называется однородной если все её свободные члены b b b m равны

Подробнее

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют:

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют: . На складе 00 деталей, из которых 00 изготовлено цехом, 60 цехом и 40 цехом. Вероятность брака для цеха %, для цеха % и для цеха %. Наудачу взятая со слада деталь оказалась бракованной. Найти вероятность

Подробнее

[] - Гауссово обозначение суммы

[] - Гауссово обозначение суммы Принцип наименьших квадратов, задачи решаемые МНК Параметрический способ уравнивания, оценка точности Коррелатный способ уравнивания Пример уравнивания измеренных углов треугольника параметрическим и коррелатным

Подробнее

ПРИБЛИЖЕНИЕ ТАБЛИЧНЫХ ФУНКЦИЙ ПО МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ

ПРИБЛИЖЕНИЕ ТАБЛИЧНЫХ ФУНКЦИЙ ПО МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ ПРИБЛИЖЕНИЕ ТАБЛИЧНЫХ ФУНКЦИЙ ПО МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ Постановка задачи аппроксимации По результатам экспериментов получена таблица с произвольным расположением аргументов: x, y,,. Аналитическое

Подробнее

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика Лекция 3 7 6 Разложение оценок коэффициентов на неслучайную и случайную компоненты Регрессионный анализ позволяет определять оценки коэффициентов регрессии Чтобы сделать выводы по полученной модели необходимы

Подробнее

Лекция 1. Введение. Основные понятия и методы математической статистики.

Лекция 1. Введение. Основные понятия и методы математической статистики. 1 Лекция 1. Введение. Основные понятия и методы математической статистики. 1. Что изучают математическая статистика, теория случайных процессов. Изучение данного курса будет состоять из двух частей: «Математическая

Подробнее

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН.

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

Подробнее

СМК РГУТиС. Лист 1 из 6

СМК РГУТиС. Лист 1 из 6 Лист 1 из 6 1 Лист 2 из 6 Примерный перечень вопросов зачета. 1. Линейные операции над матрицами. Транспонирование матриц. Умножение матриц. 2. Определители и их свойства. Алгебраические дополнения и миноры.

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

Тема Свойства выборочных характеристик. Интервальные ряды

Тема Свойства выборочных характеристик. Интервальные ряды Лекция 7 Тема Свойства выборочных характеристик. Интервальные ряды Содержание темы Свойства средней арифметической Свойства выборочной дисперсии Интервальный ряд и его характеристики Основные категории

Подробнее

Лабораторная работа 2.

Лабораторная работа 2. Компьютерные методы моделирования строительства скважин. Лабораторная работа. ПРОВЕРКА СООТВЕТСТВИЯ ВЫБОРКИ НОРМАЛЬНОМУ ЗАКОНУ РАСПРЕДЕЛЕНИЯ Цель работы: овладение студентом способами построения эмпирической

Подробнее

Линейная регрессионная модель и эмпирическое уравнение регрессии. Метод наименьших квадратов (МНК)

Линейная регрессионная модель и эмпирическое уравнение регрессии. Метод наименьших квадратов (МНК) Линейная регрессионная модель и эмпирическое уравнение регрессии Метод наименьших квадратов (МНК) Предпосылки МНК Анализ точности определения оценок коэффициентов регрессии Обе переменные равноценны нельзя

Подробнее

6.7. Статистические испытания

6.7. Статистические испытания Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Подробнее

Тестовые задания по математике для студентов 1 2 курсов СГГА

Тестовые задания по математике для студентов 1 2 курсов СГГА Тестовые задания по математике для студентов курсов СГГА Пояснение к выполнению тестового задания. Прочитайте внимательно текст задания.. Если в ответах указан символ «Ο» то нужно выбрать единственный

Подробнее

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера:

Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: Рассмотрим первый способ решения СЛУ по правилу Крамера для системы трех уравнений с тремя неизвестными: Ответ рассчитывается по формулам Крамера: D, D1, D2, D3 это определители Определителем третьего

Подробнее

Теория вероятностей и математическая статистика Конспект лекций

Теория вероятностей и математическая статистика Конспект лекций Министерство образования и науки РФ ФБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Теория вероятностей и математическая статистика

Подробнее

АППРОКСИМАЦИЯ ФУНКЦИЙ. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

АППРОКСИМАЦИЯ ФУНКЦИЙ. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ АППРОКСИМАЦИЯ ФУНКЦИЙ. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Постановка задачи. Основу математических моделей многих процессов и явлений в физике, химии, биологии, экономике и других областях составляют уравнения

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

2.4. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ К ОЦЕНКЕ КОЭФФИЦИЕНТОВ ТРЕНДОВЫХ МОДЕЛЕЙ

2.4. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ К ОЦЕНКЕ КОЭФФИЦИЕНТОВ ТРЕНДОВЫХ МОДЕЛЕЙ .4. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ К ОЦЕНКЕ КОЭФФИЦИЕНТОВ ТРЕНДОВЫХ МОДЕЛЕЙ Достаточно простые способы оценки коэффициентов линейного тренда, приведённые в предыдущее параграфе, обладают среди прочих одним

Подробнее

5. РЕГРЕССИОННЫЙ АНАЛИЗ Задачи регрессионного анализа

5. РЕГРЕССИОННЫЙ АНАЛИЗ Задачи регрессионного анализа 5 РЕГРЕССИОННЫЙ АНАЛИЗ 5 Задачи регрессионного анализа Понятия регрессии и корреляции непосредственно связаны между собой, но при этом существует четкое различие между ними В корреляционном анализе оценивается

Подробнее

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г.

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г. Перечень Основных контрольных вопросов для зачета (экзамена) по дисциплине Физика, математика, модуль М атематика, для студентов 1 курса медикопрофилактического факультета 1. Понятие функции. Способы задания

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ это распределение числа успехов наступлений определенного события в серии из n испытаний при условии, что для каждого из n испытаний вероятность успеха имеет одно и то же значение

Подробнее

Перечень и содержание практических и лабораторных занятий

Перечень и содержание практических и лабораторных занятий очное заочное с сокращенным сроком обучения МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уральский государственный лесотехнический

Подробнее

Лабораторные работы по дисциплине «Высшая математика» Часть II

Лабораторные работы по дисциплине «Высшая математика» Часть II Министерство образования Республики Беларусь Брестский государственный технический университет Кафедра высшей математики Лабораторные работы по дисциплине «Высшая математика» Часть II Брест 00 УДК 57.9

Подробнее

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БАЗА ТЕСТОВЫХ ЗАДАНИЙ

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БАЗА ТЕСТОВЫХ ЗАДАНИЙ Е. В. Морозова 0 МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАМЫШИНСКИЙ

Подробнее

Найдем вероятность события А - интересующие студента данные не содержатся только в двух пособиях.

Найдем вероятность события А - интересующие студента данные не содержатся только в двух пособиях. Задача. Студент выполняет работу по статистике, пользуясь пятью пособиями. Вероятность того, что интересующие его данные находятся в первом, втором, третьем, четвертом и пятом пособиях, соответственно

Подробнее

найти средние и частные коэффициенты эластичности.

найти средние и частные коэффициенты эластичности. Имеются выборочные данные (табл. 9) показателей «Объем продукции» (х, тыс. штук) и «Единичные издержки» (, тыс. руб). Таблица 9 наблюдения Единичные издержки Объем продукции наблюдения Единичные издержки

Подробнее

Эконометрика. Модель линейной регрессии. Шишкин Владимир Андреевич. Пермский государственный национальный исследовательский университет

Эконометрика. Модель линейной регрессии. Шишкин Владимир Андреевич. Пермский государственный национальный исследовательский университет Эконометрика Модель линейной регрессии Шишкин Владимир Андреевич Пермский государственный национальный исследовательский университет Вероятностью P(A) события A называется численная мера степени объективной

Подробнее

5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ

5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ Оценка параметров 30 5. ОЦЕНКА ГЕНЕРАЛЬНЫХ ПАРАМЕТРОВ 5.. Введение Материал, содержащийся в предыдущих главах, можно рассматривать как минимальный набор сведений, необходимых для использования основных

Подробнее

Абдиев Б.А. «Эконометрика» Предназначено для студентов специальности: Финансы, вечернее отделение (2 курс 4г.о.) Учебный год:

Абдиев Б.А. «Эконометрика» Предназначено для студентов специальности: Финансы, вечернее отделение (2 курс 4г.о.) Учебный год: Абдиев Б.А. «Эконометрика» Предназначено для студентов специальности: Финансы, вечернее отделение (2 курс 4г.о.) Учебный год: 2015-2016 Текст вопроса 1 Парная регрессия у=а+вх+е представляет собой регрессию

Подробнее

АППРОКСИМАЦИЯ. y i y 0 y 1 y 2 y n. i x 0 x 1 x 2 x n

АППРОКСИМАЦИЯ. y i y 0 y 1 y 2 y n. i x 0 x 1 x 2 x n АППРОКСИМАЦИЯ На практике часто приходится сталкиваться с задачей сглаживания экспериментальных данных задача аппроксимации. Основная задача аппроксимации построение приближенной (аппроксимирующей) функции

Подробнее

ОЦЕНКА РЕГРЕССИИ С УЧЁТОМ ОГРАНИЧЕНИЙ НА ПАРАМЕТРЫ В УСЛОВИЯХ ГЕТЕРОСКЕДАСТИЧНОСТИ

ОЦЕНКА РЕГРЕССИИ С УЧЁТОМ ОГРАНИЧЕНИЙ НА ПАРАМЕТРЫ В УСЛОВИЯХ ГЕТЕРОСКЕДАСТИЧНОСТИ УДК 3343(758 ОЦЕНКА РЕГРЕССИИ С УЧЁТОМ ОГРАНИЧЕНИЙ НА ПАРАМЕТРЫ В УСЛОВИЯХ ГЕТЕРОСКЕДАСТИЧНОСТИ ВА Талызин Казанский (Приволжский федеральный университет г Казань Ключевые слова: оценка параметры модель

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 МАТЕМАТИЧЕСКАЯ

Подробнее

Определение Вероятность ошибки первого рода называется уровнем значимости α.

Определение Вероятность ошибки первого рода называется уровнем значимости α. Лекция 9. Статистическая проверка статистических гипотез. Общие принципы проверки гипотез. Понятия статистической гипотезы (простой и сложной), нулевой и конкурирующей гипотезы, ошибок первого и второго

Подробнее

Лекция 3 Решение систем алгебраических уравнений в средах. MS Excel и Mathcad. Лектор. Ст. преподаватель Купо А.Н.

Лекция 3 Решение систем алгебраических уравнений в средах. MS Excel и Mathcad. Лектор. Ст. преподаватель Купо А.Н. Лекция Решение систем алгебраических уравнений в средах Лектор MS Ecel и Mthcd Ст. преподаватель Купо А.Н. .Понятие системы линейных алгебраических уравнений (СЛАУ). Постановка задачи..методы решения СЛАУ.(Метод

Подробнее

. Таким образом, вероятность того, что на каждом этаже выйдет по одному пассажиру. m n. которая носит название формулы полной вероятности.

. Таким образом, вероятность того, что на каждом этаже выйдет по одному пассажиру. m n. которая носит название формулы полной вероятности. МВДубатовская Теория вероятностей и математическая статистика Методические рекомендации к решению задач из экзаменационного задания Семь человек вошли в лифт на первом этаже восьмиэтажного дома Считая,

Подробнее

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Министерство образования и науки Российской Федерации Федеральное агентство по образованию РФ Владивостокский государственный университет экономики и сервиса Н.Ю. ГОЛОДНАЯ Н.Н. ОДИЯКО МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Подробнее

Контрольное задание

Контрольное задание http://wwwzachetru/ Контрольное задание Задача Построить полигон относительных частот по данным вариационного ряда ( 0): 3 6 7 0 m 8 0 3 3 Решение 3 6 7 0 m 8 0 3 3 m Полигон относительных частот: 0073

Подробнее

1 Обработка экспериментальных данных

1 Обработка экспериментальных данных Занятие 3 РЕГРЕССИОННЫЙ АНАЛИЗ ДЛЯ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА Регрессионный анализ часто используется в химии с целью обработки экспериментальных данных, совокупность которых представлена некоторой

Подробнее

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов.

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов. Лекция 5 ЭКОНОМЕТРИКА 5 Проверка качества уравнения регрессии Предпосылки метода наименьших квадратов Рассмотрим модель парной линейной регрессии X 5 Пусть на основе выборки из n наблюдений оценивается

Подробнее

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):. Кафедра Общие сведения. Направление подготовки Экономика Математики и математических методов в экономике

Подробнее

Система линейных уравнений. Система m уравнений с n неизвестными: 8 a 11 x 1 + a 12 x a 1n x n =b 1 a 21 x 1 + a 22 x a 2n x n =b 2

Система линейных уравнений. Система m уравнений с n неизвестными: 8 a 11 x 1 + a 12 x a 1n x n =b 1 a 21 x 1 + a 22 x a 2n x n =b 2 Раздел VI. Глоссарий Матрица. Совокупность чисел, расположенных в виде прямоугольной таблицы, содержащей n строк и m столбцов называется матрицей размерности Определитель матрицы. Определителем квадратной

Подробнее

3. Используемые методы обучения

3. Используемые методы обучения 3.2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПРЕПОДАВАТЕЛЯМ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ Семестр I Раздел 1. Векторная и линейная алгебра. Практическое занятие 1 1. Цель: Рассмотреть задачи на вычисление определителей второго

Подробнее

Таблица 10 Корреляционная решетка, отражающая зависимость между диаметром и длиной сегментов лимфатических капилляров эпикарда собаки (мкм)

Таблица 10 Корреляционная решетка, отражающая зависимость между диаметром и длиной сегментов лимфатических капилляров эпикарда собаки (мкм) ГЛАВА ДВУХМЕРНЫЙ КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Методы двухмерного корреляционно-регрессионного анализа позволяют определить тесноту и вид зависимостей между парами стереометрических показателей одного

Подробнее

Тема 4. Анализ матрицы корреляции и его место в регрессионном анализе

Тема 4. Анализ матрицы корреляции и его место в регрессионном анализе Тема 4. Анализ матрицы корреляции и его место в регрессионном анализе 4.1. Коэффициент корреляции Коэффициент парной корреляции (Пирсона) показывает меру линейной связи между переменными он принимает значения

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Функции многих переменных

Функции многих переменных Функции многих переменных Задача 7 Найти все производные второго порядка функции f ( x, y) : f ( x, y) y x Искомые производные: Задача 9 Найти полный дифференциал и градиент функции А: 3 4 f ( x, y) ln

Подробнее

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z 1. Электростатика 1 1. Электростатика Урок 6 Разделение переменных в декартовых координатах 1.1. (Задача 1.49) Плоскость z = заряжена с плотностью σ (x, y) = σ sin (αx) sin (βy), где σ, α, β постоянные.

Подробнее