9. Принцип сжимающих отображений. Теоремы о неподвижной точке.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "9. Принцип сжимающих отображений. Теоремы о неподвижной точке."

Транскрипт

1 Лекция 6 9 Принцип сжимающих отображений Теоремы о неподвижной точке Пусть D оператор, вообще говоря, нелинейный, действующий из банахова пространства B в себя Определение Оператор D, действующий из банахова пространства B в себя, называется сжимающим (или сжимающим отображением), если существует константа q такая, что 0 q < и для любых, B выполнено неравенство D D q Нетрудно показать (сделайте это самостоятельно), что сжимающий оператор является непрерывным Определение Элемент называется неподвижной точкой оператора D, если D = Ниже мы докажем, что у сжимающего оператора, действующего в банаховом пространстве, есть и при том единственная, неподвижная точка Напомним, что банахово пространство это полное нормированное пространство, и при доказательстве мы будем использовать полноту пространства B Предварительно докажем одно вспомогательное утверждение Будем называть рядом бесконечную сумму элементов пространства B а N S N = z = z + z + + z + = z, где z B, =,,, = - его частичной суммой Как обычно, определим сходимость ряда как сходимость последовательности его частичных сумм, те если S S, где S, S, z B, N N то говорят, что ряд сходится, а элемент S называется его суммой Поскольку пространство B полное, то необходимым и достаточным условием сходимости ряда является критерий Коши: z + ε > 0 N N z ε N = + Теорема (признак Вейерштрасса сходимости ряда) Пусть, 0, =,, - последовательность неотрицательных чисел) Тогда из ( сходимости числового ряда следует сходимость ряда z = = Доказательство Из неравенства треугольника и условия теоремы следует = + z = z = + = + Запишем критерий Коши как необходимое условие сходимости числового ряда : для ε > 0 N N ε = + Из этого неравенства и неравенства, полученного в начале доказательства теоремы, следует, что, начиная с этого номера, + z = + + ε, те выполняется критерий Коши как достаточное условие сходимости ряда в банаховом пространстве B Теорема (о неподвижной точке) Пусть D сжимающий оператор Тогда существует, и притом единственная, точка B такая, что D = Эта точка может быть 37

2 найдена методом последовательных приближений (простой итерации): = + D, = 0,,,, где B 0 - произвольная фиксированная точка пространства B (начальное приближение), причем : D = Доказательство ) Единственность Пусть существуют две неподвижные точки и : D =, D =, Тогда 0 < = D D q <, и мы приходим к противоречию Единственность доказана ) Существование докажем методом последовательных приближений Зададим произвольное начальное приближение 0 B и рассмотрим последовательность + = D, = 0,,, Докажем ее сходимость Заметим, что сходимость последовательности равносильна сходимости ряда + = ( + ) + ( ) + + ( 0 ) + 0 общий член ряда Так как + = D D q q 0, 0 q <, то общий = cost член ряда мажорируется членом бесконечно убывающей геометрической прогрессии, а, тем самым, последовательность сходится по признаку Вейерштрасса, те, B Покажем, что D =, те неподвижная точка оператора Пусть это не так: D = ~, ~ Тогда для любого натурального имеет место 0 < ~ ~ = D D + + q + + 0, из чего следует, что ~ = 0, или = ~ Теорема доказана Теорема Пусть D - оператор, отображающий банахово пространство B в себя, и существует натуральное число такое, что D - сжимающий оператор Тогда существует единственная неподвижная точка оператора D (такая, что D = ), причем может быть найдено методом последовательных приближений: для любого B + = D, = 0,,, Доказательство ) Возьмем любой элемент 0 и получим последовательность 0 +, D 0 D 0 D + 0 D 0 D 0 Рассмотрим подпоследовательности, = D, = D ( D ), (тк D 0 D - сжимающий) 0 :, + = D, + = D ( D ), ( то же, тк D - сжимающий, и его неподвижная точка не зависит от выбора начального приближения в методе последовательных приближений), = D, 3 = D ( D ), Вернемся к исходной последовательности и заметим, что она состоит из подпоследовательностей, каждая из которых сходится к Отсюда легко следует, что и вся последовательность сходится к Очевидно, что указанный элемент и является неподвижной точкой оператора D ) Докажем, что неподвижные точки операторов D и D совпадают

3 Пусть - неподвижная точка оператора D, те = D Подействуем в последнем равенстве слева и справа ( ) раз оператором D Получим = D, те неподвижная точка оператора D является неподвижной точкой оператора D В силу того, что D - сжимающий оператор и, следовательно, имеет только одну неподвижную точку, неподвижная точка оператора D единственна (если она существует) Докажем обратное утверждение Пусть - неподвижная точка оператора D, те = D, тогда D = D( D ) = D ( D ) в силу того, что метод простой итерации сходится к неподвижной точке независимо от начального приближения В результате = D, те - неподвижная точка оператора D Теорема доказана 0 Уравнения Фредгольма -го рода с «малыми» λ Будем рассматривать интегральный оператор A : 39 A K( ( ds, где ядро K ( непрерывно по совокупности переменных s, но не предполагается, вообще говоря, симметрическим Определим оператор D : D = λ A + f = λ K( ( ds + f ( ), f () - заданная непрерывная функция Интегральное уравнение Фредгольма -го рода можно записать в операторном виде: ( ) = λ A+ f или = D Чтобы применить теорему о неподвижной точке, доказанную в предыдущем параграфе, оператор D нельзя рассматривать в пространстве h [, тк это неполное пространство Будем рассматривать оператор D : ( - банахово, те полное нормированное пространство) Очевидно, что D является непрерывным, вообще говоря, нелинейным оператором, а решение интегрального уравнения является его неподвижной точкой Найдем достаточные условия, при которых оператор D является сжимающим Возьмем произвольные, и определим z = λ A + f = D z = λ A + f = D Обозначим m K( = M и для любого [, ] получим оценку ( ( ( ) ds λ M m ( ( ( ) = λ M ( ) z ( ) z ( ) = λ K( s [ ] Отсюда z z = D D ( [, ] λ M ) C ] Обозначим q = λ M ( ) и потребуем, чтобы выполнялось условие q < В этом случае оператор D, действующий в банаховом пространстве C [, является сжимающим и, следовательно, имеет место доказанная в предыдущем параграфе теорема о неподвижной точке Теорема Если λ < (такие λ будем называть «малыми»), то M ( ) неоднородное уравнение Фредгольма -го рода имеет, и притом единственное, решение для любой непрерывной функции f ( ), причем это решение может быть найдено методом последовательных приближений

4 Следствие Если λ <, то однородное уравнение имеет только M ( ) тривиальное решение Следствие На интервале 0 < λ < нет характеристических чисел M ( ) интегрального оператора A Если у оператора A есть характеристические числа, то λ mi M ( ) Рассмотрим метод последовательных приближений в данном случае Пусть 0 0, + = λ A + f, = 0,,, Тогда: ) = λ K( 0 ds + f ( ) = f ( ) ) = λ K( f ( ds + f ( ) 3) 3 = λ K( ξ ) K( ξ, f ( ds dξ + λ K( f ( ds + f ( ) = λ K( ξ ) K( ξ, dξ f ( ds + 40 K ( + λ K( f ( ds + f ( ), где K ( - повторное (итерированное) ядро где Продолжая процесс, получим + = f + λ A f + λ A f + + λ A f + λ A f, A интегральный оператор с повторным ядром K = K( ) K ( ξ ( ξ, dξ, =,3,, а K ( K( Мы уже доказали, что последовательность имеет предел, являющийся решением интегрального уравнения, причем представляется рядом Неймана: = f + λ A f + λ A f + + λ A f + Полученный результат можно представить в операторной форме При «малых» λ решение интегрального уравнения существует и единственно Если мы перепишем уравнение = λ A + f в виде ( I λ A) = f, то из доказанного следует существование обратного оператора, определенного на всем пространстве C [ : = ( I λ A) f Покажем, что это выражение можно записать как = f + λ Rλ f, где Rλ - интегральный оператор с непрерывным по переменным s ядром R ( (резольвентой), те = f + λ R( f ( ds, или ( I λ A) = I + λrλ Докажем, что ряд K( + λ K ( + + λ K ( + сходится равномерно относительно s [ ) K ( = K( M = K ( ) K ( K( ξ ) K( ξ, dξ M ( )

5 ) K ( M ( ) Отсюда K ( ( λ M ( ) ) M q λ, где 0 q = λ M ( ) < По признаку Вейерштрасса функциональный ряд λ K( сходится = равномерно, поскольку общий член этого ряда мажорируется общим членом бесконечной убывающей геометрической прогрессии Обозначим K ( + λ K ( + = R( В силу равномерной сходимости резольвента R ( непрерывна по совокупности переменных (, Суммируя геометрическую прогрессию, получаем M оценку R λ M ( ) В силу равномерной сходимости записанного выше функционального ряда можно поменять местами интегрирование и суммирование и записать решение интегрального уравнения Фредгольма -го рода в виде ( ) = f ( ) + λ R( f ( ds Рассмотрим теперь вопросы корректности математической постановки задачи решения уравнения Фредгольма = λ A + f для «малых» λ при условии, что это уравнение рассматривается в пространстве C [ Необходимо ответить на три вопроса: ) Существование решения Мы доказали, что решение существует для любой непрерывной функции f () ) Единственность решения Мы доказали, что решение единственно 3) Устойчивость (непрерывная в пространстве C [ зависимость решения от неоднородности f ()) Докажем устойчивость Пусть заданы "точная" неоднородность f и ~ "возмущенная" (заданная с ошибкой) f = f + δ f По доказанному выше и для "точной", и для "возмущенной" неоднородностей уравнения = λ A + f и ~ ~ = λ A ~ + f имеют решения, представимые с помощью резольвентного оператора Запишем их разность ~ ~ ~ = f f + λ R( ( f f ) ds Далее ~ ~ M f f ( + λ M ( )) R, где R = M R λ M ( ) Если δ f 0, то и δ = ~ 0, те мы доказали непрерывную зависимость ] решения от неоднородности в норме пространства C [ Более того, полученное неравенство позволяет получить оценку погрешности решения, если известна оценка погрешности неоднородности Следовательно, все три требования к корректности решения данного уравнения выполнены, и задача решения уравнения Фредгольма -го рода с малым λ в пространстве C [ корректна (корректно поставлена) Докажите самостоятельно, что при тех же условиях эта задача корректна и в пространстве h [, ] 4

6 Уравнения Вольтерра -го рода Рассмотрим уравнение Вольтерра -го рода в операторной форме оператор A имеет вид A = λ K( ( ds, s [ 4 = λ A + f, где Ядро K ( - непрерывно по совокупности переменных на своей треугольной области определения = { s : s } и не равно нулю тождественно, f ( ) непрерывная на [, ] функция Докажите самостоятельно следующие утверждения (действуя аналогично проведенным ранее доказательствам соответствующих свойств оператора Фредгольма): ) Если ( - непрерывная на [, ] функция, то z ( ) = K( ( ds - непрерывная на [, ] функция, те можно рассматривать оператор A как действующий в пространствах C [, ] C [, ] или h [, ] h [, ] ) Интегральный оператор Вольтерра является вполне непрерывным при действии: h[, h[ h[ Покажем, что интегральное уравнение Вольтерра -го рода можно решать для любого λ методом последовательных приближений при любой f ( ), те + = λ A + f, 0 Определим оператор D: следующим образом: для любого D λ A + f Покажем, что оператор D (вообще говоря, не сжимающий) обладает тем свойством, что некоторая его степень - оператор D - сжимающий (натуральное число зависит от λ, но не зависит от f ) Теорема Для любого λ существует натуральноe число такое, что D - сжимающий оператор Доказательство Возьмем две непрерывные функции ( ) ( ) Определим zj = Dj, j =,, тогда z ( ) z ( ) = D D = λ A A Обозначим m K( = M Имеет место неравенство Отсюда и Далее A s, A = K ( ) ( ( ( ) ds M ( ] D A A M ( ) ] D M ( ) ] λ M λ ( ) λ C [, ]! D D Ks (, ) A A ds ( ) M λ, ( )! C [, ]

7 M следовательно, D D λ ( ),! M D D λ ( )! M Обозначим q = λ ( ) Ясно, что для любого λ q 0 при,! поэтому, при достаточно больших выполнено неравенство q < В качестве M выберем минимальное натуральное, при котором λ ( ) <, тогда что D -! сжимающий оператор Теорема доказана Теперь мы можем применить теорему о неподвижной точке, доказанную в конце параграфа 9, и получить следствия Следствие При любом λ однородное уравнение Вольтерра -го рода имеет только тривиальное решение Следствие Оператор Вольтерра не имеет характеристических чисел Таким образом, оператор Вольтерра является примером вполне непрерывного оператора, не имеющего ни одного характеристического числа (нетрудно показать, что оператор Вольтерра вполне непрерывный из h [, ] в h [, ], но не самосопряженный) Следствие 3 Решение уравнения Вольтерра -го рода можно найти методом последовательных приближений, который в данном случае называется методом Пикара Для любого начального приближения 0 + = λ K( ( ds+ f( ), = 0,,,, или + = λ A + f ( q ) Если 0 = 0, то получаем ряд Неймана: = f + λ A f + λ A f + + λ A f + Экзаменационные вопросы ) Определения и формулировки теорем Сформулировать определение сжимающего оператора Сформулировать определение неподвижной точки оператора 3 Сформулировать теорему о существовании неподвижной точки у сжимающего оператора Как можно найти неподвижную точку? 4 Записать метод последовательных приближений решения интегрального уравнения Фредгольма -го рода с «малым» λ 5 Сформулировать определение повторного (итерированного) ядра интегрального оператора Фредгольма Ядром какого интегрального оператора оно является? 6 Сформулировать теорему о разрешимости интегрального уравнения Вольтерра -го рода ) Утверждения и теоремы, которые необходимо уметь доказывать Теоретические задачи 43

8 Доказать теорему о существовании неподвижной точки у сжимающего оператора Доказать теорему о существовании неподвижной точки у оператора, натуральная степень которого является сжимающим оператором 3 Доказать, что сжимающий оператор является непрерывным 4 Доказать, что если λ «мало», то неоднородное уравнение Фредгольма рода имеет, и притом единственное, решение для любой непрерывной функции f ( ), причем это решение может быть найдено методом последовательных приближений 5 Доказать, что если λ «мало», то однородное уравнение Фредгольма рода имеет только тривиальное решение 6 Доказать сходимость ряда Неймана для решения интегрального уравнения Фредгольма - го рода с «малым» λ и получить выражение для резольвенты 7 Доказать, что интегральное уравнение типа Вольтерра имеет и притом единственное решение для любой непрерывной функции f ( ) 8 Доказать, что однородное интегральное уравнение типа Вольтерра имеет только тривиальное решение 9 Доказать, что интегральный оператор Фредгольма, умноженный на «малое» λ, является сжимающим при действии в C [, ] 0 Определим оператор D: следующим образом: для любого D λ A + f, где A интегральный оператор Вольтерра с непрерывным ядром, f ( ) непрерывная на [, ] функция Доказать, что для любого λ существует натуральноe число такое, что D - сжимающий оператор Доказать, что если оператор D действует в полном нормированном пространстве, а оператор D ( натуральное число) сжимающий, то неподвижные точки операторов D и D совпадают, из чего следует, что оператор D имеет единственную неподвижную точку Доказать, что интегральный оператор Фредгольма, действующий в C [, ], не имеет характеристических чисел на интервале (0, /(M(-)), где M = m K( 3 Доказать, что интегральный оператор Фредгольма, действующий в h [, ], не имеет характеристических чисел на интервале (0, /(M(-)), где M = m K( 4 Доказать, что минимальное по модулю характеристическое число интегрального оператора Фредгольма, действующего в C [, ], удовлетворяет неравенству λ mi, где M ( ) M = m K( 5 Доказать, что минимальное по модулю характеристическое число интегрального оператора Фредгольма, действующего в h [, ], удовлетворяет неравенству λ mi, где M ( ) M = m K( 6 Доказать, что интегральный оператор Вольтерра, действующий в пространстве C [, ], не имеет характеристических чисел 7 Доказать, что интегральный оператор Вольтерра, действующий в пространстве h [, ], не имеет характеристических чисел 44

ТЕМА 4. Принцип сжимающих отображений. Метод последовательных приближений для уравнения Фредгольма 2-рода с "малым" λ.

ТЕМА 4. Принцип сжимающих отображений. Метод последовательных приближений для уравнения Фредгольма 2-рода с малым λ. ТЕМА 4 Принцип сжимающих отображений Метод последовательных приближений для уравнения Фредгольма -рода с "малым" λ Основные определения и теоремы Пусть D оператор вообще говоря нелинейный действующий D:

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

4. Существование собственного значения вполне непрерывного самосопряженного оператора.

4. Существование собственного значения вполне непрерывного самосопряженного оператора. Лекция 4 Существование собственного значения вполне непрерывного самосопряженного оператора Пусть линейный оператор действует в линейном пространстве L Число называется собственным значением оператора,

Подробнее

Материалы к экзамену по курсу "Интегральные уравнения. Вариационное исчисление"

Материалы к экзамену по курсу Интегральные уравнения. Вариационное исчисление Материалы к экзамену по курсу "Интегральные уравнения Вариационное исчисление" Экзамен по курсу "Интегральные уравнения Вариационное исчисление" состоит из -х частей -я часть экзамена - тест на знание

Подробнее

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Глава 3 ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Лекции 3-4 Интегральное уравнение Фредгольма -го рода как пример некорректно поставленной задачи Эта тема по предмету рассмотрения

Подробнее

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами.

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами. Лекция 7 2 Уравнения Фредгольма 2го рода с вырожденными ядрами Этот случай отличается тем, что решение интегрального уравнения сводится к решению линейной алгебраической системы и может быть легко получено

Подробнее

6. Характеристические числа и собственные функции интегрального оператора Фредгольма с симметрическим непрерывным ядром.

6. Характеристические числа и собственные функции интегрального оператора Фредгольма с симметрическим непрерывным ядром. Лекция 4 6. Характеристические числа и собственные функции интегрального оператора Фредгольма с симметрическим непрерывным ядром. Подытожим результаты полученные в предыдущем параграфе в следующей теореме.

Подробнее

ЛЕКЦИЯ 4Б Метрические пространства 2

ЛЕКЦИЯ 4Б Метрические пространства 2 ЛЕКЦИЯ 4Б Метрические пространства 2. Простейшие (и важнейшие) свойства метрических пространств. Непрерывность расстояния. Легко видеть, что функция «расстояние» ρ(x, y) непрерывна по совокупности аргументов.

Подробнее

1 Принцип сжимающих отображений 2

1 Принцип сжимающих отображений 2 Содержание 1 Принцип сжимающих отображений Применения принципа сжимающих отображений для решения линейных интегральных уравнений -го рода 3.1 Уравнения Фредгольма.................................. 3. Уравнения

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ. 1. Простейшие свойства метрических пространств

Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ. 1. Простейшие свойства метрических пространств Дополнительная Лекция 1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА. ДОПОЛНЕНИЕ 1. Простейшие свойства метрических пространств Свойство 1. Непрерывность расстояния. Легко видеть, что функция «расстояние» ρ(x, y) непрерывна

Подробнее

ТЕМА 2. Элементы теории линейных операторов. Обратный оператор. Вполне непрерывный оператор.

ТЕМА 2. Элементы теории линейных операторов. Обратный оператор. Вполне непрерывный оператор. ТЕМА Элементы теории линейных операторов Обратный оператор Вполне непрерывный оператор Основные определения и теоремы Оператор A, действующий из линейного пространства L в линейное пространство L, называется

Подробнее

Глава 1. ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

Глава 1. ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ Глава 1 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ Лекция 1 1 Введение Уравнение называется интегральным, если неизвестная функция входит в уравнение под знаком интеграла Разумеется, мы не будем рассматривать интегральные

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

14. Задача Штурма-Лиувилля.

14. Задача Штурма-Лиувилля. Лекция 8 4 Задача Штурма-Лиувилля Рассмотрим начально-краевую задачу для дифференциального уравнения в частных производных второго порядка описывающего малые поперечные колебания струны Струна рассматривается

Подробнее

ТЕМА 6. Неоднородное уравнение Фредгольма 2-го рода. Уравнения Фредгольма с вырожденными ядрами. Теоремы Фредгольма.

ТЕМА 6. Неоднородное уравнение Фредгольма 2-го рода. Уравнения Фредгольма с вырожденными ядрами. Теоремы Фредгольма. ТЕМА 6 Неоднородное уравнение Фредгольма -го рода Уравнения Фредгольма с вырожденными ядрами Теоремы Фредгольма Основные определения и теоремы Рассмотрим неоднородное уравнение Фредгольма yx ( ) = λ Kxs

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

Список задач с решениями по функциональному анализу.

Список задач с решениями по функциональному анализу. Список задач с решениями по функциональному анализу Пусть линейное нормированное пространство Доказать, что для любых элементов выполняется неравенство из аксиом нормы:, тогда: Можно ли в пространстве

Подробнее

Глава II. Интегральные и операторные уравнения

Глава II. Интегральные и операторные уравнения Глава II. Интегральные и операторные уравнения 1. Понятие метрического пространства. Принцип сжимающих отображений Важнейшее понятие предела в математике опирается на понятие «близости» точек, т.е. на

Подробнее

В. Т. Волков, А. Г. Ягола

В. Т. Волков, А. Г. Ягола В Т Волков, А Г Ягола ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ (курс лекций) Предисловие Учебное пособие "Интегральные уравнения Вариационное исчисление (курс лекций)" написано на основе опыта чтения

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

1 Степенные ряды. Радиус сходимости и интервал

1 Степенные ряды. Радиус сходимости и интервал В.В. Жук, А.М. Камачкин 1 Степенные ряды. Радиус сходимости и интервал сходимости. Характер сходимости. Интегрирование и дифференцирование. 1.1 Радиус сходимости и интервал сходимости. Функциональный ряд

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Подробнее

Н.Ю. Кудряшова ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ И ФУНКЦИОНАЛЬНОГО АНАЛИЗА

Н.Ю. Кудряшова ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ И ФУНКЦИОНАЛЬНОГО АНАЛИЗА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Пензенский государственный университет» ПГУ НЮ Кудряшова ЭЛЕМЕНТЫ

Подробнее

такова, что: 1)f(, t, y, z) прогрессивно измерима t и для всех (y, z) со значениями в R d 1

такова, что: 1)f(, t, y, z) прогрессивно измерима t и для всех (y, z) со значениями в R d 1 3 2.2.2 Метод сжимаающих отображений Аналогичные рассуждения при определенных условиях справедливы и в общем случае. Приведем условия, при которых существует единственное решение (y(), z()) Y M задачи

Подробнее

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы 1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. 1.1 Теорема о промежуточных значениях Теорема 1. (Больцано-Коши) Пусть функция f непрерывна на отрезке [a, b], причем f(a) f(b). Тогда для любого числа C, заключенного между f(a) и f(b) найдется точка γ (a, b), что f(γ) = C. Доказательство. Пусть, например, f(a) = A < B = f(b) и A < C < B. Функция g(x) = f(x) C, очевидно, непрерывна на [a, b]. Кроме того, g(a) < 0, g(b) > 0. Для доказательства теоремы достаточно показать, что существует такая точка γ (a, b), что g(γ) = 0. Разделим отрезок [a, b] точкой x 0 на два равных по длине отрезка, тогда либо g(x 0 ) = 0 и, значит, искомая точка γ = x 0 найдена, либо g(x 0 ) 0 и тогда на концах одного из полученных промежутков функция g принимает значения разных знаков, точнее, на левом конце значение меньше нуля, на правом - больше. Обозначим этот отрезок [a 1, b 1 ] и разделим его снова на два равных по длине отрезка и т.д. В результате, либо через конечное число шагов придем к искомой точке γ, в которой g(γ) = 0, либо получим последовательность вложенных отрезков [a n, b n ] по длине стремящихся к нулю и таких, что g(a n ) < 0 < g(b n ) (1) Пусть γ - общая точка всех отрезков [a n, b n ], n = 1, 2,... Тогда γ = lim a n = lim b n. Поэтому, в силу непрерывности функции g Из (1) находим, что g(γ) = lim g(a n ) = lim g(b n ) (2) Из (2) и (3) следует, что g(γ) = 0. lim g(a n ) 0 lim g(b n ) (3) Следствие 1. Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке есть хотя бы одна точка, в которой функция обращается в нуль. 1.2 Первая и вторая теоремы Вейерштрасса Будем говорить, что функция f, определенная на множестве E достигает на нем своей верхней (нижней) границы β = sup E f (α = inf E f), если существует такая точка x 0 E, что f(x 0 ) = β (f(x 0 ) = α). 1

Подробнее

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА В этой лекции мы введём альтернативы Фредгольма и докажем с их помощью существование классических решений задач Дирихле и Неймана в ограниченных и неограниченных

Подробнее

Лекция 1 (13 января 2017)

Лекция 1 (13 января 2017) КОНСПЕКТ ЛЕКТОРА математический анализ, курс, 2 семестр, 207, А.М. Красносельский Числовые ряды Лекция (3 января 207) Рассмотрим последовательность R и напишем «бесконечную сумму»: a k a + a 2 +... + a

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

Лекция 10 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ. 1. Банаховы алгебры

Лекция 10 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ. 1. Банаховы алгебры Лекция 0 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ В этой лекции мы изучим банаховы алгебры и рассмотрим спектральную теорию операторов, действующих в банаховом пространстве, которое в данной лекции всюду

Подробнее

Краевые задачи. ни разу, все функции комплекснозначные. , такое, что (2) верно. (0,0,0) задача имеет хоть одно решение, а именно ) ~ (

Краевые задачи. ни разу, все функции комплекснозначные. , такое, что (2) верно. (0,0,0) задача имеет хоть одно решение, а именно ) ~ ( Краевые задачи L ни разу все функции комплекснозначные Определение: - задачей называют задачу найти такое что верно задача имеет хоть одно решение а именно Предложение : - линейный оператор L и - линейные

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте.

1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте.. Теорема о промежуточных значениях Теорема. (Больцано-Коши) Пусть функция f непрерывна

Подробнее

Дифференциальные уравнения Т С

Дифференциальные уравнения Т С Дифференциальные уравнения. 1999. Т.35. 6. С.784-792. УДК 517.957 ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ КРАЕВЫХ ЗАДАЧ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С НЕЛИНЕЙНОСТЯМИ Ю. В. Жерновый 1. Введение. Постановка задачи. Наиболее

Подробнее

ЛЕКЦИИ 8 9 Теорема Хилле Иосиды

ЛЕКЦИИ 8 9 Теорема Хилле Иосиды ЛЕКЦИИ 8 9 Теорема Хилле Иосиды S 3. Определение и элементарные свойства максимальных монотонных операторов Всюду на протяжении этих двух лекций символом H обозначено гильбертово пространство со скалярным

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие Министерство общего и профессионального образования Российской Федерации Санкт-Петербургский государственный технический университет Аксёнов АП СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Учебное пособие

Подробнее

Лекция 1. Функциональные ряды

Лекция 1. Функциональные ряды С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Подробнее

5. Еще о пределах; ряды

5. Еще о пределах; ряды 5. Еще о пределах; ряды Докажем сначала предложение, на которое нам не хватило времени на прошлой лекции. Предложение 5.. Для всякого b > 0 имеем lim n (ln n=n b ) = 0. (Переход к произвольному основанию

Подробнее

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения:

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения: МНОЖЕСТВА Множество В математике понятие множество используется для описания совокупности предметов или объектов При этом предполагается, что предметы (объекты) данной совокупности можно отличить друг

Подробнее

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь-

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь- Последовательности. Числовая последовательность. Виды последовательностей Предел числовой последовательности Предельный переход в неравенствах Предел монотонной ограниченной последовательности. Число e.

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий.

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий. Лекция 4 3 Непрерывная зависимость решения задачи Коши от параметров и начальных условий Постановка задачи Простейшим примером параметра, от которого зависит решение задачи Коши = f ( xy, ), yx ( ) = y

Подробнее

2М 0,2, следовательно, М М 2М

2М 0,2, следовательно, М М 2М Глава 3 НОРМИРОВАННЫЕ ПРОСТРАНСТВА Векторные пространства Пусть поле действительных чисел или поле комплексных чисел и будем рассматривать векторные пространства над этим полем Это значит будем рассматривать:

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

ЛИНЕЙНЫЕ ОГРАНИЧЕННЫЕ ОПЕРАТОРЫ Часть вторая

ЛИНЕЙНЫЕ ОГРАНИЧЕННЫЕ ОПЕРАТОРЫ Часть вторая Министерство образования и науки Троицкий филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Челябинский государственный университет» Кафедра

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

В. Т. Волков, А. Г. Ягола. Интегральные уравнения Вариационное исчисление

В. Т. Волков, А. Г. Ягола. Интегральные уравнения Вариационное исчисление Московский государственный университет им М В Ломоносова Физический факультет В Т Волков, А Г Ягола Интегральные уравнения Вариационное исчисление Методы решения задач Учебное пособие для студентов курса

Подробнее

1 Экспонента линейного оператора.

1 Экспонента линейного оператора. 134 1. ЭКСПОНЕНТА ЛИНЕЙНОГО ОПЕРАТОРА. 1 Экспонента линейного оператора. 1.1 Напоминание: геометрическая формулировка основной задачи ОДУ. Напомним, что векторное поле это отображение, которое каждой точке

Подробнее

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Интегральные уравнения

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Интегральные уравнения Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет

Подробнее

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ НОВОСИБИРСК 200 2 МИНОБРНАУКИ РОССИИ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Е.М. Рудой МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

Интегралы и дифференциальные уравнения. Лекции 18-19

Интегралы и дифференциальные уравнения. Лекции 18-19 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 18-19 Линейные

Подробнее

Интегралы и дифференциальные уравнения. Лекции 5-6

Интегралы и дифференциальные уравнения. Лекции 5-6 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекции 5-6 Определенный

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

Приближенные методы решения нелинейных уравнений

Приближенные методы решения нелинейных уравнений Нижегородский государственный университет имнилобачевского Национальный исследовательский университет Учебно-научный и инновационный комплекс "Модели методы и программные средства" Кротов НВ Приближенные

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

ЛЕКЦИЯ 4В Теорема Коши. 1. Определения. Рассмотрим задачу Коши { (1)

ЛЕКЦИЯ 4В Теорема Коши. 1. Определения. Рассмотрим задачу Коши { (1) ЛЕКЦИЯ 4В Теорема Коши В этой лекции будет доказана теорема о существовании и единственности решения задачи Коши. 1. Определения Рассмотрим задачу Коши { y = f(t, y), y( ) = y 0. (1) Пусть функция f(t,

Подробнее

7 Гильбертово пространство. Определение. Простейшие свойства скалярного произведения. Основная теорема. Ряды Фурье в гильбертовом пространстве.

7 Гильбертово пространство. Определение. Простейшие свойства скалярного произведения. Основная теорема. Ряды Фурье в гильбертовом пространстве. В.В. Жук, А.М. Камачкин 7 Гильбертово пространство. Определение. Простейшие свойства скалярного произведения. Основная теорема. Ряды Фурье в гильбертовом пространстве. 7.1 Определение гильбертова пространства.

Подробнее

5. Теория меры, лекция 5: измеримые функции

5. Теория меры, лекция 5: измеримые функции 5. Теория меры, лекция 5: измеримые функции Мера и интеграл понятия весьма близкие. Мера множества есть интеграл его характеристической функции. Наоборот, если на пространстве задана мера, можно говорить

Подробнее

Лекция Теорема существования и единственности решения стационарного уравнения Навье Стокса.

Лекция Теорема существования и единственности решения стационарного уравнения Навье Стокса. Лекция 9-10. Теорема существования и единственности решения стационарного уравнения Навье Стокса. Мы докажем теорему существования и единственности обобщенного решения системы уравнений Навье Стокса с

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

6. Достаточные условия экстремума в задаче с закрепленными концами. Вернемся к задаче с закрепленными концами: найти минимум функционала b

6. Достаточные условия экстремума в задаче с закрепленными концами. Вернемся к задаче с закрепленными концами: найти минимум функционала b Лекция 1 6 Достаточные условия экстремума в задаче с закрепленными концами Вернемся к задаче с закрепленными концами: найти минимум функционала [ ] (,, ) V = F x x при условии, что = A, = B Необходимое

Подробнее

Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ. Содержание

Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ. Содержание Некоторые материалы из лекций по анализу ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ Постановка вопроса Содержание Некоторые напоминания Итерационные методы решения уравнений. Сжимающие отображения. Принцип неподвижной

Подробнее

Лекция 18 МЕТОД АПРИОРНЫХ ОЦЕНОК

Лекция 18 МЕТОД АПРИОРНЫХ ОЦЕНОК Лекция 18 МЕТОД АПРИОРНЫХ ОЦЕНОК 0. План лекции 1. Постановка задачи для равномерно эллиптического оператора. 2. Определение слабого решение. 3. Теорема Брауэра. 4. Лемма об остром угле. 5. Выбор ортонормированного

Подробнее

Лекции 5-6. Условия сходимости случайных процессов по распределению в функциональных пространствах

Лекции 5-6. Условия сходимости случайных процессов по распределению в функциональных пространствах Лекции 5-6 Условия сходимости случайных процессов по распределению в функциональных пространствах Применим изложенную теорию сходимости по распределению к случайным процессам. Как известно, случайный процесс

Подробнее

Лекция 1 ГЕОМЕТРИЧЕСКИЕ И ТОПОЛОГИЧЕСКИЕ СВОЙСТВА ПРОСТРАНСТВ БАНАХА. 1. Введение

Лекция 1 ГЕОМЕТРИЧЕСКИЕ И ТОПОЛОГИЧЕСКИЕ СВОЙСТВА ПРОСТРАНСТВ БАНАХА. 1. Введение Лекция 1 ГЕОМЕТРИЧЕСКИЕ И ТОПОЛОГИЧЕСКИЕ СВОЙСТВА ПРОСТРАНСТВ БАНАХА В этой лекции мы рассмотрим такие фундаментальные понятия современного нелинейного функционального анализа, как сильная, слабая и слабая

Подробнее

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1 Глава 3. Числовые ряды 3.. Занятие 0 3... Сумма ряда Рассмотрим числовую последовательность {a k } k=. ОПРЕДЕЛЕНИЕ 3... Рядом называется выражение вида a + a 2 +...+ a k +...= a k. k= Величина a k называется

Подробнее

Сходимость знакопеременных числовых рядов

Сходимость знакопеременных числовых рядов ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Сходимость знакопеременных числовых рядов Числовой ряд u, в котором имеется бесконечно много как положительных, так = и отрицательных элементов, называется числовым рядом с произвольными

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

Теорема существования и единственности решения дифференциального уравнения

Теорема существования и единственности решения дифференциального уравнения Теорема существования и единственности решения дифференциального уравнения А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 10 февраля 2015 г. В этом параграфе мы докажем теорему, которой пользовались в

Подробнее

4. Непрерывность функции 1. Основные определения

4. Непрерывность функции 1. Основные определения 4. Непрерывность функции 1. Основные определения Пусть f(x) определена в некоторой окрестности точки x. ОПРЕДЕЛЕНИЕ 1. Функция f(x) называется непрерывной в точке x если справедливо равенство f ( x). (1)

Подробнее

Московский Государственный Университет им. М.В.Ломоносова Химический факультет.

Московский Государственный Университет им. М.В.Ломоносова Химический факультет. Московский Государственный Университет им МВЛомоносова Химический факультет Пособие для подготовки к экзамену по математическому анализу для студентов общего потока Третий семестр Числовые ряды Дифференциальные

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

ВВЕДЕНИЕ. Классический и регуляризованный операторы Пуассона

ВВЕДЕНИЕ. Классический и регуляризованный операторы Пуассона ВВЕДЕНИЕ При изучении стационарных процессов различной физической природы (колебания теплопроводность диффузия и др обычно приходят к уравнениям эллиптического типа Наиболее распространенным уравнением

Подробнее

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости

ГЛАВА 1. УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ. 1. Основные понятия теории устойчивости ГЛАВА УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ В этой главе исследуется устойчивость самого простого класса дифференциальных систем линейных систем В частности, устанавливается, что для линейных систем с постоянными

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

Математический анализ. Введение [1,3,4]

Математический анализ. Введение [1,3,4] I Краткие исторические сведения Математический анализ Введение [1,3,4] Математический анализ часть математики, в которой изучаются функции и их обобщения методами теории пределов Поскольку понятие предела

Подробнее

( ) f сходится к A. Лекция 6. ПРЕДЕЛ ФУНКЦИИ

( ) f сходится к A. Лекция 6. ПРЕДЕЛ ФУНКЦИИ Лекция 6. ПРЕДЕЛ ФУНКЦИИ. Определение предела функции по Гейне и по Коши.. Односторонние пределы функции. 3. Бесконечные пределы. 4. Критерий Коши существования предела.. Определение предела функции по

Подробнее

Локальная теорема Коши Пикара.

Локальная теорема Коши Пикара. Локальная теорема Коши Пикара. Теорема (о существовании и единственности локального решения). Пусть дана задача Коши x = f(t, x) x(t 0 ) = x 0, (1) где правая часть f(t, x) определена и непрерывна в прямоугольнике

Подробнее

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих Лекция НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА Определение и сходимость несобственных интегралов, зависящих от параметра Признаки равномерной сходимости несобственных интегралов, зависящих от параметра

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее

5. Теория меры, лекция 5: измеримые функции

5. Теория меры, лекция 5: измеримые функции 5. Теория меры, лекция 5: измеримые функции Мера и интеграл понятия весьма близкие. Мера множества есть интеграл его характеристической функции. Наоборот, если на пространстве задана мера, можно говорить

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

Функциональный анализ

Функциональный анализ А. Ю. Пирковский Функциональный анализ Лекция 4 4.1. Банаховы пространства Напомним, что последовательность (x n ) в метрическом пространстве (, ρ) называется фундаментальной (или последовательностью Коши),

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

Тема: Числовые последовательности

Тема: Числовые последовательности Математический анализ Раздел: Введение в анализ Тема: Числовые последовательности (основные определения, предел последовательности, свойства сходящихся последовательностей) Лектор Пахомова Е.Г. 2012 г.

Подробнее

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1

u k (x), k=1 u k (x) k=1 называется сходящимся на множестве X к функции S(x), если последовательность S n (x) = k=1 В.В. Жук, А.М. Камачкин 5 Функциональные последовательности и ряды. Равномерная сходимость, возможность перестановки предельных переходов, интегрирование и дифференцирование рядов и последовательностей.

Подробнее

Третий семестр. Лектор: Князева Людмила Павловна

Третий семестр. Лектор: Князева Людмила Павловна Третий семестр Лектор: Князева Людмила Павловна Темы: Наименование раздела, темы Всего аудиторных часов Лекции, часы Практически е занятия, часы 1 2 3 4 Тема 1. Аналитическая геометрия и линейная алгебра

Подробнее

называется обобщенным рядом Фурье по ортогональной системе функций

называется обобщенным рядом Фурье по ортогональной системе функций 345 4 Ряды Фурье по ортогональным системам функций Пусть ( ( x - ортогональная система функций в L [ ; ] Выражение c ( x + c1 ( x + 1 c ( x + + ( c ( x = c ( x (41 = называется обобщенным рядом Фурье по

Подробнее

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению.

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению. ТЕМА 7 Задача Штурма-Лиувилля Собственные значения и собственные функции Сведение задачи Штурма-Лиувилля к интегральному уравнению Основные определения и теоремы Оператором Штурма-Лиувилля называется дифференциальный

Подробнее

1. Некоторые общие свойства линейных функционалов в банаховых пространствах

1. Некоторые общие свойства линейных функционалов в банаховых пространствах ЛЕКЦИЯ 7Б Линейные функционалы (продолжение). Некоторые следствия из теорем Банаха Штейнгауза и Хана Банаха. Нерефлексивность некоторых функциональных пространств 1. Некоторые общие свойства линейных функционалов

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного

Подробнее

О системах дифференциальных уравнений, содержащих параметры

О системах дифференциальных уравнений, содержащих параметры Математический сборник т 7(69) 95 А Н Тихонов О системах дифференциальных уравнений содержащих параметры Рассмотрим систему дифференциальных уравнений n и решение этой системы определяемое условиями Это

Подробнее