b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx."

Транскрипт

1 Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Лекция 5. Понятие несобственного интеграла -го рода, его вычисление. Критерий сходимости. Интегралы от положительных функций. Признаки сравнения, абсолютная сходимость. Достаточные признаки сходимости Дирихле и Абеля. Главное значение по Коши. Связь теории несобственных интегралов -го рода с теорией числовых рядов. Несобственный интеграл 2-го рода. Несобственный интеграл -го рода. Определение. Пусть функция f определена при и имеет определенные интегралы существует конечный предел f d при. Эти интегралы называются частными. Если lim интегралом -го рода и обозначается f d, то он называется несобственным сходится. В противном случае расходится. f d, при этом говорят, что интеграл Пример. Интеграл d p при, p сходится. По определению введем Наконец, f d lim f d lim f d. f d. Зафиксируем произвольную точку с. Поскольку интеграл = =, то. Легко показать, что эта сумма не зависит от выбора точки с. Таким образом, любой из несобственных интегралов -го рода можно выразить через интегралы вида. Основные свойства.. Для сходимости интеграла на луче [, ) необходима и достаточна его сходимость на лучах [, ) при любом. При этом =.

2 2. (Линейность) Из сходимости f g d= fd gd Вычисление несобственного интеграла -го рода. fd, gd следует сходимость интеграла. Метод двойной подстановки. Пусть известна такая функция F, что F ' = f при, тогда f d= F =F F = lim F F. d Пример. Найти интеграл =rtg 2 = Метод интегрирования по частям. u dv =u v v du. 3. Метод замены переменной. = g t, g' t : g t =, g =, тогда f d= t f g t g ' t dt Ясно, что в некоторых случаях подстановка может приводить к определенному интегралу от функции новой переменной. Пример. Найти интеграл d 2 3/ 2. Решение. Пусть =tg t, t =, T = 2, тогда f g g ' d=os t, I = 2 g ' = os 2, t 2, os t dt=. Критерий сходимости. Вначале напомним некоторые сведения из теории пределов. Для существования конечного предела функции F на бесконечности ( lim F ) необходимо и достаточно, по критерию Коши, чтобы F F при. Здесь частный интеграл F = f d. Теорема. Для сходимости интеграла f d необходимо и достаточно, чтобы f d при, т.е. D : D f d.

3 Отметим одно отличие теории числовых рядов от теории несобственных интегралов. Несмотря на внешнюю схожесть теорий (в дальнейшем будут рассмотрены признаки сравнения, понятие абсолютной сходимости, признаки Дирихле и Абеля), между ними существует принципиальная разница. В теории несобственных интегралов нет аналога необходимого признака сходимости ряда ( n ). Действительно, существуют сходящиеся интегралы от неограниченных функций. Рассмотрим пример, где такая функция будет непрерывной. Определим функцию f геометрически. Ее график будет состоять из горизонтальных отрезков на оси Ох, где функция равна нулю и отрезков прямых, которые образуют равнобедренный треугольник с основанием на оси Ох, с серединой в целых точках (см. рис). Для =k N, определим две точки [ A, B]=[ k k 2,k k k 2 ] на оси k Ох, которые будут служить вершинами основания треугольника и точку с координатами k, k третью вершину. Высота такого треугольника, очевидно, h=k. Площадь каждого такого треугольника равна S k = 2 h AB= 2 k k 2 k =. Функция f неограничена, 2 k непрерывна на любом отрезке [,], значит от нее существует определенный интеграл. Легко видеть, что несобственный интеграл S k =. Интегралы от положительных функций. f d будет сходиться к сумме ряда Пусть при функция f, тогда частный интеграл F = f d является неубывающей функцией. По критерию существования конечного предела монотонной функции на бесконечности, функция должна быть ограниченной. Итак, Теорема. Если f, то для сходимости интеграла достаточна ограниченность множества всех частных интегралов. f d необходима и В дальнейшем для интегралов от положительных функций примем обозначения f d для сходящегося интеграла и f d= для расходящегося. Так же, как и для числовых рядов, для несобственных интегралов можно сформулировать (и доказать) признаки сравнения.

4 Если Признаки сравнения интегралов от положительных функций.. Пусть при д.б. f g. Тогда если fd=, то gd=. gd, то fd. Доказательство проводится аналогично соответствующему признаку сравнения для числовых положительных рядов, с применением критерия сходимости интеграла. Пример. Исследовать на сходимость интеграл Эйлера-Пуассона ( в дальнейшем он будет использоваться в курсе Теории вероятностей): I = e 2 d. Решение. Разобьем исходный интеграл на два: справедлива оценка e 2 e =. Поскольку e d= e. Тогда при будет, то, по признаку сравнения, сходится и интеграл e 2 d. Итак, исходный интеграл Эйлера-Пуассона сходится. f 2. Пусть существует предел lim =K. g K, gd fd Тогда, если. K, gd= fd= Частные случаи второго признака сходимости. Напомним вначале как проводится сравнение функций на бесконечности. Обратим внимание, что не требуется существование конечных или бесконечных пределов при от неотрицательных функций f, g. Если существует конечный предел f отношения lim =K, то f =O g. При K =, f ~g. Если же g отношение в пределе K =, f =o g. Следствие. Если f =O g при, то поведение интегралов fd, gd одинаково. Следствие 2. Пусть f =O p при, p. Тогда при p интеграл fd сходится, если s, то расходится. Пример. Интеграл 4 сходится, так как 4 ~ 3. Следствие 3. Если f =o g при, то gd fd.

5 Следствие 4. Если f =o p при, p, то fd сходится. g 3. Пусть p, f = s при достаточно больших. Тогда если p, g fd p, g Абсолютная сходимость. fd=. Определение. Интеграл сходится интеграл f d. fd будем называть абсолютно сходящимся, если Так же, как и для числовых рядов, из абсолютной сходимости следует сходимость (это fd f d ). При этом fd f d. так же доказывается по критерию Коши: справедлива оценка то Признаки сходимости абсолютно сходящихся интегралов.. Если f g, gd, то fd сходится абсолютно. 2. Если существует конечный предел lim f g и gd сходится абсолютно, fd тоже сходится абсолютно. 3. Если, p, f p при достаточно больших, то интеграл fd сходится абсолютно. Доказательство вышеприведенных утверждений проводится так же, как и для соответствующих признаков для числовых рядов. Достаточный признак Дирихле. Теорема. Пусть функции f, g определены при, причем функция f непрерывна, функция g гладкая. Тогда, если выполняются следующие условия:. Множество интегралов f t dt ограничено; 2. Производная g ' знакопостоянна при д.б., lim тогда интеграл f g d сходится. g = ;

6 Доказательство. Введем обозначение F = f t dt и пусть, для определенности, g '. Обозначим константу для ограничения F K. Так как f непрерывна, то, по теореме об интеграле с переменным верхним пределом, F ' = f. Из дифференцируемости функций F, g следует их непрерывность. В силу непрерывности функций f, g, g ', F, F ' существуют все приведенные ниже интегралы. Проверим выполнение условий критерия Коши для интеграла fgd. Итак, пусть, тогда fgd= g F Fg ' d. Первое слагаемое двойная подстановка g F, а для второго слагаемого модуля интеграла справедлива оценка теоремы, что Fg ' d F g ' d K g ' d=k g g (по условию g. По критерию Коши, исходный интеграл от произведения сходится. Пример. Исследовать на сходимость интеграл sin 2 d. Решение. Разобьем интеграл на сумму двух интегралов = и исследуем последний на сходимость. Представим подынтегральную функцию в следующем виде: sin 2 = sin 2. Примем f = sin 2, g =. Рассмотрим частные интегралы F = t sin t 2 dt и применим подстановку z=t 2. Тогда F = os os 2, 2 F. Функция g, g '. По признаку Дирихле, интеграл сходится. Признак Абеля. Теорема. Пусть функции f, g определены при, причем функция f непрерывна, функция g гладкая. Тогда, если выполняются следующие условия:. Интеграл f d сходится; 2. Производная g ' знакопостоянна при д.б., lim g = ; тогда интеграл f g d сходится. Доказательство. Как и ранее, обозначим F = f t dt. Из первого условия теоремы следует ограниченность этой функции при д.б.. Рассмотрим функцию = g. Данная функция имеет знакопостоянную производную. Тогда, по признаку Дирихле, интеграл f d сходится. Так как произведение f g= f f, и интеграл от функции f сходится, то сходится и исходный интеграл от произведения f g.

7 Пример. Доказать сходимость интеграла sin rtg d, p p. sin Решение. Пусть f =, g =rtg p. Интеграл f d сходится по sin t dt 2, а монотонно стремится к p признаку Дирихле, т.к. частные интегралы нулю. Функция g 2, g '. Итак, по признаку Абеля, исходный интеграл сходится. Главное значение несобственного интеграла -го рода по Коши. Определение. Пусть функция f определена на прямой и интегрируема на каждом отрезке, принадлежащем этой прямой. Будем говорить, что функция f интегрируема по Коши, если существует предел lim f d. Этот предел будем называть главным значением несобственного интеграла от функции f в смысле Коши и обозначать V.p. f d (v.p. vleur prinipl, фр.«главное значение».) В теме «Определенный интеграл» были рассмотрены интегралы от четных и нечетных функций на отрезке вида [, ]. Из полученных результатов следует, что, если функция f нечетная, то V.p. f d=, если f четная, то V.p. f d=2 f d. Связь теорий несобственных интегралов -го рода и числовых рядов. Будем рассматривать несобственный интеграл I = fd= lim F, где F = fd,. По определению Гейне, предел I = lim F если при любых последовательностей m, m, = имеет место предел последовательности значений что I =lim m m F m = F m. Рассмотрим интегралы n n m fd= n= n f d, тогда можно записать, n, а сам предел I есть сумма числового ряда I = Теорема. Пусть числовой ряд n= n n, где n = n последовательностей n =, n, тогда интеграл этом f d= n. n= n= n. f d сходится для любых f d сходится. При Отметим, что если функция f при достаточно больших, то для проверки условия предыдущей теоремы достаточно сходимости ряда, соответствующего лишь какой-

8 либо одной последовательности n. Действительно, пусть f, функция F тогда неубывающая. Для любого элемента произвольной последовательности n, n, для любого номера n есть такой номер k, что k n k, следовательно, F k F n F k. Но тогда из существования предела lim F k =I следует существование предела lim F n =I для любых. Итак, k n Теорема 2. Пусть функция n, = определены числа n = f, и для заданной последовательности n f d. Тогда для сходимости интеграла f d равенство необходима и достаточна сходимость ряда f d= n. n= n n n=. При этом имеет место Пример. Исследовать интеграл sin d на абсолютную сходимость. sin Решение. Обозначим f =. Значение f =, период числителя равен. Введем в рассмотрение числа n = n, n = n /6, n = n 5/6. На интервалах n, n числитель sin /2, поэтому имеем оценку снизу для n слагаемых n = n n fd n d 2. Далее, 2 n ln n ln n =ln n n =ln 5 6n ln 6n. Поскольку ln t =t o t t. Поэтому при n ln n n = 2 3n o n. Тогда n 3n 6n = 6n.Так как гармонический ряд расходится, то расходится и n ряд n, согласно признаку сравнения. Итак, исходный ряд не сходится абсолютно. Замечание. Ясно, что для исследования поведения несобственного интеграла от знакопеременной функции нельзя ограничиваться рассмотрением поведения числового ряда, соответствующего только одной последовательности. Пример. Рассмотрим sin 2 d os 2 расходится, т.к. функция F = 2 не имеет предела на бесконечности. В то же время, при n =n, числа n n = sin 2 d=, n =. n

9 Несобственный интеграл 2-го рода. Определение. Пусть функция f определена на полуинтервале [, ) и не ограничена вблизи точки, которую в этом случае будем называть особой. Пусть для любого, существуют определенные интегралы I = будем называть частными интегралами. Если существует конечный предел он называется несобственным интегралом 2-го рода и обозначается как и ранее, определим понятия сходимости и расходимости интеграла. Заметим, что приведенное равенство определенного интеграла. Действительно, если f, а модуль fd. f d= lim f d, которые lim I, то f d. Так же, f d справедливо и для f интегрируема, то она ограничена Пример. при s. p Интеграл d p сходится к s при s и расходится Заметим, что так же, как и для интегралов -го рода, справедливо утверждение: Если f [,), точка особая, то для сходимости интеграла f d необходима и достаточна ограниченность множества частных интегралов f d. Абсолютная сходимость и признаки сравнения. Определим абсолютную сходимость так же, как обычно сходимость интеграла от модуля функции. Признаки сравнения аналогичны приведенным выше для несобственного интеграла -го рода. Приведем здесь только признак абсолютной сходимости, содержащий степенную функцию.. Если p, f p, то интеграл fd абсолютно сходится. (В частности, если f =O / p или f =o / p при ). 2. Если p, f p, то интеграл (В частности, если при f =O / p, f ). fd расходится. Так же, как и для несобственного интеграла -го рода, для интегралов 2-го рода могут быть сформулированы признаки Дирихле и Абеля.

10 Вычисление несобственного интеграла 2-го рода.. Метод двойной подстановки. Если F ' = f, существует конечный или бесконечный предел F, то f d= F. В случае, если функция F определена и непрерывна в точке, то f d= F. 2. Метод интегрирования по частям. См. вид формулы для определенного интеграла. 3. Метод замены переменной. В результате применения замены может возникнуть несобственный интеграл -го или 2-го рода, или определенный интеграл. Доказательство аналогично приведенному выше для интеграла -го рода. Связь между интегралами -го и 2-го рода. Интегралы -го и 2-го рода заменой переменной всегда могут быть сведены друг к другу. Так, если особая точка, то можно применить подстановку = t, t. В случае, если функция определена на луче [, ) и точка особая, то говорят, что у функции две особые точки: и. Если особая точка,, а интегралы сходятся на участках [,], [,], тогда, по определению, fd= fd fd. В случае расходимости одного из последних двух интегралов, интеграл на отрезке [, ] также расходится. Главное значение несобственного интеграла 2-го рода по Коши. Определение. Пусть функция f определена на отрезке [,],кроме, быть может, особой точки,. Будем говорить, что эта функция интегрируема по Коши, если существует lim fd. Его значение будем называть главным fd значением несобственного интеграла от функции f в смысле Коши и будем обозначать его V.p. f d.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Лекция 7. Несобственные интегралы, зависящие от параметра. Равномерная сходимость несобственного интеграла -го рода. Критерий Коши. Признаки

Подробнее

Лекция Несобственные интегралы

Лекция Несобственные интегралы Лекция..9. Несобственные интегралы Аннотация: Рассматриваются несобственные интегралы первого и второго рода. Вводится понятие главного значения несобственного интеграла. Определенный интеграл был введен

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Задачи, приводящие к понятию определённого интеграла

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Задачи, приводящие к понятию определённого интеграла ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Задачи, приводящие к понятию определённого интеграла J n lm n m Δх 0 f ξ Δ Геометрический смысл определённого интеграла площадь криволинейной трапеции Физический смысл определённого

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Задачи, приводящие к понятию определённого интеграла J n d lm n m Δõ ξ Δ Геометрический смысл определённого интеграла площадь криволинейной трапеции Физический смысл определённого

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

Несобственные интегралы первого рода

Несобственные интегралы первого рода ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им НИЛобачевского» Несобственные интегралы

Подробнее

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих

Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 1. Определение и сходимость несобственных интегралов, зависящих Лекция НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА Определение и сходимость несобственных интегралов, зависящих от параметра Признаки равномерной сходимости несобственных интегралов, зависящих от параметра

Подробнее

Интегралы и дифференциальные уравнения. Лекции 9-10

Интегралы и дифференциальные уравнения. Лекции 9-10 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов -го курса -го семестра специальностей РЛ,,3,6, БМТ, Лекции 9- Признаки сходимости

Подробнее

Приближенное вычисление определенных интегралов. 1. Формула трапеций.

Приближенное вычисление определенных интегралов. 1. Формула трапеций. ЛЕКЦИЯ N 7. Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов..... Формула трапеций.....формула парабол.... Несобственные интегралы....

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

11. Несобственный интеграл

11. Несобственный интеграл . Несобственный интеграл.. Говоря в предыдущем параграфе об определенном интеграле, мы рассматривали ограниченные функции, заданные на ограниченных замкнутых промежутках числовой прямой (если хотя бы одно

Подробнее

Тема: Несобственные интегралы

Тема: Несобственные интегралы Математический анализ Раздел: Определенный интеграл Тема: Несобственные интегралы Лектор Рожкова С.В. 23 г. 5. Несобственные интегралы Для существования необходимы условия: [;] конечен, 2 f ограничена

Подробнее

Несобственные интегралы

Несобственные интегралы 7 Занятие Несобственные интегралы. Несобственные интегралы первого и второго рода Понятие определенного интеграла f() от ограниченной функции по конечному отрезку [; b] распространяют на случаи, когда

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

. Интегральное определение логарифма

. Интегральное определение логарифма . Интегральное определение логарифма Ранее логарифмическая функция определялась, как обратная показательной функции. В этом параграфе будет дано определение логарифмической функции через определённый интеграл

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция. Определение ряда, свойства, критерий Коши сходимости ряда. Сравнение положительных рядов. Достаточные признаки сходимости Даламбера, Коши, Коши-Адамара, Раабе,

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

10. Несобственный интеграл

10. Несобственный интеграл . Несобственный интеграл ТЕОРИЯ При определении интеграла Римана от участвующих в нем объектов, а именно промежутка интегрирования и заданной на нем функции, предполагались выполненными следующие условия:

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

1 Степенные ряды. Радиус сходимости и интервал

1 Степенные ряды. Радиус сходимости и интервал В.В. Жук, А.М. Камачкин 1 Степенные ряды. Радиус сходимости и интервал сходимости. Характер сходимости. Интегрирование и дифференцирование. 1.1 Радиус сходимости и интервал сходимости. Функциональный ряд

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ]

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ] 8 Барроу Исаак (Brrow Is) -77 английский математик, филолог, богослов. Профессор Кембриджского университета. Автор труда лекции по оптике и геометрии (9-7). Из теоремы следует, что определенный интеграл

Подробнее

{ } { } { } Глава 2. ПОСЛЕДОВАТЕЛЬНОСТИ 2.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

{ } { } { } Глава 2. ПОСЛЕДОВАТЕЛЬНОСТИ 2.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Глава ПОСЛЕДОВАТЕЛЬНОСТИ ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Функция, определенная на множестве натуральных чисел N и принимающая числовые значения, называется числовой последовательностью или просто последовательностью

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ НОВОСИБИРСК 200 2 МИНОБРНАУКИ РОССИИ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Е.М. Рудой МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл Δ = i i

Интегрируемость функции (по Риману) и определенный интеграл Δ = i i Интегрируемость функции (по Риману) и определенный интеграл Основные понятия и теоремы 1. Интегральные суммы и определенный интеграл. Пусть функция f(x) определена на промежутке [a, b] (где a < b). Произвольное

Подробнее

1. Определение и основные свойства интеграла Римана. Разбиением отрезка [a, b] называется набор точек. a = x 1 < x 2 < < x n+1 = b.

1. Определение и основные свойства интеграла Римана. Разбиением отрезка [a, b] называется набор точек. a = x 1 < x 2 < < x n+1 = b. 1. Определение и основные свойства интеграла Римана Определение разбиения Разбиением отрезка [, b] называется набор точек = x 1 < x 2 < < x n+1 = b. Разбиение обозначают буквой P. Разбиение может быть

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

ЛЕКЦИЯ 30. Несобственные интегралы и их свойства. Условная и абсолютная сходимость. Признаки сходимости.

ЛЕКЦИЯ 30. Несобственные интегралы и их свойства. Условная и абсолютная сходимость. Признаки сходимости. ЛЕКЦИЯ Несобственные интегралы и их свойства Условная и абсолютная сходимость Признаки сходимости Определение определенного интеграла, его свойства и методы интегрирования рассматривались в предположении,

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

8. Определенный интеграл

8. Определенный интеграл 8. Определенный интеграл 8.. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x,..., x n, x n } [, b], что = x < x < < x n < x n =

Подробнее

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2 Содержание Числовые ряды. Основные понятия 2 Необходимый признак сходимости ряда 3 Простейшие свойства числовых рядов 2 4 Знакоположительные ряды 3 5 Знакочередующиеся ряды 9 6 Знакопеременные ряды 0 7

Подробнее

В.Ф. Бутузов, М.В. Бутузова НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Учебное пособие

В.Ф. Бутузов, М.В. Бутузова НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Учебное пособие МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ В.Ф. Бутузов, М.В. Бутузова НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ Учебное пособие Москва 6 Предисловие Учебное пособие

Подробнее

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной РАЗДЕЛ 5 Интегральное исчисление функций одной переменной Материалы подготовлены преподавателями математики кафедры общеобразовательных дисциплин для системы электронного дистанционного обучения Содержание

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

УДК (072)(075.8)

УДК (072)(075.8) БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ Учебно-методическое пособие для студентов факультета прикладной математики

Подробнее

dx = F (+ ) F (a) (8.37)

dx = F (+ ) F (a) (8.37) 8.9. Несобственные интегралы До данного момента рассматривались определенные интегралы для случая конечного промежутка интегрирования (отрезка) [, ] и интегрируемой функции на нем. Расширим область применения

Подробнее

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения:

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения: МНОЖЕСТВА Множество В математике понятие множество используется для описания совокупности предметов или объектов При этом предполагается, что предметы (объекты) данной совокупности можно отличить друг

Подробнее

В этом случае говорят, что несобственный интеграл. интегрируема в несобственном смысле на [a,b). Если предел при b. dx называется расходящимся.

В этом случае говорят, что несобственный интеграл. интегрируема в несобственном смысле на [a,b). Если предел при b. dx называется расходящимся. Несобственные интегралы с бесконечными пределами интегрирования. Определение. Свойства. Признаки сходимости. Примеры с решениями. Определение Пусть функция f() определена для всех а и интегрируема на любом

Подробнее

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1 Глава 3. Числовые ряды 3.. Занятие 0 3... Сумма ряда Рассмотрим числовую последовательность {a k } k=. ОПРЕДЕЛЕНИЕ 3... Рядом называется выражение вида a + a 2 +...+ a k +...= a k. k= Величина a k называется

Подробнее

ω n =, а коэффициенты a n и

ω n =, а коэффициенты a n и Интеграл Фурье Действительная и комплексная формы записи интеграла Фурье Пусть f () непериодическая функция, определенная на всей числовой оси и удовлетворяющая условиям Дирихле на любом конечном промежутке

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Лекция 1. Функциональные ряды

Лекция 1. Функциональные ряды С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им ВС Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ ЕФ КАЛИНИЧЕНКО ЛЕКЦИИ ПО ВЫЧИСЛЕНИЮ ОПРЕДЕЛЕННЫХ

Подробнее

4 Определенный интеграл Римана. Определение,

4 Определенный интеграл Римана. Определение, 4 Определенный интеграл Римана. Определение, обобщенная теорема о среднем значении, интеграл с переменным верхним пределом, формула замены переменной, интегрирование по частям, некоторые неравенства. 4.1

Подробнее

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ РЕШЕНИЕ ЗАДАЧ

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ РЕШЕНИЕ ЗАДАЧ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им МВ Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА МАТЕМАТИКИ НТ Левашова, НЕ Шапкина НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ РЕШЕНИЕ ЗАДАЧ Пособие для студентов II курса

Подробнее

Определение двойного интеграла и его свойства. Как задача вычисления площади криволинейной трапеции. так аналогичная задача вычисления объема тела

Определение двойного интеграла и его свойства. Как задача вычисления площади криволинейной трапеции. так аналогичная задача вычисления объема тела Двойной интеграл Определение двойного интеграла и его свойства Как задача вычисления площади криволинейной трапеции приводит к определенному интегралу от функции одной переменной, так аналогичная задача

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь-

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь- Последовательности. Числовая последовательность. Виды последовательностей Предел числовой последовательности Предельный переход в неравенствах Предел монотонной ограниченной последовательности. Число e.

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Московский Государственный Университет им. М.В.Ломоносова Химический факультет.

Московский Государственный Университет им. М.В.Ломоносова Химический факультет. Московский Государственный Университет им МВЛомоносова Химический факультет Пособие для подготовки к экзамену по математическому анализу для студентов общего потока Третий семестр Числовые ряды Дифференциальные

Подробнее

16. Равномерная сходимость последовательностей и рядов

16. Равномерная сходимость последовательностей и рядов 16. Равномерная сходимость последовательностей и рядов 16.1. Рассмотрим произвольное множество X и последовательность функций f, определенных на X. Говорят, что последовательность f сходится поточечно

Подробнее

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ].

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ]. Лекция 8 Определённый интеграл Определенный интеграл Римана Пусть f ( ) некоторая функция, определенная на отрезке [, ] Произведем разбиение R отрезка [, ] на п частей: = < 1 < K < n = Выберем на каждом

Подробнее

Числовые ряды. Лекции 6-7

Числовые ряды. Лекции 6-7 Числовые ряды Лекции 6-7 Понятие числового ряда Аналитическое выражение вида, a a2 a a a, a, a, где 2 последовательность чисел членов ряда, выражение a - называется общим членом ряда. Последовательность

Подробнее

Chair of Math. Analysis, SPb. State University. A.V.Potepun, 2011

Chair of Math. Analysis, SPb. State University. A.V.Potepun, 2011 Chir of Mth. Anlysis, SPb. Stte University. A.V.Poteun, Исследование сходимости несобственных интегралов Методические указания для решения задач А. В. Потепун Как известно (см. [], глава III, 7), если

Подробнее

Лекция 2. Степенные ряды

Лекция 2. Степенные ряды С А Лавренченко wwwlwreekoru Лекция Степенные ряды Понятие степенного ряда Степенной ряд можно рассматривать как многочлен с бесконечным числом членов Определение (степенного ряда) Степенным рядом называется

Подробнее

Т. И. Коршикова, Ю.А. Кирютенко. Несобственные интегралы, зависящие от параметра (Методическое пособие по практическим занятиям)

Т. И. Коршикова, Ю.А. Кирютенко. Несобственные интегралы, зависящие от параметра (Методическое пособие по практическим занятиям) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Т. И. Коршикова,

Подробнее

Лекция 3. Интегральный признак

Лекция 3. Интегральный признак С. А. Лавренченко www.lwreceko.ru Лекция Интегральный признак Перед прослушиванием этой лекции рекомендуется повторить несобственные интегралы (лекция 9 и практическое занятие 9 из модуля «Интегральное

Подробнее

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки:

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: 4 Сходимость знакопеременных рядов Определение 4 Ряд a с членами произвольных знаков называют знакопеременным Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: a

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

Лекция 4. Гармонический анализ. Ряды Фурье

Лекция 4. Гармонический анализ. Ряды Фурье Лекция 4. Гармонический анализ. Ряды Фурье Периодические функции. Гармонический анализ В науке и технике часто приходится иметь дело с периодическими явлениями, т. е. такими, которые повторяются через

Подробнее

сгупс Методические указания к выполнению типового расчета «Ряды».

сгупс Методические указания к выполнению типового расчета «Ряды». сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Подробнее

a......, a,... называют членами...

a......, a,... называют членами... РЯДЫ Числовые ряды Основные понятия числового Пусть дана последовательность вещественных или комплексных чисел Числовым рядом называется сумма всех членов числовой последовательности: Числа,,,, называют

Подробнее

Российский Университет Дружбы Народов. Марченко В. В., Сорокина М. В. Числовые ряды. Учебно-методическое пособие

Российский Университет Дружбы Народов. Марченко В. В., Сорокина М. В. Числовые ряды. Учебно-методическое пособие Российский Университет Дружбы Народов Марченко В. В., Сорокина М. В. Числовые ряды Учебно-методическое пособие Москва 205 Аннотация Учебное пособие знакомит студентов с основными понятиями, методами доказательств

Подробнее

4. Понятие числового ряда. Критерий Коши сходимости числового ряда.

4. Понятие числового ряда. Критерий Коши сходимости числового ряда. 4. Понятие числового ряда. Критерий Коши сходимости числового ряда. Под словом "ряд"в математическом анализе понимают сумму бесконечного числа слагаемых. Рассмотрим произвольную числовую последовательность

Подробнее

Математический анализ

Математический анализ Математический анализ Определённый интеграл Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики Томского политехнического университета. Национальный

Подробнее

[ определение несобственного интеграла - несобственный интеграл по неограниченному промежутку (первого рода) - первый признак сходимости

[ определение несобственного интеграла - несобственный интеграл по неограниченному промежутку (первого рода) - первый признак сходимости [ определение несобственного интеграла - несобственный интеграл по неограниченному промежутку первого рода) - первый признак сходимости несобственного интеграла первого рода - второй признак сходимости

Подробнее

ТЕМА 1. РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ. 3 0, n. Ряд сходится. В). Применим признак сравнения с гармоническим рядом: 1!!

ТЕМА 1. РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ. 3 0, n. Ряд сходится. В). Применим признак сравнения с гармоническим рядом: 1!! ТЕМА РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ Выяснить, какие из указанных рядов сходятся, а какие нет А) cos - расходится не выполнено необходимое условие cos, Б) arctg Применим признак Даламбера:! arctg! arctg

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

Комплексный анализ Последовательности и ряды комплексных чисел

Комплексный анализ Последовательности и ряды комплексных чисел Комплексный анализ Последовательности и ряды комплексных чисел Никита Александрович Евсеев Физичеcкий факультет Новосибирского государственного университета Китайско-российский институт Хэйлунцзянского

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

Лекция 9. Несобственные интегралы

Лекция 9. Несобственные интегралы С.А. Лавренченко www.lwrenenko.ru Лекция 9 Несобственные интегралы До сих пор мы имели дело с интегралами по отрезку от непрерывной функции. На этой лекции мы познакомимся с интегралами по бесконечному

Подробнее

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда u ; u числа, числовой ряд; u числа по изменению знаков членов ряда знакопостоянные знакоположительные знакопеременные знакочередующиеся k= u степенные u ; u функции, функциональный ряд u функции по классам

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1 РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ Найти область определения D и множество значений Е функции y Р е ш е н и е Функция y определена если те если Поэтому областью определения функции является множество f ; D R Поскольку

Подробнее

9. Формула Ньютона Лейбница. Формула замены переменной в определённом интеграле и интегрирование по частям. f(t) dt = Φ(x) Φ(a). f(t) dt = Φ(x) + C.

9. Формула Ньютона Лейбница. Формула замены переменной в определённом интеграле и интегрирование по частям. f(t) dt = Φ(x) Φ(a). f(t) dt = Φ(x) + C. ПРЕДИСЛОВИЕ Пособие является продолжением [7]. Оно создано на базе хорошо известных учебных пособий по математическому анализу [ 6]. В его основу положены лекции В. В. Жука, которые неоднократно читались

Подробнее

9. Определенный интеграл Вычисление определенных интегралов.

9. Определенный интеграл Вычисление определенных интегралов. 9. Определенный интеграл 9.1. Вычисление определенных интегралов. ТЕОРИЯ Определенный интеграл от заданной на отрезке функции можно задать несколькими способами. Важно, что набор средств, доступных для

Подробнее

3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций

3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций 3. Признаки сходимости для интегралов с бесконечными пределами от неотрицательных функций Рассмотрим два знака менительно к несобственным интегралом с бесконечным верхним пределом. Аналогичные знаки имеют

Подробнее

10. Определенный интеграл

10. Определенный интеграл 1. Определенный интеграл 1.1. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x 1,..., x n 1, x n } [, b], что = x < x 1 < < x n 1

Подробнее

Лекция 1. Последовательности

Лекция 1. Последовательности С А Лавренченко wwwlwrecekoru Лекция 1 Последовательности 1 Понятие последовательности Мы будем рассматривать только бесконечные числовые последовательности Начнем с формального определения этого объекта

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. Составитель:В.П.Белкин. Лекция 1. Определенный интеграл

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. Составитель:В.П.Белкин. Лекция 1. Определенный интеграл ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ Составитель:ВПБелкин Лекция Определенный интеграл Вычисление и свойства определенного интеграла Определенным интегралом функции f ( ) по отрезку [, ] называется число, обозначаемое

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ЕРЛяликова, ЛИСпинко Несобственные

Подробнее