ПРИБЛИЖЕННОЕ РЕШЕНИЕ ОДНОЙ ЗАДАЧИ ТЕОРИИ ТЕПЛОПРОВОДНОСТИ ДЛЯ ПОЛУПЛОСКОСТИ ПРИ ГРАНИЧНЫХ УСЛОВИЯХ ПЕРВОГО РОДА

Размер: px
Начинать показ со страницы:

Download "ПРИБЛИЖЕННОЕ РЕШЕНИЕ ОДНОЙ ЗАДАЧИ ТЕОРИИ ТЕПЛОПРОВОДНОСТИ ДЛЯ ПОЛУПЛОСКОСТИ ПРИ ГРАНИЧНЫХ УСЛОВИЯХ ПЕРВОГО РОДА"

Транскрипт

1 УДК 58:575:536 ПРИБЛИЖЕННОЕ РЕШЕНИЕ ОДНОЙ ЗАДАЧИ ТЕОРИИ ТЕПЛОПРОВОДНОСТИ ДЛЯ ПОЛУПЛОСКОСТИ ПРИ ГРАНИЧНЫХ УСЛОВИЯХ ПЕРВОГО РОДА Докт физ-мат наук МЕЛЕШКО И Н Белорусский национальный технический университет Рассматривается одна краевая задача Дирихле для уравнения Лапласа в верхней полуплоскости ( y > ) плоскости комплексного переменного z x iy : Т, y ; () f (, x, f ( ), y ; (), x, y, (3) где температура; Т характерная температура; Т известная температура; f( известная функция В [] с помощью методов теории аналитических функций строятся комплексные тепловые потенциалы плоских задач теории теплопроводности с граничными условиями первого рода Для практической реализации такого метода важное значение имеет вопрос об эффективном вычислении интегралов типа Коши, входящих в представление тепловых потенциалов Как известно, во многих случаях этот вопрос представляет значительные трудности В настоящей статье на основе интеграла Пуассона для полуплоскости конструируется приближенное представление функции температуры в верхней полуплоскости Полученная приближенная формула эффективна в том смысле, что она сравнительно проста, устойчива и позволяет оценивать погрешности вычислений Точное представление решения краевой задачи () (3) При помощи представления решения задачи Дирихле для полуплоскости интегралом Пуассона [, c 4 5], [3, c 59] получаем точное решение краевой задачи () (3) ( ), f t y (4) ( ) t x y Запишем формулу (4) в виде где I( ( I(, y, (5) ( ( t y, ( f ( (6) 78

2 Примечание Решение краевой задачи () (3) может быть записано также через решение соответствующей задачи Шварца для полуплоскости [4, c 68] с граничными условиями (), (3) на действительной оси с пом о- щью интеграла типа Коши ( i Так как очевидно, что интеграл (6) формулу (5) можно записать в виде ( dt t z I( Re(, Re( Приближенное решение краевой задачи () (3) Сначала получим приближенную формулу для интеграла (6) Зададимся на отрезке [ ; ] системой точек x k kh, k,,,,,,, h и аппроксимируем функцию ( в выражении интеграла I( (6) на отрезке [ ; ] по формуле в которой ( x ) ( ( ( ), (7) h h, x x k, xk ; k(, h h x x, x k k После этого получим квадратурную формулу где коэффициенты I ( I ( A ( ( ), (8) h xk h xk y A k ( dt, y (9) ( t y Из соотношений (9) для коэффициентов A k ( квадратурной формулы (8) следует, что все они неотрицательны для всех x(, ) и y > Вычислив интеграл в правой части (9), получим формулу для нахождения коэффициентов A k ( ( k,,,,,, ) h h x x x x k k A k ( arctg arctg () y y 79

3 Подставляя затем в формулу (5) вместо интеграла I( его приближение по (8), найдем приближенное решение краевой задачи () (3) A ( ( ), () ( где коэффициенты A k ( определены формулой () Получим неравенства для оценки погрешности приближенной формулы () Теорема Если функция f( в граничном условии () непрерывна на отрезке [ ; ], то имеет место равномерная по х и у ( x, y ) следующая оценка погрешности приближенной формулы (): f ; h, () где ( f ; h) модуль непрерывности функции f () Если же f( непрерывно дифференцируемая функция на этом отрезке, то M h, x, y, (3) M max f '( x[,] Доказательство Сравнивая соответственно равенства (5) и (), (6) и (8), находим, что I( I ( ( (, y ( t y Оценим последнее равенство по модулю ( max ( ( x[,] ( t y (4) Интеграл в правой части равенства (4) представляет собой гармоническую функцию в верхней полуплоскости, равную единице на отрезке [ ; ] действительной оси и нулю на остальной части этой оси В силу принципа симметрии и принципа максимума модуля для гармонической функции в любой точке плоскости 8 ( t y Если функция f( непрерывна на отрезке [ ; ], то (5) ( x ) ( ( f ; h), x (6) Если же f( непрерывно дифференцируемая функция на этом отрезке, то легко устанавливается при помощи формулы Тейлора, что

4 M ( x ) ( h, x (7) Из неравенств (4) (6) вытекает неравенство (), а неравенства (4), (5), (7) приводят к неравенству (3) Примечание Очевидно, что квадратурная формула (8) является то ч- ной, если ( Следовательно, Из неравенства (5) следует, что Ak (, y ( t y Ak (, x, y (8) Таким образом, можем отметить, что квадратурная формула (8) обладает замечательным качеством: все ее коэффициенты ( неотрицательны при всех x (, ), y, и удовлетворяют соотношению (8) 3 Пример В качестве примера рассмотрим следующую краевую задачу в верхней полуплоскости: Т, y ; (9) 5 ( x ), x, y ; (), x, y, () (для определенности положено Т =, Т = ) С помощью точных методов вычисления интегралов типа Коши [5] находим A k 5 t i ( 5 ( (, 3 i где ( z z t z 6 Учитывая связь интеграла (6) с интегралом типа Коши по отрезку [ ; ] действительной оси (примечание ), точное решение краевой зад ачи (9) () можно записать в виде i 5 3 Re ( 5 ( ( () 6 Для сравнения точных и приближенных значений функции = (, полученных соответственно по формулам () и () при =, = и = 4, приводим табл 8

5 Таблица ( y y y 4 y (,;,),8679,866,86558,867 (,;,),65478,65435,65465,6544 (,3;,3),549,559,544,545 (,4;,4),48555,48837,48588,48557 (,5;,5),3438,34759,3444,34389 (,6;,6),844,84544,84,8453 (,7;,7),4466,4855,4538,4479 (,8;,8),937,9494,94,95 (,9;,9),843,84444,8483,8434 (; ),64336,6463,6439,64346 (; ),3,33,33,33 Результаты численного эксперимента подтверждают эффективность и устойчивость приближенной формулы () В Ы В О Д С помощью интеграла Пуассона получено приближенное представление решения одной краевой задачи Дирихле для верхней полуплоскости Л И Т Е Р А Т У Р А П ы х т е е в Г Н О точном и приближенном решении плоских задач теории теплопроводности с граничными условиями первого рода // Вестник Бел гос ун-та Сер С 9 4 Л а в р е н т ь е в М А, Ш а б а т Б В Методы теории функций комплексного переменного М: Наука, с 3 К а н т о р о в и ч Л В, К р ы л о в В И Приближенные методы высшего анализа М; Л: Физматгиз, с 4 Г а х о в Ф Д Краевые задачи М: Наука, с 5 П ы х т е е в Г Н Точные методы вычисления интегралов типа Коши Новосибирск: Наука, 98 с Представлена кафедрой высшей математики Поступила 355 8

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

сгупс Методические указания к выполнению типового расчета «Ряды».

сгупс Методические указания к выполнению типового расчета «Ряды». сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Подробнее

Пусть Γ C ориентированная кусочно-гладкая кривая, f определённая на кривой Γ непрерывная функция. Для любой точки z C \ Γ функция z

Пусть Γ C ориентированная кусочно-гладкая кривая, f определённая на кривой Γ непрерывная функция. Для любой точки z C \ Γ функция z Лекция 5 Интеграл типа Коши 5.1 Интеграл типа Коши Пусть C ориентированная кусочно-гладкая кривая, f определённая на кривой непрерывная функция. Для любой точки z C \ функция t f(t) z непрерывна по переменной

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

Интегралы и дифференциальные уравнения. Лекции 12-13

Интегралы и дифференциальные уравнения. Лекции 12-13 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекции 1-13 Вычисление

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ РАЦИОНАЛЬНАЯ ИНТЕРПОЛЯЦИЯ И ПРИБЛИЖЕННОЕ РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ. В. Н. Русак, Н. В. Гриб

ЧИСЛЕННЫЕ МЕТОДЫ РАЦИОНАЛЬНАЯ ИНТЕРПОЛЯЦИЯ И ПРИБЛИЖЕННОЕ РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ. В. Н. Русак, Н. В. Гриб ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, 212, том 48, 2, с. 266 273 УДК 519.642 ЧИСЛЕННЫЕ МЕТОДЫ РАЦИОНАЛЬНАЯ ИНТЕРПОЛЯЦИЯ И ПРИБЛИЖЕННОЕ РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ c 212 г. В. Н. Русак, Н. В. Гриб В пространстве

Подробнее

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг.

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг. А.В. Колесников Вариационное исчисление Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Принцип максимума Понтрягина Задача оптимального управления f(t, x, u): [t 0, t 1 ] R n R r R

Подробнее

Численные методы Тема 2. Интерполяция

Численные методы Тема 2. Интерполяция Численные методы Тема 2 Интерполяция В И Великодный 2011 2012 уч год 1 Понятие интерполяции Интерполяция это способ приближенного или точного нахождения какой-либо величины по известным отдельным значениям

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Решение обыкновенных дифференциальных уравнений.

Решение обыкновенных дифференциальных уравнений. Решение обыкновенных дифференциальных уравнений Инженеру часто приходится иметь дело с техническими системами и технологическими процессами, характеристики которых непрерывно меняются со временем t Эти

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

Односторонние приближения в L линейной комбинации ядра Пуассона и сопряженного ядра Пуассона тригонометрическими полиномами

Односторонние приближения в L линейной комбинации ядра Пуассона и сопряженного ядра Пуассона тригонометрическими полиномами Труды Международной летней математической Школы-Конференции С Б Стечкина по теории функций Таджикистан, Душанбе, 5 5 августа, 06 С 44 49 Односторонние приближения в L линейной комбинации ядра Пуассона

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

3 Следствия теоремы Коши

3 Следствия теоремы Коши 3 Следствия теоремы Коши Дифференцируемость интегралов типа Коши позволяет получить важное следствие: Теорема 3.1. Дифференцируемая в области Ω C функция f(z) является бесконечно дифференцируемой в каждой

Подробнее

Методы решения начальных задач для обыкновенных дифференциальных уравнений

Методы решения начальных задач для обыкновенных дифференциальных уравнений Методы решения начальных задач для обыкновенных дифференциальных уравнений Постановка задачи Рассмотрим обыкновенное дифференциальное уравнение сокращенно ОДУ первого порядка f,, [,b ] 6 с начальным условием

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

ДВОЙНЫЕ ИНТЕГРАЛЫ. 1. Задача, приводящая к двойному интегралу.

ДВОЙНЫЕ ИНТЕГРАЛЫ. 1. Задача, приводящая к двойному интегралу. ДВОЙНЫЕ ИНТЕГРАЛЫ. Задача, приводящая к двойному интегралу. Найти цилиндрического тела, основанием которого является часть координатной плоскости O, которую будем называть областью. Сверху тело ограниченно

Подробнее

Дифференциальные уравнения Т С

Дифференциальные уравнения Т С Дифференциальные уравнения. 1999. Т.35. 6. С.784-792. УДК 517.957 ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ КРАЕВЫХ ЗАДАЧ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С НЕЛИНЕЙНОСТЯМИ Ю. В. Жерновый 1. Введение. Постановка задачи. Наиболее

Подробнее

В. И. Кузоватов, А. М. Кытманов ПРИНЦИП СИММЕТРИИ ДЛЯ РЕШЕНИЙ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА В ПОЛУПРОСТРАНСТВЕ

В. И. Кузоватов, А. М. Кытманов ПРИНЦИП СИММЕТРИИ ДЛЯ РЕШЕНИЙ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА В ПОЛУПРОСТРАНСТВЕ УДК 517.95 В. И. Кузоватов, А. М. Кытманов ПРИНЦИП СИММЕТРИИ ДЛЯ РЕШЕНИЙ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА В ПОЛУПРОСТРАНСТВЕ В работе рассмотрен принцип симметрии для функций, являющихся решениями уравнения Гельмгольца

Подробнее

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1,

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1, Глава Экстремумы функции двух переменных Экстремум функции двух переменных При решении многих экономических задач приходится вычислять наибольшее и наименьшее значения В качестве примера рассмотрим задачу

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Введение Домашние контрольные работы (ДКР) по математическому анализу являются одной из основных форм текущего контроля самостоятельной работы

Введение Домашние контрольные работы (ДКР) по математическому анализу являются одной из основных форм текущего контроля самостоятельной работы Введение Домашние контрольные работы (ДКР) по математическому анализу являются одной из основных форм текущего контроля самостоятельной работы студентов. Примерное время, необходимое для выполнения ДКР,

Подробнее

Рассмотрим дифференциальное уравнение u(x, t) t. u(x, 0) = 0, x [0, 1], (2) u(0,t) = 0, t 0, (3) u(x 0,t) = f(t), t 0; 0 < x 0 < 1, (4)

Рассмотрим дифференциальное уравнение u(x, t) t. u(x, 0) = 0, x [0, 1], (2) u(0,t) = 0, t 0, (3) u(x 0,t) = f(t), t 0; 0 < x 0 < 1, (4) А. С. КУТУЗОВ ОПТИМАЛЬНАЯ ПО ПОРЯДКУ ОЦЕНКА РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ ТЕПЛОВОЙ ДИАГНОСТИКИ ДЛЯ УРАВНЕНИЯ С ПЕРЕМЕННЫМ КОЭФФИЦИЕНТОМ Доказана оптимальность по порядку метода проекционной регуляризации при

Подробнее

ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ. Иевлев И.И. Харьковский национальный университет им. В.Н. Каразина, г.

ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ. Иевлев И.И. Харьковский национальный университет им. В.Н. Каразина, г. ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Иевлев ИИ Харьковский национальный университет им ВН Каразина, г Харьков, Украина Рассматривается приближенное решение операторного уравнения Ax y ()

Подробнее

ВВЕДЕНИЕ. Классический и регуляризованный операторы Пуассона

ВВЕДЕНИЕ. Классический и регуляризованный операторы Пуассона ВВЕДЕНИЕ При изучении стационарных процессов различной физической природы (колебания теплопроводность диффузия и др обычно приходят к уравнениям эллиптического типа Наиболее распространенным уравнением

Подробнее

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса.

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Для численного решения нелинейных задач в различных ситуациях используют как линейные, так и нелинейные схемы. Устойчивость соответствующих

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы.

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Рассмотрим несколько вариантов разностной аппроксимации линейного уравнения колебаний:

Подробнее

Основы теории специальных функций

Основы теории специальных функций Основы теории специальных функций Необходимость изучения специальных функций математической физики связана с двумя основными обстоятельствами. Во-первых, при разработке математической модели физического

Подробнее

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда u ; u числа, числовой ряд; u числа по изменению знаков членов ряда знакопостоянные знакоположительные знакопеременные знакочередующиеся k= u степенные u ; u функции, функциональный ряд u функции по классам

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Г. М. Бездудный, В. А. Знаменский,

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

Спектральный анализ разностных схем

Спектральный анализ разностных схем Спектральный анализ разностных схем 1 Исследование схем на устойчивость по начальным данным методом гармоник Одним из достаточно простых и эффективных способов исследования линейных разностных схем на

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

О ВОЗМОЖНОСТИ ОБОБЩЕННО АНАЛИТИЧЕСКОГО ПРОДОЛЖЕНИЯ В ОБЛАСТЬ ФУНКЦИЙ, ЗАДАННЫХ НА КУСКЕ ЕЕ ГРАНИЦЫ Т. Ишанкулов

О ВОЗМОЖНОСТИ ОБОБЩЕННО АНАЛИТИЧЕСКОГО ПРОДОЛЖЕНИЯ В ОБЛАСТЬ ФУНКЦИЙ, ЗАДАННЫХ НА КУСКЕ ЕЕ ГРАНИЦЫ Т. Ишанкулов Сибирский математический журнал Ноябрь декабрь, 2000. Том 4, 6 УДК 57.5 О ВОЗМОЖНОСТИ ОБОБЩЕННО АНАЛИТИЧЕСКОГО ПРОДОЛЖЕНИЯ В ОБЛАСТЬ ФУНКЦИЙ, ЗАДАННЫХ НА КУСКЕ ЕЕ ГРАНИЦЫ Т. Ишанкулов Аннотация: Рассматривается

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Лекция 3. Интегральный признак

Лекция 3. Интегральный признак С. А. Лавренченко www.lwreceko.ru Лекция Интегральный признак Перед прослушиванием этой лекции рекомендуется повторить несобственные интегралы (лекция 9 и практическое занятие 9 из модуля «Интегральное

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

Задача Коши для обыкновенного дифференциального уравнения. Скалько Юрий Иванович Цыбулин Иван

Задача Коши для обыкновенного дифференциального уравнения. Скалько Юрий Иванович Цыбулин Иван Задача Коши для обыкновенного дифференциального уравнения Скалько Юрий Иванович Цыбулин Иван Задача Коши Задача Коши для ОДУ Дано обыкновенное дифференциальное уравнение 1го порядка и начальное условие

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

Вариант 13. Область определения данной функции определяется двумя неравенствами 1. Данная функция определена на всей числовой оси, кроме точки x = 2

Вариант 13. Область определения данной функции определяется двумя неравенствами 1. Данная функция определена на всей числовой оси, кроме точки x = 2 Вариант Найти область определения функции : y arcsi + Область определения данной функции определяется двумя неравенствами и Умножим первое неравенство на и освободимся от знака модуля: Из левого неравенства

Подробнее

О представлении поля в волноводе в виде суммы полей ТЕ и ТМ.

О представлении поля в волноводе в виде суммы полей ТЕ и ТМ. Журнал технической физики, том XVIII, вып 7, 1948 А Н Тихонов, А А Самарский О представлении поля в волноводе в виде суммы полей ТЕ и ТМ Несмотря на то, что утверждение о возможности разложения произвольного

Подробнее

комплексной переменной.

комплексной переменной. А.Г.Свешников, А.Н.Тихонов ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ из серии КУРС ВЫСШЕЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ Под редакцией А. Н. ТИХОНОВА, В. А. ИЛЬИНА, А. Г. СВЕШНИКОВА ВЫПУСК 4 ОГЛАВЛЕНИЕ

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

А.А. Дегтярев ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Тесты для самоконтроля знаний студентов

А.А. Дегтярев ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Тесты для самоконтроля знаний студентов МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ].

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ]. Лекция 8 Определённый интеграл Определенный интеграл Римана Пусть f ( ) некоторая функция, определенная на отрезке [, ] Произведем разбиение R отрезка [, ] на п частей: = < 1 < K < n = Выберем на каждом

Подробнее

1. Срединная формула прямоугольников

1. Срединная формула прямоугольников Срединная формула прямоугольников Введем обозначение I d Пусть -непрерывны на [ ] Разделим отрезок [ ] равных частичных отрезков [ ] где на Введем обозначения ( ) ( ) ( ) интеграл I в виде Представим где

Подробнее

Методологические особенности формулы Тейлора в курсе математического анализа

Методологические особенности формулы Тейлора в курсе математического анализа Методологические особенности формулы Тейлора в курсе математического анализа # январь Кандаурова И Е УДК: 57 Россия МГТУ им НЭ Баумана hadaur@gyrplaru Введение Классический курс математического анализа

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

Функции многих переменных Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Функции многих переменных Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Функции многих переменных Конспект лекций и практикум для

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Math-Net.Ru Общероссийский математический портал А. М. Ильин, М. А. Меленцов, Асимптотика решений систем дифференциальных уравнений с малым параметром при больших значениях времени, Тр. ИММ УрО РАН, 25,

Подробнее

Вариант 18. Область определения данной функции определяется неравенством 1. 2 или x 2 / 3. Из правого неравенства x 2 или x 2

Вариант 18. Область определения данной функции определяется неравенством 1. 2 или x 2 / 3. Из правого неравенства x 2 или x 2 Вариант Найти область определения функции : arccos Область определения данной функции определяется неравенством Освободимся от знака модуля: Если то Из левого неравенства находим или / Из правого неравенства

Подробнее

4 Основные свойства определенного интеграла

4 Основные свойства определенного интеграла 178 4 Основные свойства определенного интеграла Рассмотрим основные свойства определенного интеграла. 1) Если нижний и верхний пределы интегрирования равны (=), то интеграл равен нулю f ( ) d = 0 Данное

Подробнее

Направление Компьютерные и информационные науки. Профиль «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА»

Направление Компьютерные и информационные науки. Профиль «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА» Направление 02.06.01 Компьютерные и информационные науки Профиль 01.01.07 «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА» 1. Определенный интеграл. Интегрируемость непрерывной функции. Первообразная непрерывной функции. 2.

Подробнее

МЕТОДЫ ВЫЧИСЛЕНИЙ. Лекторы: проф. Б. И. Квасов, проф. Г. С. Хакимзянов. 5 6 семестры

МЕТОДЫ ВЫЧИСЛЕНИЙ. Лекторы: проф. Б. И. Квасов, проф. Г. С. Хакимзянов. 5 6 семестры МЕТОДЫ ВЫЧИСЛЕНИЙ Лекторы: проф. Б. И. Квасов, проф. Г. С. Хакимзянов 5 6 семестры 1. Математические модели и вычислительный эксперимент. Классификация уравнений математической физики. Примеры корректных

Подробнее

Аннотация: Установлены связи между решениями широкого класса систем обыкновенных

Аннотация: Установлены связи между решениями широкого класса систем обыкновенных Сибирский математический журнал Январь февраль, 26. Том 47, УДК 57.9+57.929 ОБ ОДНОМ КЛАССЕ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ОБ УРАВНЕНИЯХ С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ Г. В. Демиденко, В. А. Лихошвай,

Подробнее

. Преобразуем функцию:, если x

. Преобразуем функцию:, если x Вариант Найти область определения функции : + + + Неравенство + выполняется всегда Поэтому область определения данной функции определяется следующими неравенствами:, те, и, те Решением системы этих неравенств

Подробнее

ξ i; i высота. Тогда площадь каждой полоски

ξ i; i высота. Тогда площадь каждой полоски Тема КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ Лекция КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ ПЕРВОГО РОДА Задачи приводящие к понятию криволинейного интеграла первого рода Определение и свойства криволинейного интеграла первого рода Вычисление

Подробнее

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

Вариант x Область определения данной функции определяется двумя неравенствами: 1 и

Вариант x Область определения данной функции определяется двумя неравенствами: 1 и Вариант 5 Найти область определения функции : y arcsin + Область определения данной функции определяется двумя неравенствами: и или Умножим первое неравенство на и освободимся от знака модуля: Из левого

Подробнее

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, 214, том 5, 6, с. 726 744 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ УДК 517.925.52+519.218 ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

Подробнее

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 8.1. Функции нескольких переменных. Частные производные П л а н 1. Понятие функции двух и нескольких переменных.. Предел и непрерывность

Подробнее

ВЫЧИСЛЕНИЕ ИНТЕГРАЛОВ С ПОМОЩЬЮ ВЫЧЕТОВ

ВЫЧИСЛЕНИЕ ИНТЕГРАЛОВ С ПОМОЩЬЮ ВЫЧЕТОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных.

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных. ЛЕКЦИЯ Экстремум функции нескольких переменных Экстремум функции нескольких переменных Необходимые и достаточные условия существования экстремума Точка M, 0) называется точкой минимума максимума) функции

Подробнее

Теория функций комплексного переменного

Теория функций комплексного переменного Теория функций комплексного переменного Лектор Александр Сергеевич Романов 1. Аналитические функции комплексного переменного Комплексные числа. Тригонометрическая и показательная формы комплексного числа.

Подробнее

Тройной интеграл. 1 Понятие тройного интеграла. Волченко Ю.М. Содержание лекции. f (P i ) V i (1) i=1

Тройной интеграл. 1 Понятие тройного интеграла. Волченко Ю.М. Содержание лекции. f (P i ) V i (1) i=1 Тройной интеграл Волченко Ю.М. Содержание лекции Понятие тройного интеграла. Условия его существования. Теорема о среднем. Вычисление тройного интеграла в декартовых и криволинейных координатах. Тройной

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

Ключевые слова: растущее тело, теплопроводность, шар, собственные функции, разложение, замкнутое решение.

Ключевые слова: растущее тело, теплопроводность, шар, собственные функции, разложение, замкнутое решение. УДК 539.3 А. В. М а н ж и р о в, С. А. Л ы ч е в, С. И. К у з н е ц о в, И. Ф е д о т о в АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА ТЕПЛОПРОВОДНОСТИ В РАСТУЩЕМ ШАРЕ Работа посвящена исследованию эволюции температурного

Подробнее

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Лабораторная работа Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Постановка задачи: Требуется найти безусловный минимум функции одной переменной (

Подробнее

Тема: Применение определенного интеграла.

Тема: Применение определенного интеграла. Математический анализ Раздел: Определенный интеграл Тема: Применение определенного интеграла. Приближенное вычисление определенного интеграла Лектор Пахомова Е.Г. 013 г. II Плоская кривая, заданная параметрическими

Подробнее

Глава III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ 3.1. Двойные интегралы

Глава III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ 3.1. Двойные интегралы Глава III ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ Двойные интегралы ЛИТЕРАТУРА: [], гл; [], глii; [9], гл XII, 6 Для решения задач по этой теме необходимо,

Подробнее

Темы, выносимые на промежуточный экзамен по курсу «Уравнения математической физики» (2 сессия)

Темы, выносимые на промежуточный экзамен по курсу «Уравнения математической физики» (2 сессия) Темы, выносимые на промежуточный экзамен по курсу «Уравнения математической физики» (2 сессия) 1. Метод разделения переменных для уравнения теплопроводности в стержне. Неоднородное уравнение с однородными

Подробнее

Курс лекций. Министерство образования и науки Российской Федерации

Курс лекций. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Подробнее

Вопросы и задачи к экзамену и зачету по теории функций комплексной переменной.

Вопросы и задачи к экзамену и зачету по теории функций комплексной переменной. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА МАТЕМАТИКИ В.Т. Волков, А.В. Кравцов, Д.В. Минаев, В.Ю. Попов, Н.Е. Шапкина. Вопросы и задачи к

Подробнее

ВВЕДЕНИЕ , (1) Простейшая прямая задача состоит в нахождении функции, удовлетворяющей уравнению (1) и условиям

ВВЕДЕНИЕ , (1) Простейшая прямая задача состоит в нахождении функции, удовлетворяющей уравнению (1) и условиям РЕФЕРАТ Выпускная квалификационная работа по теме «Численная идентификация правой части параболического уравнения» содержит 45 страниц текста 4 приложения 6 использованных источников 4 таблицы ОБРАТНАЯ

Подробнее