называется суммой векторов a и b = b. Докажем,. Так как AB = A 1 и и выполнено аналогичное построение: A1 B1

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "называется суммой векторов a и b = b. Докажем,. Так как AB = A 1 и и выполнено аналогичное построение: A1 B1"

Транскрипт

1 Лекция 2 Тема: Сложение и вычитание векторов Умножение вектора на число НДУ коллинеарности План лекции Сложение векторов 2 Вычитание векторов Модуль суммы и модуль разности векторов 3 Определение и свойства произведения вектора на число 4 Необходимое и достаточное условие коллинеарности векторов Сложение векторов Введем операцию сложения векторов, которая играет важную роль в векторной алгебре Возьмем произвольный вектор и b От какой-нибудь точки отложим вектор =, затем от точки отложим вектор = b Вектор = c называется суммой векторов и b и обозначается так: c = + b (рис 9) b b = p Рис 9 Рис Покажем, что вектор c определяется с помощью векторов и b однозначно, независимо от выбора точки, от которой откладывается вектор Пусть вместо точки взята другая точка и выполнено аналогичное построение: =, = b Докажем, что = Так как = и = = и 2, то по лемме о равенстве векторов =, т е = Отсюда по лемме о равенстве векторов = Заметим, что для нахождения суммы двух неколлинеарных векторов приходится строить треугольник ( в принятых выше обозначениях) Поэтому указанное здесь правило сложения векторов в общем случае называется правилом треугольника Это правило можно сформулировать так: для любых точек, и справедливо равенство + = () Применив это правило к точкам,,, получим + = Аналогично + =, + = Таким образом, для любого вектора + ( ) = (2) + и + = (3) Если слагаемые векторы не коллинеарны, то для построения их суммы можно пользоваться другим способом правилом параллелограмма, которое хорошо известно из курса физики средней школы На рисунке дано построение суммы p векторов и b по этому правилу 2 Докажем теорему о сложении векторов Теорема Для произвольных векторов,b и c справедливы следующие равенства: + b = b + (переместительное свойство или свойство коммутативности) 2 ( + b ) + c = + ( b + c ) (сочетательное свойство или свойство ассоциативности)

2 Доказательство Пусть,b и c - произвольные векторы От какой нибудь точки отложим векторы =, D = b, а затем от точки отложим вектор = b (рис ) Согласно построению D =,поэтому по лемме о равенстве векторов = D, те D = Рассмотрим случай когда / b По правилу треугольника построим сумму этих векторов Из определения параллелограмма =, = b Тогда треугольник АВС: + = + b (рис а) По правилу треугольника + =, D + D =, следовательно, + b =, b + = Отсюда следует, что + b и b + c - один и тот же вектор D Пусть Рис а b (рис б) =, = b, = + = + b (*) Возьмем вспомогательную точку D, не лежащую на прямой ОВ доказанному в случае, так как D / D )(**) = D + D = D + D (по D : D = + D = D +, (по доказанному в случае ) D : D = D + = + D (по доказанному в случае ) Подставим два последних выражения в равенство (**) = ( + D ) + ( D + ) = + ( D + D ) + = + = b + (***)Сравним (*) и (***) можно сделать вывод, что свойство выполняется b b Рис б Доказательство 2 Пусть,b и c - произвольные векторы Возьмем какую-нибудь точку и отложим последовательно векторы =, = b, D = c (рис 2) По правилу треугольника + =, + D = D, поэтому ( + b ) + c = D С другой стороны, + D = D и + D = D, поэтому + ( b + c ) = D Отсюда следует, что ( b) + c + b + c - один и тот же вектор + и ( ) b D b c Рис 2 2

3 3 Суммой векторов,b и c будем считать вектор p = ( + b ) + c На основании теоремы о сложении векторов p = ( + b ) + c, поэтому при записи суммы трех векторов можно опустить скобки и записать ее в виде + b + c Более того, можно доказать, что сумма трех векторов не зависит от порядка слагаемых В самом деле, докажем, например, что + b + c = b + c + : + b + c = + ( b + c ) = ( b + c) + = b + c + Здесь применена теорема о сложении векторов Аналогично можно определить и сумму большего числа векторов Пусть,,, 2 n - произвольный набор векторов (n>3) Их суммой называется вектор ( n ) + n и обозначается так: n На рисунке 3 показано построение суммы n векторов при n =5: 5 = Это правило построения суммы нескольких векторов называется правилом многоугольника 4 5 Рис 3 По аналогии с предыдущим можно убедиться в том, что сумма n векторов не зависит от порядка слагаемых Вычитание векторов Модуль суммы и модуль разности векторов 4 Разностью векторов и b называется такой вектор x, что b + x = (4) Докажем, что разность любых векторов и b существует и определяется однозначно Сначала предположим, что вектор x, удовлетворяющий равенству (4), существует, и выразим его через векторы и b Прибавим к обеим частям равенства (4) вектор - b : ( b) + ( b + x) = ( b ) + К левой части этого равенства применим сочетательный закон, а к правой части переместительный закон сложения векторов: ( b ) + b ) + x = + ( b) Отсюда следует, что x = + ( b ) (5) Итак, доказано, что если вектор x, удовлетворяющий равенству (4), существует, то он определяется однозначно формулой (5) Но вектор + ( b) действительно удовлетворяет уравнению (4): b + ( + ( b)) = Таким образом, формулой (5) однозначно определяется разность векторов и b Разность векторов и b обозначает так: b Из формулы (5) получаем: b = + ( b) (6) По правилу треугольника + =, поэтому согласно равенству (4) 2 3 = (7) Следовательно, для любых точек,, справедливо равенство (7) Замечание В векторной алгебре часто встречается выражение вида b + c или + b + c d и др По аналогии с равенством (6) эти выражения означают: + ( b) + c, + b + c + ( d )

4 5 Иногда ошибочно считают, что при сложении векторов их длины складываются На самом деле длина суммы двух векторов в общем случае не равна сумме длин слагаемых Можно доказать, что для произвольных векторов и b справедливы следующие соотношения: + b + b, (8) b + b (9) В соотношении (8) знак равенства имеет место только в том случае, когда b, а в соотношении (9) только в том случае, когда b, или один из векторов и b нулевой Умножение вектора на число Произведением вектора на действительное (вещественное) число α называется вектор p, который удовлетворяет условиям: а) p = α, где α - абсолютное значение числа α ; б) p, если α и p, если α < Такой вектор p обозначают через α Нетрудно убедиться в том, что при любых α и вектор p определяется однозначно На рисунке 4 = 2 и D = ( 3) Из условия а) следует, что p = тогда и только тогда, когда α = или = Таким образом, α =, = () Рис 4 2 Для дальнейшего изложения понадобится следующая лемма Лемма Если при гомотетии с центром и коэффициентом k треугольник переходит в треугольник ' ', то = k k > ) б) k < Рис5 Доказательство По определению гомотетии поэтому 23 = k, = k (рис 5, а и б), ~ Отсюда следует, что = k, // Если k>, то точки и лежат в одной полуплоскости с границей (рис 5, а), поэтому, следовательно, = k Если k<, то точки и лежат в разных полуплоскостях с границей (рис 5, б), поэтому,т е и в этом случае = k Докажем теперь теорему о свойствах умножения вектора на число

5 Теорема Для произвольных чисел равенства: = и = 2 α ( β) = ( αβ ) 3 α ( + b) = α + αb 4 ( α + β ) = α + β α, β и векторов, b справедливы следующие Доказательства свойств Свойство непосредственно следует из данного выше определения произведения вектора на число Если хотя бы один из векторов и b нулевой, то справедливость остальных свойств очевидна Поэтому достаточно рассмотреть случай, когда α, β,, b Ниже приведены доказательства свойств 2, 3 и 4 2 Пусть p = α( β), q = (αβ ) По определению произведения вектора на число p = α β = α β, q = αβ = α β Отсюда следует, что p = q Докажем, что p q Возможны два случая: αβ > и αβ < Рассмотрим первый случай Так как p = α( β), числа α и β одного знака, то векторы p и одинаково направлены Но векторы q = (αβ ) и также одинаково направлены, следовательно, p q Аналогично убеждаемся в том, что и в случае αβ < получим: p q Учитывая равенства p = q, приходим к выводу, что α ( β ) = ( αβ ) 3 От какой-нибудь точки отложим вектор =, а затем от точки вектор = b По правилу треугольника + =, т е = + b Рассмотрим гомотетию с коэффициентом α и с центром в некоторой точке, не лежащей на прямых, и Пусть,, - образы точек, и По предыдущей лемме = α, = α, = α или = α, = αb, = α ( + b) С другой стороны, по правилу треугольника = +, т е α ( + b) = α + αb 4 Рассмотрим два возможных случая: а) αβ > и б) αβ < а) αβ > От некоторой точки отложим вектор = α, а затем от точки - вектор = β (рис6, а, б) Отсюда следует, что = α, = β Так как αβ >, то, поэтому точка лежит между точками и, следовательно, = + или = α + β Но числа α и β имеют одинаковые знаки, поэтому α + β = α + β Таким образом, = α + β () Векторы и одинаково направлены, если α >, β >, т е если α + β > (рис6, а), и противоположно направлены, если α <, β <, т е α + β < (рис 6, б) Поэтому, учитывая равенство (2), получим: = ( α + β ) С другой стороны, = + = α + β Таким образом, ( α + β ) = α + β б) αβ < Если α + β =, то левая часть равенства 4 есть нуль-вектор Докажем, что в этом случае и правая часть есть нуль-вектор В самом деле, α + β = α + ( α ) = α α = Рассмотрим случай, когда α + β Так как α и β имеют разные знаки, то либо α,( α + β ), либо β,( α + β ) имеют один и тот же знак Пусть, например, α и α + β 24

6 имеют один и тот же знак Тогда по доказанному ( α ) + ( α + β ) = (( α ) + ( α + β )) = β или ( α + β ) = α + β α β α >, β > а) б) Рис6 Необходимое и достаточное условие коллинеарности векторов Теорема (Необходимое и достаточное условие коллинеарности векторов) Для того чтобы и b, где ( ) были коллинеарны необходимо и достаточно чтобы существовало число λ R, такое что b = λ (*) Доказательство (необходимость) Пусть векторы и b коллинеарны возможны три случая: а) b б) b в) b = b а) = b, тогда b = b b = b = b ( ) = Если в качестве λвыбрать число b λ =, то b = λ b b б) b =, b = b b = b ( ) = b = ( ), λ =, b = λ в) = λ это равенство выполняется при λ = Доказательство (достаточность) Пусть существует число λ такое, что b = λ, тогда из определения произведения вектора на число следует, что при λ >, b ; при λ <, b ; при λ =, b =, 25

Лекция 2. Векторы. Определения.

Лекция 2. Векторы. Определения. Лекция 2 Векторы Определения. Вектором (геометрическим вектором) называется направленный отрезок, т.е. отрезок, у которого указаны начало и конец. B конец вектора A начало вектора Обозначение вектора:

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 3 ВЕКТОРЫ 1. Определение вектора. Свободные и скользящие векторы Дадим определение направленного отрезка. Определение 1. Отрезок, концы которого упорядочены, называется

Подробнее

В Е К Т О Р Ы 8 класс

В Е К Т О Р Ы 8 класс Серия «Зачет на 5» В Е К Т О Р Ы 8 класс НОЯБРЬСК Серия «Зачет на 5» основана в 003 году. Автор-оставитель: Зайцева И.А. Векторы. 8 класс: Учебное пособие для подготовки учащихся к устному зачету по геометрии

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 4 ВЕКТОРЫ. БАЗИС 1. Базис векторов Определение 1. Векторы a 1,a 2,...,a n называются упорядоченными, если указано какой вектор из этой системы является первым, какой

Подробнее

и AC компланарны, а векторы AB, AD и AA не компланарны.

и AC компланарны, а векторы AB, AD и AA не компланарны. Лекция 3 Тема: Линейная зависимость векторов Базис векторного пространства План лекции Компланарные векторы Линейная зависимость/независимость системы векторов: определение свойства геометрический смысл

Подробнее

Лекция 6 Тема: Векторное произведение векторов

Лекция 6 Тема: Векторное произведение векторов Лекция 6 Тема: Векторное произведение векторов План лекции Ориентация векторного базиса в пространстве Определение векторного произведения двух векторов Свойства векторного произведения 4 Вычисление векторного

Подробнее

на множестве векторов Понятие линейного пространства

на множестве векторов Понятие линейного пространства Линейная алгебра и аналитическая геометрия Тема: Векторы. Линейные операции на множестве векторов Понятие линейного пространства Лектор Рожкова С.В. 2012 г. Глава II. Векторная алгебра. Элементы теории

Подробнее

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Векторная алгебра Направленные отрезки и векторы.

Векторная алгебра Направленные отрезки и векторы. ГЛАВА 1. Векторная алгебра. 1.1. Направленные отрезки и векторы. Рассмотрим евклидово пространство. Пусть прямые (AB) и (CD) параллельны. Тогда лучи [AB) и [CD) называются одинаково направленными (соответственно

Подробнее

Лекция 4: Векторное произведение векторов

Лекция 4: Векторное произведение векторов Лекция 4: Векторное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой и следующей

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее

Лекция 9: Подпространства

Лекция 9: Подпространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение подпространства. Примеры подпространств (1) Определение Непустое подмножество

Подробнее

Лекция 17: Евклидово пространство

Лекция 17: Евклидово пространство Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания При решении многих задач возникает необходимость иметь числовые

Подробнее

Комплексные числа и действия над ними

Комплексные числа и действия над ними Комплексные числа и действия над ними Лекция 1 Л. И. Лазарева, И. А. Цехановский Курс: Ряды и комплексный анализ Семестр 3, 2009 год portal.tpu.ru Комплексным числом z называется упорядоченная пара действительных

Подробнее

Лекция 3. Базис. Вычтем из первого разложения второе:

Лекция 3. Базис. Вычтем из первого разложения второе: Лекция 3 Базис Теорема 3.1. Любой вектор d единственным образом раскладывается по данному базису, b, c в пространстве. Аналогично, любой вектор c на плоскости единственным образом раскладывается по данному

Подробнее

Лекция 2: Линейные операции над векторами

Лекция 2: Линейные операции над векторами Лекция 2: Линейные операции над векторами Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы приступаем к изучению

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости

Подробнее

a b =S пар. = a b sin( a,b );

a b =S пар. = a b sin( a,b ); Практическое занятие 4 Тема: Векторное произведение векторов План Определение и свойства векторного произведения Векторное произведение в координатах Приложение векторного произведения к вычислению площадей

Подробнее

Векторная алгебра. Глава Векторы на плоскости и в пространстве

Векторная алгебра. Глава Векторы на плоскости и в пространстве Глава 6 Векторная алгебра 6.1. Векторы на плоскости и в пространстве Геометрическим вектором, или просто вектором, называется направленный отрезок, т. е. отрезок, в котором одна из граничных точек названа

Подробнее

Тема 1-12: Линейные операции над векторами

Тема 1-12: Линейные операции над векторами Тема 1-12: Линейные операции над векторами А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Вопросы к зачёту по математике. 9 класс 1 семестр

Вопросы к зачёту по математике. 9 класс 1 семестр Вопросы к зачёту по математике. 9 класс 1 семестр Геометрия ЧАСТЬ 1 (без доказательства) 1. Дайте определение вектора. Дайте определение нулевого вектора.. Дайте определение длины вектора. 3. Дайте определение

Подробнее

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости Тема 5 Способы задания прямой на плоскости Условие совпадения прямых задаваемых разными линейными уравнениями Геометрические свойства линейных неравенств Способы задания плоскости в пространстве Способы

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

Глава IX. Евклидовы и унитарные пространства. 35. Скалярное произведение в векторном пространстве

Глава IX. Евклидовы и унитарные пространства. 35. Скалярное произведение в векторном пространстве Глава IX. Евклидовы и унитарные пространства 35. Скалярное произведение в векторном пространстве Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Программа по геометрии для 9 класса общеобразовательного учреждения. Пояснительная записка

Программа по геометрии для 9 класса общеобразовательного учреждения. Пояснительная записка Программа по геометрии для 9 класса общеобразовательного учреждения. Пояснительная записка Структура программы Программа включает три раздела: 1.Планируемые результаты освоения геометрии в 9 классе 2.Содержание

Подробнее

7. Понятие линейного пространства

7. Понятие линейного пространства 7 Понятие линейного пространства 1 Определение и примеры Пусть L некоторое множество, элементы которого можно складывать и умножать на действительные числа (например, множество матриц одинакового размера,

Подробнее

Основы векторной алгебры

Основы векторной алгебры ) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе

Подробнее

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2.

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2. Тема 04 Скалярное произведение векторов Координатное представление скалярного произведения Векторное произведение векторов Координатное представление векторного произведения Смешанное произведение тройки

Подробнее

3.4 Векторы. Метод координат

3.4 Векторы. Метод координат 3.4. ВЕКТОРЫ. МЕТОД КООРДИНАТ 167 3.4 Векторы. Метод координат 3.4.1 Понятие вектора. Свойства Будем называть направленным отрезком AB упорядоченную пару (см. определение 16) точек A; B трехмерного пространства

Подробнее

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения.

Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Лекция 7 Скалярное произведение векторов и его приложения. Векторное произведение векторов и его приложения. Определение 1. Углом между векторами ~a 6= ~ 0 и ~ b 6= ~ 0 называется наименьший угол между

Подробнее

Лекция 7: Векторные пространства

Лекция 7: Векторные пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к изучению линейной алгебры как таковой,

Подробнее

КОМПЛЕКСНЫЕ ЧИСЛА. Определение 3. Комплексное число. называются равными ( ) тогда и только тогда, когда равны их действительные и мнимые части: и.

КОМПЛЕКСНЫЕ ЧИСЛА. Определение 3. Комплексное число. называются равными ( ) тогда и только тогда, когда равны их действительные и мнимые части: и. 1 КОМПЛЕКСНЫЕ ЧИСЛА Комплексные числа в алгебраической форме 1Основные понятия Определение 1 Комплексным числом в алгебраической форме называется выражение вида, где и действительные числа, а так называемая

Подробнее

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства. ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...

Подробнее

a b, a если векторы имеют противоположное направление, то

a b, a если векторы имеют противоположное направление, то ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Структурно-логическая схема. Понятие вектора (В) Линейные операции над В. Сложение. Вычита-ние. Коллинеарность

Структурно-логическая схема. Понятие вектора (В) Линейные операции над В. Сложение. Вычита-ние. Коллинеарность Практическое занятие 3. Практикум (рекомендации к практической части) МОДУЛЬ. ВЕКТОРНАЯ АЛГЕБРА Тема: Линейные операции над векторами План. Понятие вектора. Основные отношения векторов.. Сложение векторов.

Подробнее

Лекция 14: Линейный оператор

Лекция 14: Линейный оператор Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к рассмотрению функций из векторного

Подробнее

Министерство образования Российской Федерации

Министерство образования Российской Федерации Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Лекция 5. Комплексные числа

Лекция 5. Комплексные числа Лекция 5 Комплексные числа Не все многочлены с вещественными коэффициентами имеют вещественные корни. Например, многочлен x + x + не имеет вещественных корней, т.к. уравнение x + x + = 0 имеет отрицательный

Подробнее

Лекция 5: Смешанное произведение векторов

Лекция 5: Смешанное произведение векторов Лекция 5: Смешанное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции рассматривается

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

Часть 1. Теория и примеры решения задач. Материальная точка. Тело отсчета. Декартова система координат

Часть 1. Теория и примеры решения задач. Материальная точка. Тело отсчета. Декартова система координат Занятие 1. Введение в кинематику. Равномерное прямолинейное движение Часть 1. Теория и примеры решения задач Материальная точка. Тело отсчета. Декартова система координат Кинематика это часть механики,

Подробнее

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами.

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами. ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ 1 Основные понятия. Линейные операции над векторами. Отрезок, имеющий определенную длину и определенное направление, называется вектором. Вектор служит для геометрического

Подробнее

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны.

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны. Лекция 3 Тема: Уравнение прямой на проективной плоскости Принцип двойственности Теорема Дезарга Проективные отображения и проективные преобразования План лекции 1 Уравнение прямой на проективной плоскости

Подробнее

2 Два вектора x, y R n будем считать равными тогда и только тогда, когда x k = y k для всех k = 1,..., n.

2 Два вектора x, y R n будем считать равными тогда и только тогда, когда x k = y k для всех k = 1,..., n. ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА 1 1. Пространства R n и C n. Пространство R n это множество всех упорядоченных наборов x = (x 1, x 2,..., x n ) вещественных чисел, n 1 фиксированное целое число. Элементы

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

Лекция 3. Комплексные числа, действия с ними

Лекция 3. Комплексные числа, действия с ними ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Лекция. Комплексные числа, действия с ними СОДЕРЖАНИЕ: Определение Действия с комплексными числами Свойства операций с комплексными числами Геометрическая модель комплексных

Подробнее

Пояснительная записка

Пояснительная записка Пояснительная записка Данная рабочая программа по геометрии для 9 класса основного общего образования разна на основе: 1. Авторской учебной программы по математике «Математика, 9 класс» А.Г.Мерзляк, В.Г.Полонский,

Подробнее

Тема 1-4: Алгебраические операции

Тема 1-4: Алгебраические операции Тема 1-4: Алгебраические операции А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (1

Подробнее

Поурочное планирование по геометрии. 9 класс (Л.С. Атанасян)

Поурочное планирование по геометрии. 9 класс (Л.С. Атанасян) Поурочное планирование по геометрии. 9 класс (Л.С. Атанасян) п\п Тема а Тип а Элементы содержания Требования к уровню подготовки учащихся 1 2 3 4 5 6 1 Повторение Урок повторения и 2 Повторение Урок повторения

Подробнее

1.Планируемые результаты обучения

1.Планируемые результаты обучения .Планируемые результаты обучения Знать определения вектора и равных векторов; изображать и обозначать векторы, откладывать от данной точки вектор, равный данному; уметь решать задачи. Уметь объяснить,

Подробнее

Векторное и смешанное произведение векторов

Векторное и смешанное произведение векторов Векторное и смешанное произведение векторов 1. Правые и левые тройки векторов и систем координат Определение. Три вектора называются упорядоченной тройкой (или просто тройкой), если указано, какой из этих

Подробнее

МОДУЛЬНАЯ АРИФМЕТИКА

МОДУЛЬНАЯ АРИФМЕТИКА МОДУЛЬНАЯ АРИФМЕТИКА В некоторых приложениях удобно выполнять арифметические операции над целыми числами, заданными в так называемом модульном представлении Это представление предполагает, что целое число

Подробнее

ЛЕКЦИЯ 10 СРАВНЕНИЯ СТЕПЕНЕЙ ВЫШЕ ПЕРВОГО

ЛЕКЦИЯ 10 СРАВНЕНИЯ СТЕПЕНЕЙ ВЫШЕ ПЕРВОГО ЛЕКЦИЯ 10 СРАВНЕНИЯ СТЕПЕНЕЙ ВЫШЕ ПЕРВОГО Переходя от сравнений первой степени к сравнениям более высоких степеней, целесообразно сначала рассмотреть тот случай, когда модуль простое число В этом случае

Подробнее

Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Основы линейной алгебры: определение, базис, алгебра подпространств Раздел электронного учебника

Подробнее

Тема 2-1: Линейные пространства

Тема 2-1: Линейные пространства Тема 2-1: Линейные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

Линейная алгебра Лекция 7. Векторы

Линейная алгебра Лекция 7. Векторы Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление

Подробнее

9.2 Геометрические свойства смешанного произведения.

9.2 Геометрические свойства смешанного произведения. Смешанное произведение трех векторов. Геометрические свойства смешанного произведения. Смешанное произведение в декартовых координатах. Двойное векторное произведение. 9 Лекция 9 9.1 Смешанное произведение

Подробнее

6. Базис и координаты вектора. Прямоугольная декартова система координат

6. Базис и координаты вектора. Прямоугольная декартова система координат 6. Базис и координаты вектора. Прямоугольная декартова система координат Понятия вектора и линейных операций над векторами алгебраизируют геометрические высказывания т.е. заменяют геометрические утверждения

Подробнее

Конспект лекции 2 КОМПЛЕКСНЫЕ ЧИСЛА

Конспект лекции 2 КОМПЛЕКСНЫЕ ЧИСЛА Конспект лекции 2 КОМПЛЕКСНЫЕ ЧИСЛА 0. План лекции ПЕРВЫЙ ЧАС. Поле комплексных чисел. 1. Аксиомы поля "4+1+2". 1.1. Определение поля; 1.2.! нулевого и единичного элементов; 1.3. Расширение поля и подполе;

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 1 ОПРЕДЕЛИТЕЛИ. СИСТЕМЫ УРАВНЕНИЙ 0. План лекции 1. Определитель второго порядка. 1.1 Система двух уравнений. 1.2. Метод исключения переменных. 1.3. Матрица 2 2. 1.4.

Подробнее

пространства. Четверка, состоящая из точки O и базиса е 1, e 2 или (O, e 1 17). Рис координатными векторами ( e 1

пространства. Четверка, состоящая из точки O и базиса е 1, e 2 или (O, e 1 17). Рис координатными векторами ( e 1 Лекция - Тема: Метод координат в пространстве Преобразование координат План лекции АСК в пространстве Расстояние между точками и деление отрезка в данном отношении (в пространстве) ПДСК в пространстве

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА

ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА ЛЕКЦИЯ 6 ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИ- НЕЙНАЯ ЗАВИСИМОСТЬ ОСНОВНАЯ ЛЕММА О ЛИНЕЙНОЙ ЗАВИСИМОСТИ БАЗИС И РАЗМЕРНОСТЬ ЛИНЕЙ- НОГО ПРОСТРАНСТВА РАНГ СИСТЕМЫ ВЕКТОРОВ 1 ЛИНЕЙНЫЕ КОМБИНАЦИИ И ЛИНЕЙНАЯ ЗАВИСИМОСТЬ

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

Рабочая программа по геометрии для 9 класса 2 часа в неделю, 68 часов за год Учебник «Геометрия 7 9» под редакцией Атанасяна Л. С.

Рабочая программа по геометрии для 9 класса 2 часа в неделю, 68 часов за год Учебник «Геометрия 7 9» под редакцией Атанасяна Л. С. Рабочая программа по геометрии для 9 класса 2 часа в неделю, 68 часов за год Учебник «Геометрия 7 9» под редакцией Атанасяна Л. С. Пояснительная записка Рабочая программа учебного курса геометрии для 9

Подробнее

Лекция 6: Система координат. Координаты точки

Лекция 6: Система координат. Координаты точки Лекция 6: Система координат. Координаты точки Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

Тема 2-14: Евклидовы и унитарные пространства

Тема 2-14: Евклидовы и унитарные пространства Тема 2-14: Евклидовы и унитарные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

Лекция 31 Глава 3. Аналитическая геометрия в пространстве

Лекция 31 Глава 3. Аналитическая геометрия в пространстве Лекция Глава Аналитическая геометрия в пространстве Плоскость в пространстве Уравнение плоскости проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка ) и ненулевой

Подробнее

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b.

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b. ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» А.Н. Канатников, А.П. Крищенко

Подробнее

Лекция 1: Определители второго и третьего порядков

Лекция 1: Определители второго и третьего порядков Лекция 1: Определители второго и третьего порядков Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы начинаем

Подробнее

Алгебра и аналитическая геометрия

Алгебра и аналитическая геометрия Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Алтайская государственная педагогическая академия»

Подробнее

от перемены мест слагаемых a b b a сложения сумма не меняется сочетательный закон не важно, в каком порядке сложения

от перемены мест слагаемых a b b a сложения сумма не меняется сочетательный закон не важно, в каком порядке сложения 1 Прикладная математика Лекция 1 Числа. Корни. Степени. Логарифмы Различные виды чисел: натуральные, целые, рациональные, действительные. Действия над числами: сложение, вычитание, умножение, деление.

Подробнее

ЛЕКЦИЯ 1 НЕКОТОРЫЕ ЭЛЕМЕНТЫ ТЕОРИИ ЧИСЕЛ

ЛЕКЦИЯ 1 НЕКОТОРЫЕ ЭЛЕМЕНТЫ ТЕОРИИ ЧИСЕЛ ЛЕКЦИЯ 1 НЕКОТОРЫЕ ЭЛЕМЕНТЫ ТЕОРИИ ЧИСЕЛ В пособии не излагается теория чисел а дан минимальный инструментарий из этой теории который в дальнейшем потребуется для изучения криптографических систем используемых

Подробнее

13. Смешанное произведение векторов

13. Смешанное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение смешанного произведения Определение Смешанным произведением векторов a, b

Подробнее

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона. Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция

Подробнее

Лекция 13. Методы решения равновесных задач и вариационных неравенств

Лекция 13. Методы решения равновесных задач и вариационных неравенств Лекция 13. Методы решения равновесных задач и вариационных неравенств Вспомним основные определения равновесных задач и вариационных неравенств. Пусть D R n - непустое замкнутое выпуклое множество. Определение

Подробнее

Сложение направленных отрезков обладает следующими свойствами. 1. Сумма направленных отрезков не зависит от порядка слагаемых:

Сложение направленных отрезков обладает следующими свойствами. 1. Сумма направленных отрезков не зависит от порядка слагаемых: 1 ГЕОМЕТРИЧЕСКИЕ ВЕКТОРЫ 11 Определение геометрического вектора Предупреждение Геометрический вектор в высшей математике несколько отличается от геометрического вектора в школьной математике 111 Исходным

Подробнее

7 класс ( учебный год). Часть 1. Теория и примеры решения задач. Материальная точка. Тело отсчета. Декартова система координат

7 класс ( учебный год). Часть 1. Теория и примеры решения задач. Материальная точка. Тело отсчета. Декартова система координат 7 класс (2016-17 учебный год). Занятие 1. Введение в кинематику. Равномерное прямолинейное движение Часть 1. Теория и примеры решения задач Материальная точка. Тело отсчета. Декартова система координат

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю Б Мельников Алгебра комплексных чисел Раздел электронного учебника для сопровождения лекции Изд 3-е, испр и доп

Подробнее

Поле. Расширения полей

Поле. Расширения полей Министерство образования и науки РФ Уральский государственный экономический университет Ю. Б. Мельников Поле. Расширения полей Раздел электронного учебника для сопровождения лекции Изд. 4-е, испр. и доп.

Подробнее

Тема 2-4: Подпространства

Тема 2-4: Подпространства Тема 2-4: Подпространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис Тема 06 Произведение матриц и его свойства Обращение квадратных матриц и его свойства Детерминант квадратной матрицы -го порядка и его свойства Миноры дополнительные миноры и алгебраические дополнения

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ И БЕСКОНЕЧНЫЕ ЧИСЛОВЫЕ

Подробнее

10. Линейные операторы

10. Линейные операторы 35 0 Линейные операторы До сих пор мы рассматривали в линейном пространстве L скалярные функции векторного аргумента - линейные комбинации векторов Теперь мы сосредоточимся на рассмотрении векторных функций

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Введение. a, b, c Z a b c =a b a c Нет делителей нуля -- a,b Z: a 0, b 0 a b 0

Введение. a, b, c Z a b c =a b a c Нет делителей нуля -- a,b Z: a 0, b 0 a b 0 Введение В начальной школе все мы знакомимся с множеством натуральных, а затем и целых чисел. Там же мы изучаем две базовые операции сложение и умножение, а также обратную операцию к сложению вычитание,

Подробнее

АРИФМЕТИКА ЦЕЛЫХ ЧИСЕЛ ВЕКТОРНЫЕ ПРОСТРАНСТВА

АРИФМЕТИКА ЦЕЛЫХ ЧИСЕЛ ВЕКТОРНЫЕ ПРОСТРАНСТВА ЛЕКЦИЯ 5 ЧЕТНОСТЬ ПОДСТАНОВОК АРИФМЕТИКА ЦЕЛЫХ ЧИСЕЛ ВЕКТОРНЫЕ ПРОСТРАНСТВА 1 ЧЕТНОСТЬ ПОДСТАНОВОК Лемма 1. Каждая подстановка π S n является произведением транспозиций. Доказательство. В силу того, что

Подробнее

2. Действия над комплексными числами

2. Действия над комплексными числами Действия над комплексными числами Словарь: произведение комплексных чисел комплексная плоскость радиус-вектор формула Муавра Обратите внимание: Действия (над чем? над числами Извлечение (чего? корня Действия

Подробнее

Глава 7 Плоскость в пространстве

Глава 7 Плоскость в пространстве Глава 7 Плоскость в пространстве Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:, где А, В, С координаты вектора i j k -вектор нормали к плоскости. Возможны

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Основы линейной алгебры: определение, базис, алгебра подпространств Раздел электронного учебника

Подробнее

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейная алгебра Лекция 3 ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейное (векторное) пространство Определение Множество элементов произвольной природы X называется линейным (или векторным) пространством если для любых

Подробнее