Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя"

Транскрипт

1 Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает в точке 0 локального максимума, если существует O( 0,δ ) y такая, что f( 0 ) f ( ) O( 0,δ ) Аналогично, если f( 0 ) f ( ) O( 0,δ ), то функция достигает в 0 точке 0 локального минимума 0 b Локальные максимум и минимум называются локальными экстремумами Если функция на отрезке [ b], достигает своих наименьшего m и наибольшего М значений, то они могут достигаться в точках локальных экстремумов или на концах отрезка В нашем случае m= f ( ), M= f( ) Теорема (Ферма) Если функция y=f() имеет производную в точке =C и достигает в ней локального экстремума, то f ( C ) =0 Доказательство Пусть функция y=f() достигает в точке С локального максимума Тогда f ( C) f() O(C,δ ), или =f() f ( C ) = f ( C+ ) f ( C) 0 O(C,δ ) Очевидно, отношение = f ( C+ ) f ( C ) 0, если > 0, = f ( C+ ) f ( C ) 0, если < 0, = C Переходя к пределу, найдём

2 +0 = f + (C) 0, 0 = f (C) 0 Тк производная f (C) по условию теоремы существует, то f (C) = f (C) = f + (C), что возможно только в случае, когда f (C) = 0 Доказательство аналогично, если функция достигает в точке С локального минимума Теорема (Ролль) Если функция y=f() непрерывна на отрезке [,b ], дифференцируема на интервале ( b), а на концах отрезка принимает равные значения f()=f(b), то существует по крайней мере одна точка =C, C (,b ), в которой f (C) = 0 Доказательство Тк функция непрерывна на отрезке [ b], то она достигает на нем своих наименьшего m и наибольшего М значений (см теорему 4 в Лекции 4) Если m =М, то функция f() постоянная и её производная в любой точке равна нулю Теорема в этом случае справедлива Пусть m M Поскольку f()=f(b), то по крайней мере одно из чисел m или М отлично от f ( ) Пусть M f ( ), те наибольшее значение достигается во внутренней точке отрезка M= f (C), C (,b ) Тк в точке = C функция достигает локального максимума и f (C) существует, то по теореме Ферма f (C)=0 Теорема доказана Следствие Если функция y=f() непрерывна на [,b ], дифференцируема на (,b ) и f ( ) 0 (,b ), то f ( ) f ( b ) Доказательство (от противного) Пусть f()=f(b), тогда по теореме Ролля C (,b ) ( f (C)=0), что противоречит условию следствия Теорема 3 (Коши) Если функции f ( ) и g непрерывные на отрезке [,b ] и дифференцируемые на интервале (,b ), причем ( ) 0 (,b ), то найдётся точка =C, C (,b ) такая, что f ( b) f ( ) f ( C) = gb g ( C ) ()

3 3 Доказательство Составим вспомогательную функцию F= f ( ) + λ g, где λ некоторый множитель Подберём его так, чтобы функция F удовлетворяла условиям теоремы Ролля, те чтобы F = Fb, поскольку все другие условия выполняются Выполняя последнее требование, получим f ( ) + λ g = f ( b ) + + λ gb, или λ ( g gb ) = f ( b ) f ( ) Согласно следствию теоремы Ролля g gb 0, поэтому f ( b) f ( ) множитель λ существует λ = g gb Итак, функция f ( b) f ( ) F= f ( ) g gb g удовлетворяет условиям теоремы Ролля, те F (C) = 0, или f ( b) f ( ) f ( C) f (C) g (C) = 0, или gb g ( C) = f ( b) f ( ) gb g Теорема доказана Следствие (теорема Лагранжа) Пусть g = тогда () примет вид f ( b ) f ( ) = f (C)( b ), C (,b ) () Равенство () называют формулой Лагранжа конечных приращений Пусть = 0, b = 0 +, тогда формулу () для функции y = f удобнее переписать в виде = f (C), C ( 0, 0 + ) (3) Из сравнения (3) с приближенной формулой f ( 0 ) ясно название - формула конечных, а не бесконечно малых приращений Пример Положим 0, и оценим допущенную при этом ошибку Для этого рассмотрим функцию y = f =, [;,0] Она удовлетворяет условиям теоремы Лагранжа, поэтому по формуле () запишем

4 4 00, f ( 0, ) f ( ) = f (C) (,0 ) = 4 C Очевидно, наибольшая ошибка ε = f ( 0, ) будет при C=, те ε 00, = 0,004 Итак, если значением 0, считать единицу, то ошибка не превзойдёт 0004 Теорема 4 (Лопиталь) Пусть функции f() и g() определены, непрерывны и дифференцируемы в некоторой окрестности точки =, при этом g и ( ) не обращаются в нуль в этой окрестности, а f ( ) = g = 0 Тогда, если существует f ( ) (4) ( ) (конечный или бесконечный), то существует равный ему f ( ) g, те f ( ) g = f ( ) ( ) () Доказательство Поскольку функции f ( ) и g в точке = могут быть не определены, то доопределим их так: f ( ) = f ( ) = 0 и g = g = 0 Таким образом, функции f ( ) и g стали непрерывными в точке = Пусть произвольная точка из окрестности точки Применим к функциям f ( ) и g теорему Коши f ( ) f g g = f ( ξ) ξ, или f ( ) g = f ξ ( ξ ), ξ (, ) (6) Очевидно, при и ξ Тогда из существования предела (4) следует существование предела f ( ξ) ξ ξ = f ( ) ( )

5 f ( ) ( ) Учитывая это, из (6) получим g = f Теорема доказана Формула () носит название правила Лопиталя раскрытия неопределённости вида 0 0 Замечание Если функции f ( ) и снова удовлетворяют теореме, то правило Лопиталя можно применить повторно e 3 Пример Найти 6 0 cos+ Решение Четырежды применяя правило Лопиталя, получим e 3 e 6 = e = = 0 0 sin + 0 cos + cos+ e e = = = 0 sin 0 cos Замечание Правило Лопиталя можно применить и для раскрытия неопределённостей вида, те когда f =, g = Точка также может быть бесконечно удалённой, те когда f =, g = n Пример 3 Найти + e Решение После n -кратного применения правила Лопиталя к неопределённости, получим + n = = e + n e! = 0

6 6 Замечание 3 Если неопределённости вида 0,,, 0 0, 0 предварительно свести к неопределённости 0 0 или, то их можно раскрыть с помощью правила Лопиталя Пример 4 Найти 0 ( e + ) Решение Данная неопределённость вида Пусть ( e + ) u, тогда ln u = ln e + Получили неопределённость 0 вида 0 e + = 0 e + Из непрерывности логарифмической функции следует u = ln( u) = u = e Применив правило Лопиталя, найдём ln u = 0 0 ln 0 0 Замечание 4 Следует внимательно проверять выполнение условий теоремы, в противном случае возможны ошибки + sin Пример Вычислить 3 sin sin + sin + Решение = = 3 sin sin 3 3 Данная неопределённость вида Применив к ней дважды правило Лопиталя, получим неверный результат + sin + cos = 3 sin 3 cos = sin sin = Ошибка произошла из-за того, что предел (4) не существует Поэтому правило Лопиталя в данном случае применить нельзя =

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

С.А. Лавренченко. Лекция 9. Экстремумы

С.А. Лавренченко. Лекция 9. Экстремумы 1 СА Лавренченко Лекция 9 Экстремумы 1 Определения и примеры Определение 11 Говорят, что функция имеет (или достигает) абсолютный максимум в точке, если для всех из области определения Значение называется

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ. Понятие производных и дифференциалов высших порядков

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ. Понятие производных и дифференциалов высших порядков ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ Понятие производных и дифференциалов высших порядков Производная f ( называется производной первого порядка (или

Подробнее

8. Свойства дифференцируемых функций

8. Свойства дифференцируемых функций 8. Свойства дифференцируемых функций 8.. Производная функции в данной точке отражает локальные свойства функции, т. е. свойства, присущие функции в некоторой окрестности данной точки. Вместе с тем есть

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C 2 -гладкие функции.

Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C 2 -гладкие функции. Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C -гладкие функции. Определение 1 Функция называется выпуклой (вогнутой), если ее надграфик (подграфик) выпуклая область. Пример 1 x

Подробнее

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА А. Н. Мягкий Интегральные уравнения и вариационное исчисление Лекция Пусть задан функционал V = V [y(x)], y(x) M E. Зафиксируем функцию y (x) M. Тогда любую другую функцию

Подробнее

Лекция 2.4. Непрерывность функции. Классификация точек разрыва

Лекция 2.4. Непрерывность функции. Классификация точек разрыва Лекция 4 Непрерывность функции Классификация точек разрыва Аннотация: Рассматриваются свойства функции, непрерывной на отрезке Приводится пример использования этих свойств при решении нелинейных уравнений

Подробнее

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3 Лекции 56 Глава 6 Производная функции 6 Понятие производной Пусть функция определена и непрерывна на некотором промежутке X Взяв значение X придадим аргументу приращение так что и новое значение не выходит

Подробнее

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем -

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - { теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - теорема Коши - формула конечных приращений - правило Лопиталя

Подробнее

13. Экспонента и логарифм

13. Экспонента и логарифм 13. Экспонента и логарифм Для завершения доказательства предложения 12.8 нам остается дать одно определение и доказать одно предложение. Определение 13.1. Ряд a i называется абсолютно сходящимся, если

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

4. Непрерывность функции 1. Основные определения

4. Непрерывность функции 1. Основные определения 4. Непрерывность функции 1. Основные определения Пусть f(x) определена в некоторой окрестности точки x. ОПРЕДЕЛЕНИЕ 1. Функция f(x) называется непрерывной в точке x если справедливо равенство f ( x). (1)

Подробнее

Лекция Исследование функции и построение ее графика

Лекция Исследование функции и построение ее графика Лекция Исследование функции и построение ее графика Аннотация: Функция исследуется на монотонность, экстремум, выпуклость-вогнутость, на существование асимптот Приводится пример исследования функции, строится

Подробнее

ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ

ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ Проф др Авыт АСАНОВ Кыргызско-Турецкий Университет «Манас» Классические понятия производной и дифференциала функции изложены во многих работах Например в []

Подробнее

Лекция 14. Неопределенности и правило Лопиталя

Лекция 14. Неопределенности и правило Лопиталя СА Лавренченко 1 wwwlawrencenkoru Лекция 14 Неопределенности и правило Лопиталя Правило Лопитáля применяется при вычислении пределов для раскрытия неопределенностей типа или Раскрытие неопределенности

Подробнее

Учебные материалы по математическому анализу в электронном виде, а также примеры экзаменационных билетов прошлых лет вы можете найти на сайте

Учебные материалы по математическому анализу в электронном виде, а также примеры экзаменационных билетов прошлых лет вы можете найти на сайте Перечень тем и вопросов, выносимых на зимнюю сессию 2013-2014 уч. год, 1 курс, 2 поток Дисциплина Математический анализ, лектор к.ф.-м.н., доцент Фроленков И.В. 1. Понятие функции. График функции. Обзор

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

1. Производная Рассмотрим график непрерывной функции секущая графика. будем называть касательной. в точке x

1. Производная Рассмотрим график непрерывной функции секущая графика. будем называть касательной. в точке x Лекция: Основы дифференциального исчисления Конспект лекции. Производная Рассмотрим график непрерывной функции на отрезке b M M секущая графика. Тогда тангенс угла наклона секущей. Предельное положение

Подробнее

Лекция 2.5. Производные основных элементарных функций

Лекция 2.5. Производные основных элементарных функций Лекция 5 Производные основных элементарных функций Аннотация: Даются физическая и геометрическая интерпретации производной функции одной переменной Рассматриваются примеры дифференцирования функции и правила

Подробнее

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных.

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных. ЛЕКЦИЯ Экстремум функции нескольких переменных Экстремум функции нескольких переменных Необходимые и достаточные условия существования экстремума Точка M, 0) называется точкой минимума максимума) функции

Подробнее

5. Задачи с подвижной границей. при условии, что левый конец функции, на которой достигается экстремум, закреплен:

5. Задачи с подвижной границей. при условии, что левый конец функции, на которой достигается экстремум, закреплен: Лекция 5 Задачи с подвижной границей Рассмотрим задачу минимизации функционала V F при условии что левый конец функции на которой достигается экстремум закреплен: а правый может перемещаться вдоль заданной

Подробнее

1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте.

1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте.. Теорема о промежуточных значениях Теорема. (Больцано-Коши) Пусть функция f непрерывна

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

Лекция 4. Дифференцирование сложных функций Неявное дифференцирование

Лекция 4. Дифференцирование сложных функций Неявное дифференцирование СА Лавренченко wwwlawrencenkoru Лекция 4 Дифференцирование сложных функций Неявное дифференцирование Вспомним правило дифференцирования для функций одной переменной также называемое цепным правилом (см

Подробнее

Р. М. Гаврилова, Г. С. Костецкая. Методические указания

Р. М. Гаврилова, Г. С. Костецкая. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические указания для самостоятельной работы студентов 1 курса физического факультета

Подробнее

Тема 1. Предел и непрерывность функции

Тема 1. Предел и непрерывность функции Уметь: Тема 1. Предел и непрерывность функции Вычислять пределы функций и числовых последовательностей, используя различные приемы, в том числе, замечательные пределы, проводить сравнение бесконечно малых

Подробнее

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики ФУНКЦИЯ И ЕЕ

Подробнее

7. Экстремумы функций нескольких переменных

7. Экстремумы функций нескольких переменных 7. Экстремумы функций нескольких переменных 7.. Локальные экстремумы Пусть функция f(x,..., x n ) определена на некотором открытом множестве D R n. Точка M D называется точкой локального максимума (локального

Подробнее

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми.

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми. Контрольная работа Тема Пределы и производные функций Найти пределы нижеследующих функций одной переменной (без правила Лопиталя) а) б) в) г) Пример а) Решение Определяем вид неопределенности При формальных

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

КОНСПЕКТ ЛЕКЦИЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ

КОНСПЕКТ ЛЕКЦИЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ КОНСПЕКТ ЛЕКЦИЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ Е Б Боронина Эта книга написана для студентов технических вузов желающих подготовиться к экзамену по математическому анализу Содержание данной книги полностью соответствует

Подробнее

Образцы базовых задач и вопросов по МА за 1 семестр

Образцы базовых задач и вопросов по МА за 1 семестр Образцы базовых задач и вопросов по МА за семестр Предел последовательности Простейшие Вычислите предел последовательности l i m 2 n 6 n 2 + 9 n 6 4 n 6 n 4 6 4 n 6 2 2 Вычислите предел последовательности

Подробнее

«Математический анализ»

«Математический анализ» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени НЭ БАУМАНА Билеты для сдачи экзамена по курсу «Математический анализ» МГТУ имени НЭ Баумана МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени

Подробнее

Лекция Неопределенный интеграл

Лекция Неопределенный интеграл Лекция..3. Неопределенный интеграл Аннотация: Неопределенный интеграл определяется как множество первообразных функций подынтегральной функции. Рассматриваются свойства неопределенного интеграла, приводится

Подробнее

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления»

41 Методические указания к выполнению контрольной работы 2 «Производная и ее приложения. Приложения дифференциального исчисления» 4 Методические указания к выполнению контрольной работы «Производная и ее приложения Приложения дифференциального исчисления» Производная Приложения дифференциального исчисления Производной функции f (

Подробнее

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности. 5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

Подробнее

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ.

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Подробнее

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Лекция 7. Несобственные интегралы, зависящие от параметра. Равномерная сходимость несобственного интеграла -го рода. Критерий Коши. Признаки

Подробнее

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется МАТЕМАТИЧЕСКИЙ АНАЛИЗ 9 ФУНКЦИЯ -ОЙ ПЕРЕМЕННОЙ. ОСНОВНЫЕ ПОНЯТИЯ И ГРАФИКИ. ОПР Величина называется переменной, если в рамках данной задачи она принимает различные числовые значения. ОПР Величина С называется

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Приложение производных к исследованию функций

Приложение производных к исследованию функций Приложение производных к исследованию функций Лекции 1 6 Л.И. Терехина, И.И. Фикс Курс: Высшая математика Семестр 1, 2009 год portal.tpu.ru Теорема 1 (Ферма) Если функция y = f (x): 1) непрерывна в замкнутом

Подробнее

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора.

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора. ЛЕКЦИЯ N6 Правило Бернулли-Лопиталя Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Раскрытием неопределенностей

Подробнее

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ

ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ М и н и с т е р с т в о о б р а з о в а н и я и н а у к и Р о с с и й с к о й Ф е д е р а ц и и Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Филиал в г. Домодедово. МАТЕМАТИЧЕСКИЙ АНАЛИЗ (часть 1) Михин М.Н. Методические указания по подготовке к итоговой контрольной работе и экзамену

Филиал в г. Домодедово. МАТЕМАТИЧЕСКИЙ АНАЛИЗ (часть 1) Михин М.Н. Методические указания по подготовке к итоговой контрольной работе и экзамену МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ» (РГГУ) Филиал в г Домодедово

Подробнее

Лекция 15. Первообразные

Лекция 15. Первообразные СА Лавренченко 1 wwwlawrencenkoru Лекция 15 Первообразные Напомним, что под интервалом мы понимаем или конечный интервал, или один из следующих бесконечных интервалов:,, или Помните, что внутри интервала

Подробнее

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е.

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е. Приложение. Определение первообразной функции Определение. Дифференцируемая функция F() называется первообразной для функции f() на заданном промежутке, если для всех из этого промежутка. справедливо равенство

Подробнее

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения.

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения. Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения Цель: сформировать умение находить производные функций, заданных в явном, логарифмическом и параметрическом

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

Введение. Правило Декарта. Число положительных корней многочлена P (x) = a k x m k a1 x m 1

Введение. Правило Декарта. Число положительных корней многочлена P (x) = a k x m k a1 x m 1 Введение В курсе математического анализа первого семестра одно из центральных мест занимает теорема Ролля. Теорема Ролля. Пусть функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (a,

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

ЛЕКЦИЯ N21. Полный дифференциал, частные производные и дифференциалы высших порядков.

ЛЕКЦИЯ N21. Полный дифференциал, частные производные и дифференциалы высших порядков. ЛЕКЦИЯ N Полный дифференциал, частные производные и дифференциалы высших порядков Полный дифференциал Частные дифференциалы Частные производные высших порядков Дифференциалы высших порядков 4Производные

Подробнее

Локальная теорема Коши Пикара.

Локальная теорема Коши Пикара. Локальная теорема Коши Пикара. Теорема (о существовании и единственности локального решения). Пусть дана задача Коши x = f(t, x) x(t 0 ) = x 0, (1) где правая часть f(t, x) определена и непрерывна в прямоугольнике

Подробнее

Исследование функций и построение графиков. Исследование на монотонность на интервале. a, монотонно

Исследование функций и построение графиков. Исследование на монотонность на интервале. a, монотонно Функция Исследование функций и построение графиков. Исследование на монотонность на интервале. f на интервале b не убывает, если f f ; не возрастает, если f f ; a, монотонно строго возрастает, если f f

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы 1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. 1.1 Теорема о промежуточных значениях Теорема 1. (Больцано-Коши) Пусть функция f непрерывна на отрезке [a, b], причем f(a) f(b). Тогда для любого числа C, заключенного между f(a) и f(b) найдется точка γ (a, b), что f(γ) = C. Доказательство. Пусть, например, f(a) = A < B = f(b) и A < C < B. Функция g(x) = f(x) C, очевидно, непрерывна на [a, b]. Кроме того, g(a) < 0, g(b) > 0. Для доказательства теоремы достаточно показать, что существует такая точка γ (a, b), что g(γ) = 0. Разделим отрезок [a, b] точкой x 0 на два равных по длине отрезка, тогда либо g(x 0 ) = 0 и, значит, искомая точка γ = x 0 найдена, либо g(x 0 ) 0 и тогда на концах одного из полученных промежутков функция g принимает значения разных знаков, точнее, на левом конце значение меньше нуля, на правом - больше. Обозначим этот отрезок [a 1, b 1 ] и разделим его снова на два равных по длине отрезка и т.д. В результате, либо через конечное число шагов придем к искомой точке γ, в которой g(γ) = 0, либо получим последовательность вложенных отрезков [a n, b n ] по длине стремящихся к нулю и таких, что g(a n ) < 0 < g(b n ) (1) Пусть γ - общая точка всех отрезков [a n, b n ], n = 1, 2,... Тогда γ = lim a n = lim b n. Поэтому, в силу непрерывности функции g Из (1) находим, что g(γ) = lim g(a n ) = lim g(b n ) (2) Из (2) и (3) следует, что g(γ) = 0. lim g(a n ) 0 lim g(b n ) (3) Следствие 1. Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке есть хотя бы одна точка, в которой функция обращается в нуль. 1.2 Первая и вторая теоремы Вейерштрасса Будем говорить, что функция f, определенная на множестве E достигает на нем своей верхней (нижней) границы β = sup E f (α = inf E f), если существует такая точка x 0 E, что f(x 0 ) = β (f(x 0 ) = α). 1

Подробнее

11. Производная (продолжение); непрерывные функции

11. Производная (продолжение); непрерывные функции 11. Производная (продолжение); непрерывные функции На прошлой лекции мы вывели правило дифференцирования произведения функций; сейчас мы разберемся и с дифференцированием частного. Заметим для начала,

Подробнее

17. Дополнения. Доказательство. Зададимся числом " > 0. Покажем для начала, что существует такое x 0, что. < " при x > x 0. (17.1)

17. Дополнения. Доказательство. Зададимся числом  > 0. Покажем для начала, что существует такое x 0, что. <  при x > x 0. (17.1) 17. Дополнения На этой сокращенной лекции последней лекции первого семестра мы осветим два вопроса, на которые не хватило времени в прошлый раз. Мы видели, что для раскрытия неопределенности вида 0=0,

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» М.П. Дымков ВЫСШАЯ МАТЕМАТИКА Второй семестр Курс лекций для студентов экономических специальностей

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1,

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1, Глава Экстремумы функции двух переменных Экстремум функции двух переменных При решении многих экономических задач приходится вычислять наибольшее и наименьшее значения В качестве примера рассмотрим задачу

Подробнее

Тема: Степенные ряды.

Тема: Степенные ряды. Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

Подробнее

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

Методические указания по подготовке к экзамену по математическому анализу

Методические указания по подготовке к экзамену по математическому анализу Министерство образования Российской федерации Ярославский государственный университет им. П.Г. Демидова Кафедра дискретного анализа Методические указания по подготовке к экзамену по математическому анализу

Подробнее

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1)

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1) 1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения (2006-2007, сем.1 1. Сформулируйте определение ограниченного множества вещественных чисел. 2. Сформулируйте определение

Подробнее

Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Тема 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Лекция 7 Производная функции Правила и формулы дифференцирования П л а н Задачи, приводящие к понятию производной Понятие производной Основные

Подробнее

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f( x ) слева при стремлении x к a, если для любого числа существует такое число

Подробнее

Практикум: «Формула Тейлора». Если функция f (x)

Практикум: «Формула Тейлора». Если функция f (x) Практикум: «Формула Тейлора» Если функция f () имеет производные до (п +)-го порядка включительно в интервале ( 0, 0 ), 0, то для всех х из этого интервала справедлива формула Тейлора (порядка п) ( ) f

Подробнее

Формула Тейлора для ФНП. Экстремумы ФНП

Формула Тейлора для ФНП. Экстремумы ФНП Математический анализ Раздел: Функция нескольких переменных Тема: Формула Тейлора для ФНП. Экстремумы ФНП Лектор Рожкова С.В. 1 г. 18. Формула Тейлора для ФНП Если y = раз дифференцируема в окрестности

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

= 0. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. ; является точкой локального ми-,0 0

= 0. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. ; является точкой локального ми-,0 0 6 ( ) Получаем, что HP =. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. В данном случае стационарная точка P ( ) ; является точкой локального ми- Δz > P O & P : z = z =. δ

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

1. Производная ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. 1. Основные определения

1. Производная ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. 1. Основные определения ДИФФЕРЕНЦИЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ. Производная. Основные определения Определение. Производной функции y = f (x) в точке x 0 называется предел отношения приращения этой функции y в точке

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx.

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Лекция 5. Понятие несобственного интеграла -го рода, его вычисление. Критерий сходимости. Интегралы от положительных функций. Признаки сравнения, абсолютная

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ Пределы Методические указания

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен: уметь применять таблицу производных и правила дифференцирования для вычисления производных элементарных функций находить производные

Подробнее

15. Символы o и O, теорема о среднем, формула Тейлора

15. Символы o и O, теорема о среднем, формула Тейлора 15. Символы o и O, теорема о среднем, формула Тейлора Начнем эту лекцию с того, что введем два часто используемых в анализе обозначения. Именно: пусть f и g две функции переменной x, обе стремящиеся к

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ''Оренбургский государственный

Подробнее

«Математический анализ»

«Математический анализ» Конспект лекций по дисциплине «Математический анализ» для студентов I курса семестр специальности «Математика» с дополнительной специальностью «Информатика» Лекций 4 часа Составлен доцентом, ктн Зиновьевой

Подробнее

Конспект лекций по математике-2

Конспект лекций по математике-2 КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Институт математики и механики им. Н.И. Лобачевского А.С.Шкуро Конспект лекций по математике-2 для студентов Химического института Учебное пособие Казань

Подробнее

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

16. Формула Тейлора (продолжение)

16. Формула Тейлора (продолжение) 6. Формула Тейлора (продолжение Докажем единственность представления из теоремы 5.7. Предложение 6.. Пусть f : (p; q R функция класса C n, и пусть a (p; q. Предположим, что f(x = c 0 + c (x a + : : : +

Подробнее

Уфимский государственный технический университет. lim 7 5). 1

Уфимский государственный технический университет. lim 7 5). 1 Уфимский государственный технический университет ПРОБНИК. Задача: Вычислить предел функции + 4 Ответы: ). ). ). /4 4). 0 5). нет правильного ответа. Задача: Найти предел: 0 sin5 7 Ответы: ). 5 ). 7 ).

Подробнее

у Найти область определения функции х 2 1

у Найти область определения функции х 2 1 Автор теста: Ибрагимова С.А. Название курса: Математика Предназначено для студентов специальности: ССиМ 1кг, 1к3г. ДОТ Количество кредитов: Текст вопроса/варианты ответа 1 P Q 4Q 5 Найти экстремум функции

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков.

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков. ЛЕКЦИЯ 3 Линейные дифференциальные уравнения высших порядков Линейные неоднородные и однородные дифференциальные уравнения второго порядка Интегрирование ЛОДУ и ЛНДУ второго порядка с постоянными коэффициентами

Подробнее