Численное решение нелинейных уравнений

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Численное решение нелинейных уравнений"

Транскрипт

1 Постановка задачи Метод половинного деления Метод хорд (метод пропорциональных частей 4 Метод Ньютона (метод касательных 5 Метод итераций (метод последовательных приближений Постановка задачи Пусть дано уравнение вида ( 0. ( ( [ ] Где функция определена и непрерывна на отрезке a, b. Тогда всякое значение ε и обращающее функцию в ноль называется корнем уравнения ( или. корнем функции ( Если функция ( представляет собой достаточно сложное выражение, то его точные корни практически невозможно найти. Кроме того в некоторых случаях выражение ( может содержать коэффициенты известные лишь приближенно и тогда задача определения точных корней вообще теряет смысл. Найдём приближенные значения корней выражения (. Предположим, что функция имеет лишь изолированные корни, то есть для каждого корня существует некоторая окрестность, не содержащая других корней. Поиск приближенных изолированных действительных корней будет состоять из двух этапов: - отделения корней, то есть установления возможно малых промежутков в которых содержится только по одному корню не равному нолю - уточнения приближенных значений корней, то есть вычисление их с заданной точностью. Для отделения корней используется известная из математического анализа теорема: если непрерывная функция принимает на концах некоторого интервала значения с разными знаками, то есть ( a ( b < 0, то внутри этого интервала содержится, по крайней мере, один корень ε ( ε [ a, b] ; ( ε 0. ( a ( b < 0 ( Очевидно, что корень ε будет заведомо единственным, если на данном интервале существует и сохраняет неизменным знак. первая производная функции ( Процесс отделения корней начинается с установления знака функции на концах интервала, в точках a и b. Затем знак функции определяется в ряде промежуточных точек ( a,,... a, выбор которых зависит от особенностей функции (. При анализе функции необходимо помнить, что алгебраическое уравнение степени, например a + a + a a 0, имеет не более действительных корней. 0

2 Следовательно, если для такого уравнения мы отделим значить, что все корни отделены. перемен знака, то это будет ( 0 П ( 0 + ( [, ; ][ 0,; ][,] Метод половинного деления Рассмотрим функцию ( на отрезке [ a, b] ( ( a ( b < 0. a + b Разделим отрезок [ a, b] пополам. Если значение будет равно нолю, то a + b a + b значениеε является корнем уравнения ( и решение окончено. Если 0, a + b a + b то исследуются знаки на концах отрезков a, и, b, и выбирается тот отрезок (отрезки, на концах которого функция имеет противоположные знаки. Выбранный отрезок снова делят пополам и так далее. В результате, на некотором этапе решения либо будет найдено точное значение ε, либо получена бесконечная последовательность вложенных друг в друга отрезков a b, a, b, a, b,..., a, b ([, ][ ][ ] [ ], таких что ( a ( b < 0 и b a ( b a ( В последнем случае в качестве корней уравнения выбирают значение ε lim lim b (4 a З. На практике вычисление заканчивается при достижении заданной точности, то ( + ( есть при ε ε k ( - номер шага вычисления, k - заданная точность. y [,] П. Задана функция на отрезке ( 0 ; ( ( (на первых этапах вычисления можно производить с пониженной точностью. 0.5 < ε < 0.

3 ( a ( < ε < ( < ε < ( < ε < З. Метод легко реализуется программно. Его сходимость гарантирована. Метод хорд (метод пропорциональных частей Пусть на отрезке [ a, b] задана функция (, причём ( a ( b < 0. Тогда. ( 0 Для определённости будем считать, что ε и ( a < 0 а b >. Тогда, вместо того, чтобы делить отрезок [ a, b] пополам, разделим его в отношении ( b. Заменим график функции ( на отрезке [ b] A и B (концы отрезка. Общий вид уравнения прямой: a, прямой, проходящей через точки ε y y y y (5 B (, ( a ( b, ( b A a И тогда, уравнение прямой проходящей через эти точки: a b a y ( a ( b ( a (6 С осью X данная прямая пересечётся в точке (,0. То есть: a b a ( a ( b ( a ( a ( ( ( b a b a a (7 Выражение (7 расчётная формула метода хорд. П. - y ( a 0; b [ 0, ] ( a ( b < 0

4 ( ( 0.5 ( ( З. Первое приближение можно вычислять с пониженной точностью. ( 0.8 ( ( и так далее З. В ряде случаев метод хорд даёт более быструю сходимость, чем метод половинного деления. 4 Метод Ньютона (метод касательных Отличие метода Ньютона от метода хорд состоит в том, что на некотором приближении, вместо хорды проводится касательная к кривой, и при, находится пересечение касательной с осью абсцисс. При этом не обязательно указывать отрезок b, содержащий корень. Достаточно найти лишь некоторое приближение корня. [ a, ] Уравнение прямой проходящей через заданную точку ( 0 k( 0, y : 0 0 y y (8 Уравнение касательной к кривой в точке ( b ( b ( b ( b( b B, : y (9 При этом ( b tgϕ (ϕ - угол наклона касательной к оси абсцисс.,0. Точка пересечения касательной к графику с осью абсцисс имеет координаты ( Подставим их в выражение (9: ( b ( b( b ( b b ( b (0 ( ( ( i ( i+ i ( i 4

5 П. - y ( ε 0.8 y ( ( ( ( З. Объём вычислений, в данном случае, превышает количество вычислений в ранее описанных методах за счёт вычисления производных. Однако скорость сходимости метода Ньютона выше. З. Для разрешения вопроса выбора начального приближения, целесообразно сперва применить метод половинного деления или метод хорд, а затем метод Ньютона. Метод итераций (метод последовательных приближений Пусть дана функция ( y ( 0 (причём ( требуется определить её корень. Заменим выражение ( равносильным выражением ϕ( - непрерывная функция, и ( Выберем произвольным способом грубое приближенное значение корня выражения (, например ε 0. Подставив выбранное значение в выражение (, найдём некоторое значение, которое снова подставим в выражение (, и так далее. Тогда: ϕ ϕ ( 0 ( ( В результате получим некоторую последовательность чисел ( 0..., где: ϕ (4 Если эта последовательность сходится, то есть существует число ε lim ϕ lim. То, переходя к пределу (4, получим: ( lim ( ϕ( ( ϕ( ε lim ϕ lim Так как последовательность сходится, то в пределе получим равенство. Но тогда и ϕ( ε ε (5 5

6 + И тогдаε является корнем уравнения (, а следовательно и корнем уравнения (. Достаточным условием сходимости метода является отношение: ( < ϕ (6 4 П. Найти с точностью до 0 наибольший положительный корень ε уравнения 000. Грубо оценим приближенное значение корня как 0 0. Причем, очевидно, что точное значение корня будет меньше. Исходное уравнение можно привести к виду ( тремя способами: Проверим, соблюдается ли для выбранных вариантов решения условие (6: ϕ ϕ ϕ ( ( >>> > ( ( 000 То есть, нам подходит только третий вариант. Решение сведём в таблицу: ( ϕ То есть, ε


Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Пусть дано нелинейное уравнение ( 0, (3.1 где ( функция, определенная и непрерывная на некотором промежутке. В некоторых случаях

Подробнее

Методы решения нелинейных уравнений

Методы решения нелинейных уравнений Лекция стр. Лекция Методы решения нелинейных уравнений Постановка задачи Дано: нелинейное уравнение f () =, где f () функция определенная и непрерывная на некотором промежутке. Требуется найти корни уравнения,

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных) уравнений f = ) заключается в нахождении значений,

Подробнее

Занятие 5. МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Занятие 5. МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Занятие 5 МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Рассматривается проблема решения систем линейных алгебраических уравнений (СЛАУ), записываемых в виде a a b A b или,

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ - --1 1.57.5-5-.5 РЕШЕНИЕ УРАВНЕНИЙ С ОДНОЙ ПЕРЕМЕННОЙ Задание: Найти решение уравнения с точностью 0. 0001 следующими методами: дихотомии; пропорциональных частей (хорд); касательных (Ньютона); модифицированным

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы Иванов И.И. Вариант 1.

Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы Иванов И.И. Вариант 1. Задание: Вариант #1 x 11x + 36x 36 = 0 Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы 04-06 Иванов И.И. Вариант 1 Этап 5. Тема: Методы решения алгебраических

Подробнее

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 4.0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных

Подробнее

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности.

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности. Methods.doc Методы приближенных вычислений Стр.1 из 6 Общее условие задачи: Двумя заданными численными методами вычислить приближенное значение корня 1 функционального уравнения вида f()=0 для N значений

Подробнее

Лекция 2. Решение нелинейных уравнений. Постановка задачи: Найти коэффициент погрешности прибора σ при проведении геодезических измерений из

Лекция 2. Решение нелинейных уравнений. Постановка задачи: Найти коэффициент погрешности прибора σ при проведении геодезических измерений из Лекция 2. Решение нелинейных уравнений. Постановка задачи: Найти коэффициент погрешности прибора σ при проведении геодезических измерений из уравнения: δ cos σ υ σ 2 + η = 0 Значения δ = 0,186, υ = 4,18,

Подробнее

Лектор Ст. преподаватель Купо А.Н.

Лектор Ст. преподаватель Купо А.Н. Лекция 2 Решение линейных и нелинейных уравнений в средах MS Excel и Mthcd Лектор Ст. преподаватель Купо А.Н. 1.Решение уравнений с одним неизвестным. Дихотомия. 2.Метод хорд. Метод касательных. Метод

Подробнее

Расчетно-графическая работа по информатике

Расчетно-графическая работа по информатике Министерство образования Российской Федерации ФГБОУ ВПО «ЮжноУральский государственный университет» (НИУ) Филиал ФГБОУ ВПО ЮУрГУ (НИУ) в г. УстьКатаве Кафедра Машиноведение Расчетнографическая работа по

Подробнее

Кафедра «Математический анализ» ПРИБЛИЖЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ С ОДНОЙ ПЕРЕМЕННОЙ

Кафедра «Математический анализ» ПРИБЛИЖЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ С ОДНОЙ ПЕРЕМЕННОЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

Лабораторная работа по теме «Тема 1.2. Методы решения нелинейных уравнений»

Лабораторная работа по теме «Тема 1.2. Методы решения нелинейных уравнений» Лабораторная работа по теме «Тема.. Методы решения нелинейных уравнений» Перейти к Теме. Теме. Огл.... Вопросы, подлежащие изучению. Постановка задачи численного решения нелинейных уравнений.. Этапы численного

Подробнее

1. Метод итераций. ( x ) x = ϕ. (5.1) Метод отыскания приближенных значений корня уравнения (5.1) с помощью формулы xn

1. Метод итераций. ( x ) x = ϕ. (5.1) Метод отыскания приближенных значений корня уравнения (5.1) с помощью формулы xn Метод итераций Пусть дано уравнение с одной неизвестной ( (5 Метод отыскания приближенных значений корня уравнения (5 с помощью формулы ( называют просто методом итерации При решении таких уравнений возникает

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных исследований

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» Методические указания к лабораторной работе «Вычисления корней трансцендентных уравнений»

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Ф И Л И А Л «С Е В М А Ш В Т У З» Г О С У Д А Р С Т В Е Н Н О Г О О Б Р А З О В А Т Е Л Ь Н О Г О У Ч Р Е Ж Д Е Н И Я В Ы С Ш Е Г О П Р О Ф Е С С И О Н А Л Ь Н О Г

Подробнее

ОБОБЩЕННЫЙ ОПЕРАТОР ЦИКЛА 4.6. РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ. Синтаксис оператора:

ОБОБЩЕННЫЙ ОПЕРАТОР ЦИКЛА 4.6. РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ. Синтаксис оператора: Синтаксис оператора: ОБОБЩЕННЫЙ ОПЕРАТОР ЦИКЛА DO [{ WHILE UNTIL } ] [] []... [] LOOP [{ WHILE UNTIL } ] где ключевые слова переводятся следующим

Подробнее

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА Методические указания Санкт-Петербург 2013

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC.

ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC. ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC. Машкова Е.Г., Покришка О.И. Донской Государственный Технический Университет (ДГТУ) Ростов-на-Дону,

Подробнее

А. П. Иванов. Методические указания. Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений. факультет ПМ ПУ СПбГУ 2007 г.

А. П. Иванов. Методические указания. Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений. факультет ПМ ПУ СПбГУ 2007 г. А. П. Иванов Методические указания Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений факультет ПМ ПУ СПбГУ 2007 г. Оглавление 1. Решение скалярных уравнений...........................

Подробнее

Решение уравнения с одним неизвестным

Решение уравнения с одним неизвестным 1 Решение уравнения с одним неизвестным Дано уравнение в виде f(x)=0, где f(x) некоторая функция переменной x. Число x * называется корнем или решением данного уравнения, если при подстановке x=x * в уравнение

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

Задания для самостоятельного решения. 5. Напишите уравнение касательной к графику функции f ( x) x 3 1в точках с абсциссами x 0 =-1 и x 0 =2

Задания для самостоятельного решения. 5. Напишите уравнение касательной к графику функции f ( x) x 3 1в точках с абсциссами x 0 =-1 и x 0 =2 Задания для самостоятельного решения. Найдите область определения функции 6x. Найдите тангенс угла наклона к оси абсцисс касательной, проходящей через точку М (;) графика функции. Найдите тангенс угла

Подробнее

Pascal 13. Решение нелинейных уравнений.

Pascal 13. Решение нелинейных уравнений. Pascal 13. Решение нелинейных уравнений. Нелинейные уравнения можно разделить на 2 класса - алгебраические и трансцендентные. Алгебраическими уравнениями называют уравнения, содержащие только алгебраические

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

Министерство образования и науки РФ. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК)

Министерство образования и науки РФ. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) Министерство образования и науки РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) Факультет дистанционных форм обучения Заочное отделение ГПЕмгушева, МДУлымжиев ВЫЧИСЛИТЕЛЬНАЯ

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды Числовые и функциональные ряды Основные понятия Знакочередующиеся ряды Функциональные ряды Степенные ряды и разложение функций в степенной ряд Применение степенных рядов Ряды Фурье Основные понятия Пусть

Подробнее

Лабораторная работа по численным методам с решением

Лабораторная работа по численным методам с решением Лабораторная работа по численным методам с решением Задание 1. Рассмотрим функцию, где Провести математическое исследование графика функции. Построить эскиз графика функции. Изолировать нули функции, то

Подробнее

2 Численные методы решения уравнений.

2 Численные методы решения уравнений. 2 Численные методы решения уравнений. 2.1 Классификация уравнений, их систем и методов решения. Уравнения и системы уравнений делятся на: 1) алгебраические: уравнение называется алгебраическим, если над

Подробнее

1. Численные методы решения уравнений

1. Численные методы решения уравнений 1. Численные методы решения уравнений 1. Системы линейных уравнений. 1.1. Прямые методы. 1.2. Итерационные методы. 2. Нелинейные уравнения. 2.1. Уравнения с одним неизвестным. 2.2. Системы уравнений. 1.

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ, ПРОГРАММА И КОНТРОЛЬНАЯ РАБОТА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ, ПРОГРАММА И КОНТРОЛЬНАЯ РАБОТА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный университет геодезии и картографии (МИИГАиК) Факультет дистанционных форм обучения Заочное отделение `` МЕТОДИЧЕСКИЕ УКАЗАНИЯ,

Подробнее

МП: Итерации Ньютона

МП: Итерации Ньютона Последовательность вида МП: Итерации Ньютона x + = x f x f = 0. x используют для приближенного решения уравнения f(x) = 0 и называют итерационной последовательностью Ньютона. В таком виде метод Ньютона

Подробнее

Этап 5 Тема: Методы отыскания корней алгебраического уравнения. = 0. Стационарные точки. < 0, то. а) Отделить корни алгебраического уравнения

Этап 5 Тема: Методы отыскания корней алгебраического уравнения. = 0. Стационарные точки. < 0, то. а) Отделить корни алгебраического уравнения р. Этап 5 Тема: Методы отыскания корней алгебраического уравнения Дано: + 6 6 = а) Отделить корни алгебраического уравнения Алгоритм отделения проых корней с помощью исследования функций и пороения графиков.

Подробнее

Некоторые численные методы решения. алгебраических и трансцендентных уравнений

Некоторые численные методы решения. алгебраических и трансцендентных уравнений С.В. Овчинников, В.Н. Шевцов Некоторые численные методы решения алгебраических и трансцендентных уравнений Методическое пособие по учебной дисциплине «Вычислительные методы» для студентов физического факультета

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

(электронный ресурс)

(электронный ресурс) Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Владимирский государственный университет имени

Подробнее

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Лабораторная работа Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Постановка задачи: Требуется найти безусловный минимум функции одной переменной (

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

Степенные ряды. Степенным рядом называется функциональный ряд вида. коэффициентами ряда, а точка разложения ряда. n n

Степенные ряды. Степенным рядом называется функциональный ряд вида. коэффициентами ряда, а точка разложения ряда. n n Тема 9 Степенные ряды Степенным рядом называется функциональный ряд вида при этом числа... коэффициентами ряда, а точка разложения ряда.,,...,,... R... называются центром Степенные ряды Общий член степенного

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Численные методы линейной и нелинейной алгебры

Численные методы линейной и нелинейной алгебры ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского» А.И. Зинина В.И. Копнина Численные методы линейной и нелинейной алгебры Учебное пособие Саратов

Подробнее

Математическое моделирование объектов теплоэнергетики

Математическое моделирование объектов теплоэнергетики Математическое моделирование объектов теплоэнергетики Лекция 1 Нелинейные алгебраические и трансцендентные уравнения. Термины и понятия 2 Моделирование это исследование объекта или системы объектов путем

Подробнее

Ассистент кафедры ХТТиХК, к.т.н. Белинская Наталия Сергеевна

Ассистент кафедры ХТТиХК, к.т.н. Белинская Наталия Сергеевна Дисциплина «Углубленный курс информатики» Лекция 2 Приближенные методы решения нелинейных уравнений Ассистент кафедры ХТТиХК, к.т.н. Белинская Наталия Сергеевна 2016 План лекции Нелинейные уравнения Определение

Подробнее

ВВЕДЕНИЕ. F(x) = F'(x) =... = F (k - 1) (x) = 0.

ВВЕДЕНИЕ. F(x) = F'(x) =... = F (k - 1) (x) = 0. Задача отделения корней. Уточнение корней методом половинного деления (метод дихотомии). Бондаренко В.Ю., Китайчик В.Ю. Донской Государственный Технический Университет (ДГТУ) Ростов-на-Дону, Россия The

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Дифференциал функции y = f(x) зависит от х и является главной частью приращения х. Также можно воспользоваться формулой:

Дифференциал функции y = f(x) зависит от х и является главной частью приращения х. Также можно воспользоваться формулой: 2.2.7. Применение дифференциала к приближенным вычислениям. Дифференциал функции y = зависит от х и является главной частью приращения х. Также можно воспользоваться формулой: dy d Тогда абсолютная погрешность:

Подробнее

М е т о д и ч е ские указания для п р о в едения семинарских занятий

М е т о д и ч е ские указания для п р о в едения семинарских занятий МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Подробнее

Эта система эквивалентна векторной (матричной) записи системы, - вектор столбец неизвестных, - вектор столбец свободных членов.

Эта система эквивалентна векторной (матричной) записи системы, - вектор столбец неизвестных, - вектор столбец свободных членов. Лекция 4. Решение систем линейных уравнений методом простых итераций. Если система имеет большую размерность ( 6 уравнений) или матрица системы разрежена, более эффективны для решения непрямые итерационные

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Интерполирование функций

Интерполирование функций Постановка задачи, основные понятия Конечные разности и их свойства Интерполяционные многочлены Оценка остаточного члена интерполяционных многочленов Постановка задачи, основные понятия Пусть, то есть

Подробнее

НЕЛИНЕЙНЫЕ УРАВНЕНИЯ

НЕЛИНЕЙНЫЕ УРАВНЕНИЯ Г Л А В А НЕЛИНЕЙНЫЕ УРАВНЕНИЯ. Понятия и определения. Постановка задачи. Решение нелинейных уравнений с одним неизвестным является одной из важных математических задач, возникающих в различных разделах

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

Рисунок 1 Метод простых итераций

Рисунок 1 Метод простых итераций Информатика. Осень 2014. Уточнение корней уравнений. Для численного решения алгебраических уравнений разработано множество итерационных методов (методов последовательного приближения к точному значению)

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Решение нелинейного уравнения. Если уравнение представлено в виде f1(x)=f2(x), то его всегда можно преобразовать к виду f(x)=0, где f(x)=f1(x)-f2(x).

Решение нелинейного уравнения. Если уравнение представлено в виде f1(x)=f2(x), то его всегда можно преобразовать к виду f(x)=0, где f(x)=f1(x)-f2(x). Решение нелинейного уравнения Общий вид уравнения с одним неизвестным имеет вид f(x)=0. Если уравнение представлено в виде f1(x)=f2(x), то его всегда можно преобразовать к виду f(x)=0, где f(x)=f1(x)-f2(x).

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

3. Производная производной дифференцированием дифференцируемой на промежутке ( a , b

3. Производная производной дифференцированием дифференцируемой на промежутке ( a , b 41 3. Производная Рассмотрим функцию y=f(, непрерывную в некоторой окрестности точки. Пусть, приращение аргумента в точке. Обозначим через,y или,f Y y=f( f(+, f( M N = +, Рис. 1 приращение функции, равное

Подробнее

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП Функции нескольких переменных 11. Определение функции нескольких переменных. Предел и непрерывность ФНП 1. Определение функции нескольких переменных ОПРЕДЕЛЕНИЕ. Пусть X = { 1 n i X i R } U R. Функция

Подробнее

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ ЗАДАЧА ОПТИМИЗАЦИИ На прошлой лекции были рассмотрены методы решения нелинейных уравнений Были рассмотрены двухточечные методы, которые используют локализацию корня,

Подробнее

lim f x f x используя обозначения приращений. 0 (2).

lim f x f x используя обозначения приращений. 0 (2). Лекция подготовлена доц Мусиной МВ Непрерывность функции Пусть функция y = f(x) определена в точке x и в некоторой окрестности этой точки Функция y = f(x) называется непрерывной в точке x, если существует

Подробнее

Непрерывность функции

Непрерывность функции Непрерывность функции Непрерывная в точке функция, свойства Непрерывная на множестве функция Теоремы о функциях, непрерывных на отрезке. Обратная функция Метод половинного деления. Односторонние пределы.

Подробнее

«ИССЛЕДОВАНИЕ ФУНКЦИЙ»

«ИССЛЕДОВАНИЕ ФУНКЦИЙ» Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы «ИССЛЕДОВАНИЕ ФУНКЦИЙ»

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

В.И. Иванов С.И. Васин

В.И. Иванов С.И. Васин Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы «ИССЛЕДОВАНИЕ ФУНКЦИЙ»

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Отделение корней Пусть дано уравнение f ( 0, () где функция f ( C[ a; Определение Число f ( ) 0 x называется корнем уравнения () или нулем функции f (,

Подробнее

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПРАКТИКУМ ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ» С ИСПОЛЬЗОВАНИЕМ СИСТЕМЫ MATHCAD

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПРАКТИКУМ ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ» С ИСПОЛЬЗОВАНИЕМ СИСТЕМЫ MATHCAD РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПРАКТИКУМ ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ» С ИСПОЛЬЗОВАНИЕМ СИСТЕМЫ MATHCAD Рязань 009 Предисловие Практикум является приложением к учебному

Подробнее

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО.

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО. ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО Понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пример: А множество натуральных чисел а В множество квадратов натуральных чисел

Подробнее

Этап 4 Методы решения систем линейных алгебраических уравнений

Этап 4 Методы решения систем линейных алгебраических уравнений стр. Этап Методы решения систем линейных алгебраических уравнений Дано: + - + = - - 5 + = -5 5 - + - = - 0 + - + = а) Найти решение системы методом простых итераций (точность счёта ε = 0. 0) Алгоритм решения

Подробнее

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f( x ) слева при стремлении x к a, если для любого числа существует такое число

Подробнее

Тема 15 «Уравнения и неравенства с модулем».

Тема 15 «Уравнения и неравенства с модулем». Тема 15 «Уравнения и неравенства с модулем». Модуль действительного числа это абсолютная величина этого числа. Проще говоря, при взятии модуля нужно отбросить от числа его знак. Обозначается a. Например,

Подробнее

Практическая работа. Приближенное решение уравнений

Практическая работа. Приближенное решение уравнений Актуализация темы Практическая работа Приближенное решение уравнений Мы прекрасно решаем квадратные и биквадратные уравнения, наипростейшие тригонометрические и степенные. Еще водятся "мастодонты", знающие

Подробнее

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА)

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Постановка задачи. Рассматривается задача о вычислении однократного интеграла J(F ) = F (x) dx. ()

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

ИССЛЕДОВАНИЕ ФУНКЦИЙ

ИССЛЕДОВАНИЕ ФУНКЦИЙ Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы ИССЛЕДОВАНИЕ ФУНКЦИЙ (для

Подробнее

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной РАЗДЕЛ 5 Интегральное исчисление функций одной переменной Материалы подготовлены преподавателями математики кафедры общеобразовательных дисциплин для системы электронного дистанционного обучения Содержание

Подробнее

Лекция 9. Метод параллельной стрельбы решения краевой задачи для системы обыкновенных дифференциальных уравнений (ОДУ)

Лекция 9. Метод параллельной стрельбы решения краевой задачи для системы обыкновенных дифференциальных уравнений (ОДУ) Лекция 9. Метод параллельной стрельбы решения краевой задачи для системы обыкновенных дифференциальных уравнений (ОДУ). Некоторые сведения из вычислительной математики Анализ прикладного программного обеспечения

Подробнее

Численные методы решения алгебраических уравнений и систем уравнений

Численные методы решения алгебраических уравнений и систем уравнений Краевой конкурс учебно-исследовательских и проектных работ учащихся «Прикладные вопросы математики» Алгебра Численные методы решения алгебраических уравнений и систем уравнений Булычев Сергей, МОУ «Лицей

Подробнее

( ) ( ) Контрольная работа по численным методам с решением. f (2) f ''(2) = > 0, значит, метод Ньютона сходится. x x ε = 2 1.

( ) ( ) Контрольная работа по численным методам с решением. f (2) f ''(2) = > 0, значит, метод Ньютона сходится. x x ε = 2 1. Контрольная работа по численным методам с решением Задание На отрезке [;] методом Ньютона найти корень уравнения + = с точностью, График функции Условие сходимости метода Ньютона: f f ''(, ( > где = начальное

Подробнее

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика»

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика» Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники ТУСУР Кафедра

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Coa Компьютерная алгебра

Coa Компьютерная алгебра 6. Быстрые алгоритмы деления Деление чисел методом Ньютона Для определенности будем считать, что делимое a = ( a,, am) и делитель b = ( b,, b ) записаны в позиционной системе счисления по основанию ( ).

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

Лимонникова Е.В. ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА. Методические указания по выполнению курсовой работы

Лимонникова Е.В. ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА. Методические указания по выполнению курсовой работы Министрество образования Российской Федерации Филиал Санкт-Петербургского государственного морского Технического университета СЕВМАШВТУЗ Кафедра «Прикладной математики» Лимонникова Е.В. ВЫЧИСЛИТЕЛЬНАЯ

Подробнее

ЗАНЯТИЕ 1 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. Отделение корней

ЗАНЯТИЕ 1 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. Отделение корней ЗАНЯТИЕ ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Отделение корней Пусть дано уравнение f () 0, () где функция f ( ) C[ a; Определение Число называется корнем уравнения () или нулем функции f (), если

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

Вергазова Ольга Бухтияровна

Вергазова Ольга Бухтияровна УДК по дисциплине «Методы оптимизации» (160403) (519.677 Решения задач математического анализа и прикладных задач) для специальности 1604030065. Рецензенты: Фурсов Андрей Серафимович - кандидат физикоматематических

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее