ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11"

Транскрипт

1 ЧАСТЬ 6 ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция ЗАКОН РАСПРЕДЕЛЕНИЯ И ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ФУНКЦИЙ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие функции случайной величины и провести классификацию возникающих при этом задач; вывести закон распределения функции одного случайного аргумента и закон распределения суммы двух случайных величин; пояснить понятие композиции законов распределения Понятие о функции случайной величины Среди практических приложений теории вероятностей особое место занимают задачи, требующие нахождения законов распределения и/или числовых характеристик функций случайных величин В простейшем случае задача ставится следующим образом: на вход технического устройства поступает случайное воздействие ; устройство подвергает воздействие некоторому функциональному преобразованию и на выходе дает случайную величину ( ) (см рис 6) Нам известен закон распределения случайной величины, и требуется найти закон распределения и/или числовые характеристики случайной величины Рис 6 Функции случайных величин Можно выделить три основные возникающие задачи: Зная закон распределения случайной величины (или случайного вектора (,,, ) ), найти закон распределения выходной случайной величины ( ) (или,,, ) ) 97 (

2 Зная закон распределения случайной величины, найти только числовые характеристики выходной случайной величины 3 В некоторых случаях (при особых видах преобразования ) для нахождения числовых характеристик выхода не требуется знать закон распределения входной случайной величины, а достаточно знать только его числовые характеристики Рассматриваем случайную величину, зависящую функционально от случайной величины, т е ( ) Пусть случайная величина дискретна и известен ее ряд распределения: Х:, x x x x p p p p, где p x }, (,); p При подаче на вход значения случайной величины x на выходе получим y ( x ) с вероятностью p И так для всех возможных значений случайной величины Таким образом, получаем табл 6 Таблица 6 ( x ) x ) x ) x ) Полученная табл 6 в общем случае может не быть рядом распределения случайной величины, так как значения в верхней строке таблицы могут быть расположены в невозрастающем порядке, а некоторые ( x ) могут даже совпадать Для преобразования табл 6 в ряд распределения случайной величины необходимо упорядочить возможные значения y ( x ) по возрастанию, а вероятности совпадающих значений ( x ) нужно сложить Для нахождения числовых характеристик случайной величины преобразовывать (6) в ряд распределения нет необходимости, так как их можно вычислить по таблице (6) Действительно, находя сумму произведений возможных значений случайной величины на их вероятности, получаем ] ( )] ( x ) p (6) y ( ( 98 ( p p p p

3 Таким образом, зная только закон распределения аргумента, можно найти математическое ожидание функции случайной величины Аналогично находим дисперсию случайной величины : D ] ( ) ] ( ( x ) ) p Аналогично определяем начальные и центральные моменты любых порядков случайной величины ( ) : ( ) [ ( x )] p ; ( ) [ ( x ) Для непрерывной случайной величины, имеющей плотность распределения f (x), получаем ] ( )] ( x) f ( x) dx ; ] p D ] ( ( x) ) f ( x dx ; ) ( ) [ ( x)] f ( x) dx; ( ) [ ( x) ] f ( x) dx Видим, что для нахождения числовых характеристик функции ( ) вовсе не нужно знать ее закон распределения достаточно знания закона распределения аргумента Теоремы о числовых характеристиках функций случайных величин В некоторых задачах числовые характеристики системы случайных величин (,,, ) можно определить как функции числовых характеристик системы случайных величин (,,, ) В этом случае не требуется даже знание закона распределения аргумента, например совместную плотность распределения f ( x, x,, x), а достаточно иметь только числовые характеристики этой системы случайных величин Для решения таких задач сформулированы следующие теоремы о числовых характеристиках функций случайных величин: 99

4 M [ C] C, 3 M [ C ] CM [ ], D [C] 0, 4 D [ C ] C D[ ], где C неслучайная величина 5 M [ ] ] ] для любого числа слагаемых, как независимых, так и зависимых, коррелированных и некоррелированных 6 Математическое ожидание от линейной комбинации случайных величин,,, равно той же линейной функции от математических ожиданий рассматриваемых случайных величин: 0 ] 0 ] 7 Дисперсия суммы случайных величин равна сумме всех элементов корреляционной матрицы D[ ] K j j K j этих случайных величин Так как корреляционная матрица K j симметрична относительно главной диагонали, на которой находятся дисперсии, то последнюю формулу перепишем в виде D[ ] D[ ] K j Если случайные величины,,, не коррелированы, то справедлива теорема о сложении дисперсий: D[ ] D[ ] 8 Дисперсия линейной функции случайных величин определяется по формуле 0 ] D[ ] jkj j D[ j 00

5 9 Математическое ожидание произведения двух случайных величин равно произведению математических ожиданий плюс ковариация M [ K ] ] ] Математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий M ] ] ] [ 0 Дисперсия произведения независимых случайных величин,,, выражается формулой D ( D ) независимые и центрирован- Если случайные величины ные, получаем,,, D D[ ] Закон распределения функции случайного аргумента Есть непрерывная случайная величина с плотностью распределения f (x), связанная со случайной величиной функциональной зависимостью ( ) Требуется найти закон распределения случайной величиной Рассмотрим случай, когда ( ) строго монотонна, непрерывна и дифференцируема на интервале (, b) всех возможных значений случайной величиной Функция распределения G ( y) случайной величины по определению есть G ( y) y} Если функция (x) монотонно возрастает на участке всех возможных значений случайной величиной, то событие { y} эквивалентно событию { ( y)}, где ( y ) есть функция, 0

6 обратная функции (x) Когда случайная величина принимает значения на участке (, b), то случайная точка (, ) перемещается по кривой y (x) (ордината полностью определяется абсциссой) (см рис 6) Из строгой монотонности (x) следует монотонность ( y ), и поэтому функцию распределения случайной величиной можно записать следующим образом: y y x ( y) Рис 6 Функция случайного аргумента b x x ( y ) G( y) y} ( y)} ( y)} ( y) f ( x) dx Дифференцируя это выражение по y, входящему в верхний предел интеграла, получаем плотность распределения случайной величиной в виде g( y) dg( y) dy f ( d ( y) dy f ( ( (6) Если функция (x) на участке (, b) возможных значений случайной величиной монотонно убывает, то, проведя аналогичные выкладки, получаем f ( ( (63) Диапазон возможных значений случайной величиной может быть в выражениях (6) и (63) от до Так как плотность распределения не может быть отрицательной, то формулы (6) и (63)можно объединить в одну f ( ( (64) 0

7 Пример Пусть функция случайной величины ( ) является линейной, т е b, где 0 Непрерывная случайная величина имеет плотность распределения f (x), и тогда, используя выражение (64), найдем закон распределения g (y), учитывая, что обратная функция есть (y) y b, а модуль ее производной равен ( y b g( y) f (65) Если случайная величина имеет нормальное распределение ( x ) f ( x) exp, то согласно (65) получаем, exp y b ( y ( b)) exp Это по-прежнему нормальный закон распределения с математическим ожиданием D и средним квадратичным отклонением b, дисперсией В результате линейного преобразования нормально распределенной случайной величины получаем случайную величину, также распределенную по нормальному закону 03

8 Закон распределения суммы двух случайных величин Композиция законов распределения Имеем систему двух непрерывных случайных величин (, ) и их сумму случайную величину Необходимо найти закон распределения случайной величины, если известна совместная плотность распределения системы f ( x, x ) Функция распределения G ( y) y} y} это площадь области D ( y) на плоскости x 0x, где выполняется неравенство y (см рис 63), т е D( y) y x, x) dxdx f ( x, x) G ( y) f ( x dx dx Продифференцировав это выражение по y, получаем плотность распределения вероятности случайной величины x D(y) y Рис 63 Закон распределения суммы случайных величин x f ( x dx, y x ) Учитывая симметрию слагаемых, можно записать аналогичное соотношение f ( y x dx, x) Если случайные величины и независимы, т е выполняется равенство f ( x, x) f( x ) f( x), то две последние формулы примут вид: f dx ; (66) ( x ) f( y x ) f dx (67) ( y x) f( x) 04

9 В том случае, когда складываются независимые случайные величины и, то говорят о композиции законов распределения Для обозначения композиции законов распределения иногда применяется символьная запись: g f f Закон распределения называется устойчивым к композиции, если при композиции законов распределения этого типа получается снова тот же закон, но с другими значениями параметров Например, если сложить две независимые нормальные случайные величины, то результирующая случайная величина будет иметь нормальный закон распределения, т е нормальный закон устойчив к композиции Кроме нормального закона, устойчивыми к композиции являются законы распределения Эрланга, биноминальный, Пуассона

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН.

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Т А Матвеева В Б Светличная С А Зотова ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема3. «Функция распределения вероятностей случайной величины» Кафедра теоретической и прикладной

Подробнее

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω)

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω) Понятие и её закона Одномерные дискретные случайные Определение случайной Случайной величиной (СВ) называется функция (ω), определённая на пространстве элементарных событий Ω, со значениями в одномерном

Подробнее

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 8 РАСПРЕДЕЛЕНИЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить функции плотности и числовые характеристики случайных величин имеющих равномерное показательное нормальное и гамма-распределение

Подробнее

Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН. . Производящей функцией для случайной величины X называется функция вида

Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН. . Производящей функцией для случайной величины X называется функция вида Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить производящую функцию и вычислить параметры биномиального, пуассоновского, геометрического и гипергеометрического распределений;

Подробнее

6.4. Системы случайных величин

6.4. Системы случайных величин Лекция 4.9. Системы случайных величин. Функция распределения системы двух случайных величин (СДСВ). Свойства функции 6.4. Системы случайных величин В практике часто встречаются задачи которые описываются

Подробнее

Математическое ожидание

Математическое ожидание Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X px ( ) xp( x) dx.

Подробнее

Числовые характеристики непрерывных случайных величин

Числовые характеристики непрерывных случайных величин Числовые характеристики непрерывных случайных величин 1 Математическое ожидание Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число M X + = px ( ) xp( x)

Подробнее

(, ) (, ) ( ) x y. F x y = P X Y D

(, ) (, ) ( ) x y. F x y = P X Y D 4 СИСТЕМА ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Многомерной случайной величиной (векторной случайной величиной, случайным вектором или случайной точкой) называют упорядоченный набор нескольких случайных

Подробнее

Нейронные сети. Краткий курс

Нейронные сети. Краткий курс Нейронные сети Краткий курс Лекция 7 Модели на основе теории информации Рассмотрим информационно теоретические модели, которые приводят к самоорганизации В этих моделях синаптические связи многослойной

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 1 Многомерная случайная величина X = (X 1,X 2,,X n ) это совокупность случайных величин X i (i =1,2,,n), заданных на одном и том же вероятностном пространстве Ω. Закон распределения

Подробнее

1.4. СИГНАЛЫ И ПОМЕХИ В РТС КАК СЛУЧАЙНЫЕ ЯВЛЕНИЯ

1.4. СИГНАЛЫ И ПОМЕХИ В РТС КАК СЛУЧАЙНЫЕ ЯВЛЕНИЯ ЛЕКЦИЯ Сообщения, сигналы, помехи как случайные явления Случайные величины, вектора и процессы 4 СИГНАЛЫ И ПОМЕХИ В РТС КАК СЛУЧАЙНЫЕ ЯВЛЕНИЯ Как уже отмечалось выше основная проблематика теории РТС это

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

, а всю числовую последовательность - y

, а всю числовую последовательность - y Лекции Глава Числовые последовательности Основные понятия Числовую функцию y f N y R заданную на множестве N натуральных чисел называют числовой последовательностью Число f называют -м элементом последовательности

Подробнее

Контрольная работа 1.

Контрольная работа 1. Контрольная работа...4. Найти общее решение (общий интеграл) дифференциального уравнения. Сделать проверку. 4 y y y y y y 4 y y y 4 4 Это уравнение Бернулли. Сделаем замену: y y y 4 4 4 z y ; z y y Тогда

Подробнее

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Понятие непрерывной случайной величины. Функция распределения, плотность распределения, их взаимосвязь и свойства. Математическое ожидание непрерывной случайной величины

Подробнее

В.Н. Исаков Статистическая теория радиотехнических систем (курс лекций) strts-online.narod.ru

В.Н. Исаков Статистическая теория радиотехнических систем (курс лекций) strts-online.narod.ru 3. Случайные сигналы и помехи в радиотехнических системах 3.1. Случайные процессы и их основные характеристики Помехой называют стороннее колебание, затрудняющее приѐм и обработку сигнала. Помехи могут

Подробнее

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 13

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 13 ЧАСТЬ 7 ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Лекция 3 ЗАКОН БОЛЬШИХ ЧИСЕЛ И ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА ЦЕЛЬ ЛЕКЦИИ: доказать неравенство Чебышева; сформулировать и доказать закон больших чисел и

Подробнее

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение ГЛАВА СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Биномиальное распределение Пусть эксперимент проводится по схеме Бернулли Определение Дискретная случайная величина имеет биномиальное распределение с параметрами

Подробнее

, (3.4.3) ( x) lim lim

, (3.4.3) ( x) lim lim 3.4. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫБОРОЧНЫХ ЗНАЧЕНИЙ ПРОГНОЗНЫХ МОДЕЛЕЙ До сих пор мы рассматривали способы построения прогнозных моделей стационарных процессов, не учитывая одной весьма важной особенности.

Подробнее

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ 1 Случайная величина X называется непрерывной, если она принимает более, чем счётное число значений. Случайная величина X называется

Подробнее

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения 53 Глава 4. Основные законы распределения непрерывной случайной величины. 4.. Равномерный закон распределения Определение. Непрерывная случайная величина Х имеет равномерное распределение на промежутке

Подробнее

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ 1 ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Одним из важнейших понятий теории вероятностей является понятие случайной величины. Случайной величиной называется переменная, которая

Подробнее

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания:

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания: МВДубатовская Теория вероятностей и математическая статистика Лекция 8 Числовые характеристики случайных величин При изучении случайных величин важную роль играют их числовые характеристики Математическим

Подробнее

М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 10. Неравенства Маркова и Чебышева.Закон больших чисел.

М.В.Дубатовская Теория вероятностей и математическая статистика. Лекция 10. Неравенства Маркова и Чебышева.Закон больших чисел. МВДубатовская Теория вероятностей и математическая статистика Лекция 0 Неравенства Маркова и ЧебышеваЗакон больших чисел Предельные теоремы теории вероятностей В теории вероятностей часто изучаются случайные

Подробнее

ЧАСТЬ І ОСНОВЫ ТЕОРИИ

ЧАСТЬ І ОСНОВЫ ТЕОРИИ .. Скалярные гиперслучайные величины 4 ЧАСТЬ І ОСНОВЫ ТЕОРИИ ГЛАВА ГИПЕРСЛУЧАЙНЫЕ СОБЫТИЯ И ВЕЛИЧИНЫ Введены понятия гиперслучайного события и гиперслучайной величины. Предложен ряд характеристик и параметров

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления

Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления УДК 6-5 Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления К.А. Рыбаков В статье вводится понятие спектральных характеристик линейных

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ

СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ СТРУКТУРА АПИМ И ДЕМОНСТРАЦИОННЫЙ ВАРИАНТ ООП: 120103.65 Космическая геодезия Дисциплина: Математика Время выполнения теста: 80 минут Количество заданий: 45 ТЕМАТИЧЕСКАЯ СТРУКТУРА АПИМ N ДЕ Наименование

Подробнее

2.6. Эксцесс и асимметрия

2.6. Эксцесс и асимметрия Лекция 9 План лекции.5.6. Распределение Симпсона (треугольное распределение)..6 Эксцесс и асимметрия.7 Теорема Ляпунова и её следствия 3. Системы случайных величин (случайные векторы) 3.1 Закон распределения

Подробнее

РОССИЙСКАЯ ЭКОНОМИЧЕСКАЯ ШКОЛА ЭКЗАМЕН ПО МАТЕМАТИКЕ (Тестовый экзамен 2016 решения) ПЕРВАЯ ЧАСТЬ

РОССИЙСКАЯ ЭКОНОМИЧЕСКАЯ ШКОЛА ЭКЗАМЕН ПО МАТЕМАТИКЕ (Тестовый экзамен 2016 решения) ПЕРВАЯ ЧАСТЬ РОССИЙСКАЯ ЭКОНОМИЧЕСКАЯ ШКОЛА ЭКЗАМЕН ПО МАТЕМАТИКЕ (Тестовый экзамен 206 решения) Код ПЕРВАЯ ЧАСТЬ Заштрихуйте на бланке ответов и обведите кружком в условии тот единственный ответ (из,,,, ), который

Подробнее

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 9

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 9 ЧАСТЬ 5 СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 9 ЗАКОН РАСПРЕДЕЛЕНИЯ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие системы случайных величин и закона распределения систем двух случайных величин;

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

4. Методом моментов найти оценки параметров α и β плотности

4. Методом моментов найти оценки параметров α и β плотности Экзаменационный билет по курсу: ИБМ, 3-й семестр (поток Грешилова А.А.). Случайные события. Определение вероятности.. Найти распределение дискретной случайной величины ξ, принимающей значения x с вероятности

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных) уравнений f = ) заключается в нахождении значений,

Подробнее

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины.

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Лекция 3. Основные характеристики и законы распределения случайных величин Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Время: часа. Вопросы: 1. Характеристики

Подробнее

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Тема. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Содержание Предельные теоремы теории вероятности 2 Неравенство Чебышева

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ)

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ) Лекция 5 Тема Непрерывные случайные величины (НСВ) Содержание темы Способы задания: интегральный закон распределения, плотность распределения. Связь между ними. Свойства плотности распределения. Применение

Подробнее

Функции и графики. 1 Переменные и зависимости между ними

Функции и графики. 1 Переменные и зависимости между ними Глава 8 Функции и графики Переменные и зависимости между ними. Две величины и называются прямо пропорциональными, если их отношение постоянно, т. е. если =, где постоянное число, не меняющееся с изменением

Подробнее

Модели постепенных отказов. Начальное значение выходного параметра равно нулю (A=X(0)=0)

Модели постепенных отказов. Начальное значение выходного параметра равно нулю (A=X(0)=0) Модели постепенных отказов Начальное значение выходного параметра равно нулю (A=X(0)=0) Рассматриваемая модель (рис47) также будет соответствовать случаю, когда начальное рассеивание значений выходного

Подробнее

1.1 Определение и основные свойства функций

1.1 Определение и основные свойства функций 1 Функции и графики 1.1 Определение и основные свойства функций Определение 1.1 Будем говорить, что задана однозначная функция y = f() в данной области изменения переменной X = {}, если каждому значению

Подробнее

Современная Гуманитарная Академия Дистанционное образование. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА (курс 2)

Современная Гуманитарная Академия Дистанционное образование. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА (курс 2) 14030201;1 Современная Гуманитарная Академия Дистанционное образование Рабочий учебник Фамилия имя отчество обучающегося Направление подготовки Номер контракта ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

6.7. Статистические испытания

6.7. Статистические испытания Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Подробнее

Методические указания к выполнению курсовой работы

Методические указания к выполнению курсовой работы Методические указания к выполнению курсовой работы "СЛУЧАЙНЫЕ ВЕКТОРЫ" для студентов специальности 655Д «Роботы и робототехнические системы» Кафедра математики г Описание работы Курсовой проект предполагает

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Математический анализ

Математический анализ Математический анализ Понятие функции. Основные свойства функций Математический анализ (лекция 2) 28 / 64 Понятие функции. Основные свойства функций Если каждому элементу (значению) x множества X поставлен

Подробнее

Лекция 10. Распределение? 2.

Лекция 10. Распределение? 2. Распределение?. Пусть имеется n независимых случайных величин N 1, N,..., N n, распределенных по нормальному закону с математическим ожиданием, равным нулю, и дисперсией, равной единице. Тогда случайная

Подробнее

Лекция 4. Доверительные интервалы

Лекция 4. Доверительные интервалы Лекция 4. Доверительные интервалы Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 4. Доверительные интервалы Санкт-Петербург, 2013 1 / 49 Cодержание Содержание 1 Доверительные

Подробнее

Тема 2-14: Евклидовы и унитарные пространства

Тема 2-14: Евклидовы и унитарные пространства Тема 2-14: Евклидовы и унитарные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

2.4. Непрерывные случайные величины

2.4. Непрерывные случайные величины Лекции по ТВ и МС Олейник ТА 6-7 4 Непрерывные случайные величины Непрерывная случайная величина Плотность распределения Математическое ожидание, дисперсия, среднеквадратичное отклонение, мода, медиана

Подробнее

Числовые характеристики случайной величины

Числовые характеристики случайной величины Числовые характеристики случайной величины Числовые характеристики случайной величины Применяются вместо закона распределения случайной величины В сжатой форме выражают наиболее существенные особенности

Подробнее

Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2.

Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2. Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2. В каких случаях определитель равен нулю? Что следует

Подробнее

Глава 3. Непрерывные случайные величины

Глава 3. Непрерывные случайные величины Глава 3. Непрерывные случайные величины. Функция распределения. Если множество значений случайной величины X не конечно и не счетно, то такая случайная величина не может характеризоваться вероятностью

Подробнее

ЛЕКЦИЯ 2. Основные статистические характеристики показателей надёжности ЭТО

ЛЕКЦИЯ 2. Основные статистические характеристики показателей надёжности ЭТО ЛЕКЦИЯ. Основные статистические характеристики показателей надёжности ЭТО Математический аппарат теории надёжности основывается главным образом на теоретико-вероятностных методах, поскольку сам процесс

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров . СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ.. Понятие о статистической оценке параметров Методы математической статистики используются при анализе явлений, обладающих свойством статистической устойчивости.

Подробнее

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость.

ТЕОРИЯ ОЦЕНОК. Основные понятия в теории оценок Состоятельность и сходимость. Поиск оценки может быть рассмотрен как измерение параметра (предполагается, что он имеет некоторое фиксированное, но неизвестное значение), основанное на ограниченном числе экспериментальных наблюдений.

Подробнее

Глава 8. Элементы квантовой механики

Глава 8. Элементы квантовой механики Глава 8 Элементы квантовой механики Задачи атомной физики решаются методами квантовой теории которая принципиально отличается от классической механики Решение задачи о движении тела макроскопических размеров

Подробнее

И. В. Яковлев Материалы по математике MathUs.ru

И. В. Яковлев Материалы по математике MathUs.ru И. В. Яковлев Материалы по математике MathUs.ru Показательные уравнения и неравенства Показательные уравнения и неравенства это уравнения и неравенства, в которых переменная величина входит в аргумент

Подробнее

Лекция 2. Статистики первого типа. Точеченые оценки и их свойства

Лекция 2. Статистики первого типа. Точеченые оценки и их свойства Лекция 2. Статистики первого типа. Точеченые оценки и их свойства Грауэр Л.В., Архипова О.А. CS center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CSC) Лекция 2. Статистики первого типа. Точеченые

Подробнее

8. Различение сигналов 8.1. Постановка задачи различения сигналов

8. Различение сигналов 8.1. Постановка задачи различения сигналов ВН Исаков Статистическая теория радиотехнических систем (курс лекций) strts-onlinenarodru 8 Различение сигналов 81 Постановка задачи различения сигналов Среда где распространяется сигнал РПдУ + РПУ Рис81

Подробнее

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние,

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние, Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

Подробнее

Лекция 4 Тема. Содержание темы. Основные категории. Введение в случайные величины

Лекция 4 Тема. Содержание темы. Основные категории. Введение в случайные величины Лекция 4 Тема Введение в случайные величины Содержание темы Случайная величина. Понятия дискретной и непрерывной случайной величины. Ряд распределения дискретной случайной величины. Функция распределения,

Подробнее

Тема 5. Непрерывные случайные величины.

Тема 5. Непрерывные случайные величины. Тема 5. Непрерывные случайные величины. Цель и задачи. Цель контента темы 5 дать определение непрерывной случайной величины, ее функции распределения и функции распределения; рассмотреть особенности задания

Подробнее

Тема 2.1 Числовые функции. Функция, ее свойства и график

Тема 2.1 Числовые функции. Функция, ее свойства и график Тема 2.1 Числовые функции. Функция, ее свойства и график Пусть X и Y Некоторые числовые множества Если каждому по некоторому правилу F ставится в соответствие единственный элемент то говорят, что Задана

Подробнее

И. В. Яковлев Материалы по математике MathUs.ru. Логарифм. Определение логарифма

И. В. Яковлев Материалы по математике MathUs.ru. Логарифм. Определение логарифма И. В. Яковлев Материалы по математике MathUs.ru Логарифм В настоящей статье мы даём определение логарифма, выводим основные логарифмические формулы, приводим примеры вычислений с логарифмами, а также рассматриваем

Подробнее

Статистическая радиофизика и теория информации

Статистическая радиофизика и теория информации Статистическая радиофизика и теория информации. Введение Радиофизика как наука изучает физические явления существенные для радиосвязи, излучения и распространения радиоволн, приема радиосигналов. Предметом

Подробнее

Математическая статистика

Математическая статистика Математическая статистика 1 Выборка X x, x,, x Опр.1 Пусть одномерная с.в., а 1 значения с.в.,полученные в результате испытания. Будем называть полученные значения выборкой из генеральной совокупности

Подробнее

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i . ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Основные понятия теории вероятностей Многие объекты в математике определяются указанием операций которые можно выполнять над объектами и перечислением свойств которым удовлетворяют

Подробнее

Лекция 3. Условные распределения и условные математические ожидания. Достаточные статистики

Лекция 3. Условные распределения и условные математические ожидания. Достаточные статистики Лекция 3. Условные распределения и условные математические ожидания. Достаточные статистики Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 3. Условные распределения

Подробнее

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков.

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков. Лекция 8 Тема Сравнение случайных величин или признаков. Содержание темы Аналогия дискретных СВ и выборок Виды зависимостей двух случайных величин (выборок) Функциональная зависимость. Линии регрессии.

Подробнее

Часть 3 КОРРЕЛЯЦИОННАЯ ТЕОРИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ

Часть 3 КОРРЕЛЯЦИОННАЯ ТЕОРИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ Часть 3 КОРРЕЛЯЦИОННАЯ ТЕОРИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ В курсе "Теория вероятностей" корреляция между двумя случайными величинами определяется математическим ожиданием их произведения Если в качестве двух случайных

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

Непрерывная случайная величина

Непрерывная случайная величина Непрерывная случайная величина Непрерывная случайная величина принимает бесконечное количество значений из определенного интервала числовой прямой. 0 6 месяцев Срок службы лампочки 2 Пример. Рост человека

Подробнее

Многомерная случайная величина Функция распределения многомерной случайной величины

Многомерная случайная величина Функция распределения многомерной случайной величины СИСТЕМА СЛУЧАЙНЫХ ВЕЛИЧИН В практических применениях теории вероятностей часто приходится сталкиваться с задачами, в которых результат опыта описывается не одной, а двумя или более случайными величинами

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика»

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Теория вероятностей» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева Е.Г. Основные определения и

Подробнее

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин

1. СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Функции распределения вероятностей случайных величин СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ЯВЛЕНИЙ Случайные величины Функции распределения вероятностей случайных величин Простейшая модель физического эксперимента последовательность независимых опытов (испытаний

Подробнее

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной Лекция 6 План лекции.3.3 Дифференциальная функция распределения непрерывных случайных величин.4 Числовые характеристики случайных.4. Математическое ожидание и его свойства..4. Дисперсия случайных величин

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

Лекция 7. Непрерывные случайные величины. Плотность вероятности.

Лекция 7. Непрерывные случайные величины. Плотность вероятности. Лекция 7. Непрерывные случайные величины. Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

Случайные величины и законы их распределения.

Случайные величины и законы их распределения. Случайные величины и законы их распределения. Одним из основных понятий теории вероятностей является понятие случайной величины. Сначала рассмотрим примеры. Число вызовов, поступивших от абонентов в течение

Подробнее

2. «Простая» статистика

2. «Простая» статистика 2. «Простая» статистика 1 2. «Простая» статистика В большинстве статистических расчетов приходится работать с выборками случайной величины: либо с данными эксперимента, либо с результатами моделирования

Подробнее

1.2. Элементы теории вероятностей.

1.2. Элементы теории вероятностей. .. Элементы теории вероятностей.... Случайные события. Случайные события обычное явление в жизни. Примеры случайных событий: выпадение «орла» или «решки» при бросании монеты, выпадение числа при бросании

Подробнее

ТЕМА 7. Случайные процессы. Оглавление. 7.1 Случайные процессы

ТЕМА 7. Случайные процессы. Оглавление. 7.1 Случайные процессы ТЕМА 7. Случайные процессы. Цель контента темы 7 дать начальные понятия о случайных процессах и цепях Маркова в частности; очертить круг экономических задач, которые используют в своем решении модели,

Подробнее

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А

8. Методические рекомендации по выполнению контрольных работ, курсовых работ. К О Н Т Р О Л Ь Н А Я Р А Б О Т А 8 Методические рекомендации по выполнению контрольны работ, курсовы работ К О Н Т Р О Л Ь Н А Я Р А Б О Т А Д и с ц и п л и н а «М а т е м а т и к а» ) Решить систему линейны уравнений методом Гаусса 7

Подробнее

Лекция 5: Смешанное произведение векторов

Лекция 5: Смешанное произведение векторов Лекция 5: Смешанное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции рассматривается

Подробнее

а) отношение числа случаев, благоприятствующих событию А к общему числу

а) отношение числа случаев, благоприятствующих событию А к общему числу ТЕОРИЯ ВЕРОЯТНОСТЕЙ. РАСПРЕДЕЛЕНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН Задание. Выберите правильный ответ:. Относительной частотой случайного события А называется величина, равная... а) отношению числа случаев, благоприятствующих

Подробнее

такая, что ' - ее функцией плотности. Свойства функции плотности

такая, что ' - ее функцией плотности. Свойства функции плотности Демидова ОА, Ратникова ТА Сборник задач по эконометрике- Повторение теории вероятностей Случайные величины Определение Случайными величинами называют числовые функции, определенные на множестве элементарных

Подробнее

Пример решения варианта контрольной работы 1.

Пример решения варианта контрольной работы 1. Пример решения варианта контрольной работы Задание Вычислить определитель Решение: при решении подобных задач используются следующие свойства определителя: ) Если в определителе все элементы какой-либо

Подробнее

Лекция 3. Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович

Лекция 3. Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович Лекция 3 Линейная регрессия, Оценки регрессионых параметров, Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й курс, III поток Сенько Олег Валентинович () МОТП, лекция

Подробнее

Оглавление. Предисловие Введение. Теория вероятностей. комбинаторными методами. теории вероятностей. Глава 1. Основные понятия теории вероятностей

Оглавление. Предисловие Введение. Теория вероятностей. комбинаторными методами. теории вероятностей. Глава 1. Основные понятия теории вероятностей Оглавление Предисловие Введение Теория вероятностей Глава 1. Основные понятия теории вероятностей 1.1. Опыт и событие Операция умножения событий Операция сложения событий Операция вычитания событий Операция

Подробнее

РЕКОМЕНДАЦИЯ ИЗМЕРЕНИЯ КОСВЕННЫЕ ОПРЕДЕЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИИ И ОЦЕНИВАНИЕ ИХ ПОГРЕШНОСТЕЙ МИ

РЕКОМЕНДАЦИЯ ИЗМЕРЕНИЯ КОСВЕННЫЕ ОПРЕДЕЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИИ И ОЦЕНИВАНИЕ ИХ ПОГРЕШНОСТЕЙ МИ РЕКОМЕНДАЦИЯ ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ ИЗМЕРЕНИЯ КОСВЕННЫЕ ОПРЕДЕЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИИ И ОЦЕНИВАНИЕ ИХ ПОГРЕШНОСТЕЙ МИ 208390 Москва КОМИТЕТ СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ

Подробнее

Учебное пособие. Основы теории вероятностей. Раздел 2. Случайные величины. Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК

Учебное пособие. Основы теории вероятностей. Раздел 2. Случайные величины. Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК Учебное пособие Основы теории вероятностей Раздел 2. Случайные величины для студентов специальности 2305 «Программирование в компьютерных

Подробнее

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению.

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению. ЛЕКЦИЯ N. Скалярное поле. Производная по направлению. Градиент. Касательная плоскость и нормаль к поверхности. Экстремумы функции многих переменных. Условный экстремум.. Скалярное поле. Производная по

Подробнее

Цифровая обработка сигналов

Цифровая обработка сигналов Цифровая обработка сигналов Контрольные вопросы к лабораторной работе 1 1. Частоту дискретизации сигнала увеличили в два раза. Как изменится амплитуда выбросов аналогового сигнала, восстановленного согласно

Подробнее