Московский государственный технический университет им. Н. Э. Баумана.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Московский государственный технический университет им. Н. Э. Баумана."

Транскрипт

1 Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ» по теме: «РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ 2-ГО РОДА РАЗЛИЧНЫМИ МЕТОДАМИ» ВАРИАНТ 5 Выполнил: студент 3-го курса, гр. АК3-5 Ягубов Роман Борисович Проверил: Кутыркин Владимир Андреевич г. Москва

2 Оглавление Постановка задачи... 2 Основные теоретические понятия... 2 Аналитическое решение... 3 Решение в виде частичной суммы ряда Фурье... 4 Теория... 4 Теорема Гильберта-Шмидта... 4 Применение теоремы для решения интегрального уравнения... 4 Применение метода... 5 Численное решение методом конечных сумм с использованием метода Холецкого... 6 Метод конечных сумм... 6 Метод Холецкого... 7 Реализация и вычисление метода... 8 Метод последовательных приближений... 8 Вычисление метода... 9 Сравнение полученных решений... 9 Графическое сравнение... 9 Аналитическое сравнение... 0 Выводы... 0 Список литературы... 0 Постановка задачи Дано симметричное неоднородное интегральное уравнение Фредгольма второго рода вида:, где Решить, перечисленными ниже, методами: ) Аналитическое решение путём сведения интегрального уравнения к неоднородной краевой задаче. 2) Приближённое решение в виде частичной суммы ряда Фурье по собственным функциям интегрального оператора уравнения. 3) Численное решение методом конечных сумм с использованием метода Холецкого. 4) Численное решение методом последовательных приближений. Основные теоретические понятия Линейным интегральным уравнением Фредгольма второго рода с постоянными пределами интегрирования называется уравнение вида: Где φ(x) неизвестная функция, K(x,t) и f(x) известные функции, K(x,t) ядро интегрального уравнения, f(x) называют свободным членом или правой частью уравнения (), x и t действительные переменные, изменяющиеся в интервале (,b), λ численный множитель, параметр уравнения. 2

3 Функция K(x,t) называется ядром интегрального уравнения. Предполагается, что ядро определено в квадрате на плоскости (x;t) и непрерывно в нём, или его разрывы таковы, что двойной интеграл имеет конечное значение. Неоднородное интегральное уравнение Фредгольма второго рода называется симметричным, если его ядро K(x,t) симметрично: В нашей задаче рассматриваемое ядро является симметричным, поскольку для него выполнено K(x,t)=K(t,x), и фредгольмовым в силу непрерывности в квадрате Таким образом, уравнение является неоднородным интегральным уравнением Фредгольма второго рода с симметричным ядром. Аналитическое решение Получим точное решение, сведя интегральное уравнение к неоднородной краевой задаче., где Применим формулу для производной интеграла с пределами, зависящими от переменной дифференцирования: Таким образом, мы получили неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами: Получаем краевую задачу: Решение дифференциального уравнения получено с помощью Wolfrm Alph: 3

4 Решение в виде частичной суммы ряда Фурье Приближённое решение интегрального уравнения Фредгольма 2-го рода с непрерывным симметричным аналитически заданным ядром можно получить, используя частичную сумму разложения решения этого уравнения в ряд Фурье по собственным функциям интегрального оператора этого уравнения. Теория Компактный самосопряжённый оператор A в сепарабельном гильбертовом пространстве X обладает базисом из собственных векторов. Функция называется собственной функцией интегрального оператора или ядра K(x.t) если она является нетривиальным решением однородного интегрального уравнения: где - характеристическое число, соответствующее собственной функции, а величина - собственное число. Число λ=0 не является характеристическим числом, так как при λ=0 следует, что. Характеристические числа симметричного ядра действительны. Последовательность собственных функций симметричного ядра ортогональна, и её можно сделать ортонормированной, а также она образует собственный базис ядра. Теорема Гильберта-Шмидта Пусть - самосопряжённый компактный оператор в гильбертовом пространстве H. Тогда пространство H представляется в виде прямой суммы своих подпространств, для которых и. Если A ненулевой оператор, то в подпространстве Y есть ортонормированный базис, где M=<,2,,> или M=N и для некоторого (т.е. - действительное собственное значение оператора A, отвечающее собственному вектору Φ для ), называемого характеристическим числом оператора A. Если M=N, то можно считать, что. Следовательно, если, где и для, то. Таким образом, оператор A обладает своим собственным ортонормированным базисом с действительными собственными значениями. Применение теоремы для решения интегрального уравнения Рассмотрим гильбертово пространство, где компактный самосопряженный оператор, ненулевое действительное число, характеристические числа оператора A. Согласно теореме Гильберта-Шмидта ортонормированная система, где для. Для Представим уравнение в такой форме: Тогда решение будем искать в виде: Получим: Поскольку получим, что => где ортонормированный базис, отсюда получаем: 4

5 Применение метода Если ядро симметрично, непрерывно в квадрате и имеет в этом квадрате равномерно ограниченные частные производные. Очевидно, что рассматриваемое ядро (.2) является симметричным, поскольку для него выполнено K(x,t)=K(t,x), непрерывным в. Учитывая эти свойства и квадратичную интегрируемость ядра K(x,t), применима теорема Гильберта-Шмидта. Для построения решения в виде необходимо: ) найти собственные функции и характерестические значения ядра Κ(x,t); 2) проверить, что и вычислить коэффициенты, где Получим собственные функции ядра K(x,t), сведя интегральное уравнение к краевой задаче: ) ) ) Получаем краевую задачу: Здесь возможны три следующих случая: ), Его общее решение будет:. Используя краевые условия, получим для нахождения неизвестных С и С 2 систему: Интегральное уравнение имеет только тривиальное решение. 2), Общее решение уравнения имеет вид:. Дифференцируем по. Для нахождения значений и краевые условия дают систему Система имеет единственное решение:, Интегральное уравнение имеет только тривиальное решение Итак, при интегральное уравнение не имеет характеристических чисел, а, значит, и собственных функций. 3), Общее решение уравнения имеет вид: Отсюда находим, что Краевые условия в этом случае дают для нахождения и систему 5.

6 Полагая его равным нулю, получим уравнение для нахождения характеристический чисел: При полученном выражении для система имеет вид: Она имеет бесконечное множество решений:, где произвольная постоянная. Значит, исходное интегральное уравнение имеет бесконечное множество решений вида которые являются собственными функциями этого уравнения. Вычисления были произведены при помощи MthCAD Из нормировки: Для построения ряда необходимо вычислить коэффициенты. Численное решение методом конечных сумм с использованием метода Холецкого Представление симметричной положительно-определённой матрицы равной произведению нижней треугольной матрицы со строго положительными элементами на диагонали на эту же матрицу, но транспонированную. Метод конечных сумм Воспользуемся квадратурной формулой для вычисления определённого интеграла вида: с шагом b f ( x) dx. Пусть на отрезке интегрирования b, введена равномерная сетка E,, b h.тогда квадратурная формула прямоугольника принимает вид b f ( x) dx h f ( ). Воспользуемся квадратурной формулой (4.) для вычисления интеграла K( x, t) ( t) dt. Тогда интегральное уравнение () в приближённом виде: ( s) h K( s, t) ( ) f ( s). Записывая для каждого s E, получим систему: ( ) h K(, ) ( ) f ( ). (4.2) b 6

7 Где Или в матричном виде: (E B) f, (4.3) E - единичная матрица размера, а B состоит из элементов: b hk(, ), Решением системы (4.3) является вектор, состоящий из значений функции ( x) в точках сетки: ( ). ( ) В приведённых вычислениях обозначается: A E B. Далее используем метод Холецкого. Метод Холецкого,, Пусть A GL( ;) T и A S D S, - симметричная матрица, т.е. где S s GL( ;) 0 для любых - верхне-треугольная матрица и 0 0 D 0 - диагональная матрица, где, для любого,. 0 0 Для поиска матриц S и D можно использовать метод Лагранжа приведения симметричной T матрицы к диагональному виду. Так как A S D S, где вид матрицы S и D указан выше, то k k ks s ; k если,, и. k k ks s ; k Отсюда можно получить, что s, s for 2,3,, ; s k k sg( ), sg ks s for 2,3,, ; k (4.4) k k s ks s for, ; k k k s ks s for,,, f. s k Если матрица A- положительно определена, т.е. D E и, согласно критерию Сильвестра, её главные миноры положительно определены, то из (4.4) получаем: s, s 2,3,, ; for s k k s s s for, ; (4.5) k k k s s s for,,, f. s k

8 Формулы (4.4) позволяют определить матрицы S, T S и D. После этого СЛАУ A x b, где b, заменяется двумя равносильными СЛАУ с треугольными матрицами: T S D y b b,, b ; ( y - неизвестное); (4.6) S x y y,, y ; Решив (4.6) получаем: p p b ps s b p y y for s s, 2,3,, ; p x y, x p,,. y s x for s p s Реализация и вычисление метода Для построения матрицы и последующего решения было взято 0 разбиений. Вычисления были произведены при помощи пакета MthCAD. x 2 x f ( x) e 2x s ( 2.3) 2x 0 b N0 0 b h 0 N0 x h t x 0 N0 N0 Core( xt ) e t Mtr_A for sh( x) ( ) f x 0 x t e x sh( t) ( ) f x t x for 0 N0 Mtr_A 0 N0 Mtr_A q h f Mtr_A q h otherwse q FF Core x t f x 3 F3( x) Метод последовательных приближений Согласованная норма оператора ядра интегрального уравнения: Выполняется условие: K( x, t) mx (, ) mx ( ). Ч K x t dt g x 0, 0, 0 K( x, t). С помощью такого основания решение интегрального уравнения осуществляется на основе метода последовательных приближений, с помощью которого мы сводим интегральное уравнение у СЛАУ, которая решается методом простой итерации. Рабочая формула метода простой итерации: k H k f, k N. Ищем решение, применяя метод простой итерации. Матрица H получена численным подсчётом в программе, которая использовалась и в предыдущем методе. За начальное возьмём нулевой вектор, а за начальный 0 возьмём узлы сетки Ч t x. 8

9 Вычисление метода Вычисления были произведены при помощи пакета MthCAD. 0,0 0,746 0,746 0,746 0,746 0,746 0,746 0,746 0,746 0, 0,990 0,990 0,928 0,933 0,932 0,932 0,932 0,932 0,2,280,280,58,67,67,67,67,67 0,3,629,629,45,464,463,463,463,463 0,4 2,058 2,058,827,845,844,844,844,844 0,5 2,598 2,598 2,39 2,340 2,338 2,339 2,338 2,338 0,6 3,290 3,290 2,969 2,992 2,992 2,99 2,99 2,99 0,7 4,93 4,93 3,837 3,862 3,862 3,862 3,862 3,862 0,8 5,387 5,387 5,007 5,033 5,03 5,03 5,03 5,03 0,9 6,984 6,984 6,594 6,68 6,68 6,68 6,68 6,68,0 9,35 9,35 8,754 8,779 8,777 8,777 8,777 8,777 После семи проведённых итераций, из таблиц видно, что разницы между шестой седьмой итерациями после третьего знака нет. Сравнение полученных решений ) F - Аналитическое решение путём сведения интегрального уравнения к неоднородной краевой задаче. 2) F2 - Приближённое решение в виде частичной суммы ряда Фурье по собственным функциям интегрального оператора уравнения. 3) F3 - Численное решение методом конечных сумм с использованием метода Холецкого. 4) F4 - Численное решение методом последовательных приближений. Графическое сравнение F( X) F2( X) F3( x) F4( x) XX xx 9

10 Аналитическое сравнение Для сравнения было выбрано 4 приближения для 2-го и 4-го методов, 0 разбиений для 3-го и 4-го методов. Посчитаны значения в точках с помощью всех методов в MthCD. Вычисления погрешности было посчитано в Mcrosoft Excel. X F F2 F3 F4 0 0, ,7457 0,7457 0,7457 0, 0, ,9389 0, ,9327 0,2,7704,774,6670,6733 0,3,47907,47858,46337, ,4,86508,86473,84379, ,5 2, ,3660 2, , ,6 3,0240 3, ,9906 2,9925 0,7 3, , , , ,8 5,0789 5, ,032 5, ,9 6, , ,679 6,6956 8, , , ,77876 X F2-F F3-F F4-F 0 0,0000 0,0000 0,0000 0, 0, ,0053 0,0048 0,2 0,0000 0,0034 0,0097 0,3 0, ,0570 0,0478 0,4 0, ,0229 0,0202 0,5 0, ,0279 0,0258 0,6 0, , ,0395 0,7 0,000 0, , ,8 0, , , ,9 0, , ,0549 0,002 0, ,06332 Получились следующие погрешности для 3-х методов. F2-F F3-F F4-F 0,002 0, ,06332 Выводы В данной курсовой работе была выполнена задача решения интегрального уравнения Фредгольма 2-го рода с использованием четырёх методов: точное аналитическое решение, приближённое решение в виде частичной суммы ряда Фурье решения уравнения, разложенного по собственным функциям интегрального оператора уравнения, численное решение методом конечных сумм с использованием методов Холецкого и последовательных приближений. В результате решений мы получили очень малые погрешности, приведенные в аналитическом сравнении результатов, по сравнению с аналитическим решением, что иллюстрируется графически. Наименьшая погрешность получилась при использовании приближённого решение в виде частичной суммы ряда Фурье по собственным функциям интегрального оператора уравнения. Для уменьшения погрешности следует увеличить количество разбиений для методов: численное решение методом конечных сумм с использованием методов Холецкого и последовательных приближений. В итоге все четыре метода оказались очень точные, даже при небольшом количестве разбиений и приближений. Список литературы ) Бахвалов Н.С., Жидков Н.П., Кобельков М.В. Численные методы: пособие. М.: БИНОМ. Лаборатория знаний, 2009, 636 с. 2) Краснов М.Л., Киселёв А.И., Макаренко Г.И. Интегральные уравнения: Задачи и примеры с подробными решениями: Учебное пособие. М.: Едиториал УРСС, с. 3) Кутыркин В.А. Лекции по курсу Функциональный анализ и интегральные уравнения. 4) Манжиров, Полянин Методы решения интегральных уравнений. Справочник 999 0

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

Московский государственный технический университет им. Н. Э. Баумана.

Московский государственный технический университет им. Н. Э. Баумана. Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ЧИСЛЕННЫЕ МЕТОДЫ» по теме: «Численные методы регуляризации для решения интегрального уравнения Фредгольма

Подробнее

1 n α. сходимости обобщенного гармонического ряда

1 n α. сходимости обобщенного гармонического ряда СОДЕРЖАНИЕ КУРСА ВЫСШЕЙ МАТЕМАТИКИ ФТК, 2-ой семестр Матрицы и определители. 1. Понятие матрицы. Основные действия с матрицами и их свойства. 2. Пространство квадратных матриц. Обратная матрица и ее свойства.

Подробнее

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами.

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами. Лекция 7 2 Уравнения Фредгольма 2го рода с вырожденными ядрами Этот случай отличается тем, что решение интегрального уравнения сводится к решению линейной алгебраической системы и может быть легко получено

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

Курсовая работа по дисциплине: «дифференциальные уравнения»

Курсовая работа по дисциплине: «дифференциальные уравнения» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход.

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход. Метод Ритца Выделяют два основных типа методов решения вариационных задач. К первому типу относятся методы, сводящие исходную задачу к решению дифференциальных уравнений. Эти методы очень хорошо развиты

Подробнее

Материалы к экзамену по курсу "Интегральные уравнения. Вариационное исчисление"

Материалы к экзамену по курсу Интегральные уравнения. Вариационное исчисление Материалы к экзамену по курсу "Интегральные уравнения Вариационное исчисление" Экзамен по курсу "Интегральные уравнения Вариационное исчисление" состоит из -х частей -я часть экзамена - тест на знание

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

9. Принцип сжимающих отображений. Теоремы о неподвижной точке.

9. Принцип сжимающих отображений. Теоремы о неподвижной точке. Лекция 6 9 Принцип сжимающих отображений Теоремы о неподвижной точке Пусть D оператор, вообще говоря, нелинейный, действующий из банахова пространства B в себя Определение Оператор D, действующий из банахова

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

«ПРИКЛАДНАЯ МАТЕМАТИКА И ИНФОРМАТИКА»

«ПРИКЛАДНАЯ МАТЕМАТИКА И ИНФОРМАТИКА» Программа междисциплинарного экзамена для проведения вступительного испытания в магистратуру Российского университета дружбы народов по направлению «ПРИКЛАДНАЯ МАТЕМАТИКА И ИНФОРМАТИКА» специализация «Математическое

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

А. П. ИВАНОВ АППРОКСИМАЦИЯ ФУНКЦИЙ

А. П. ИВАНОВ АППРОКСИМАЦИЯ ФУНКЦИЙ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ АППРОКСИМАЦИЯ ФУНКЦИЙ Методические указания Санкт-Петербург 2013 1. Линейная задача метода

Подробнее

Министерство образования и науки РФ. Факультет математики и компьютерных наук П Р О Г Р А М М А ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ В МАГИСТРАТУРУ

Министерство образования и науки РФ. Факультет математики и компьютерных наук П Р О Г Р А М М А ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ В МАГИСТРАТУРУ Министерство образования и науки РФ ФГБОУ ВПО «Ивановский государственный университет» Факультет математики и компьютерных наук П Р О Г Р А М М А ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ В МАГИСТРАТУРУ для обучения по

Подробнее

называется обобщенным рядом Фурье по ортогональной системе функций

называется обобщенным рядом Фурье по ортогональной системе функций 345 4 Ряды Фурье по ортогональным системам функций Пусть ( ( x - ортогональная система функций в L [ ; ] Выражение c ( x + c1 ( x + 1 c ( x + + ( c ( x = c ( x (41 = называется обобщенным рядом Фурье по

Подробнее

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА ЛАБОРАТОРНАЯ РАБОТА 5 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение. Интегральным уравнением Фредгольма рода называется уравнение x ( s, ds f (.

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ. ПО УЧЕБНОЙ ДИСЦИПЛИНЕ Дополнительные главы алгебры и анализа. Бакалавр

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ. ПО УЧЕБНОЙ ДИСЦИПЛИНЕ Дополнительные главы алгебры и анализа. Бакалавр Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Карачаево-Черкесский государственный университет имени У.Д.Алиева» Кафедра алгебры и геометрии ФОНД

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ» Выполнил: студент 3-го курса, гр. АК3-51 Ягубов Роман Борисович Проверил:

Подробнее

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2) Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению.

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению. ТЕМА 7 Задача Штурма-Лиувилля Собственные значения и собственные функции Сведение задачи Штурма-Лиувилля к интегральному уравнению Основные определения и теоремы Оператором Штурма-Лиувилля называется дифференциальный

Подробнее

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного

Подробнее

ТЕМА 6. Неоднородное уравнение Фредгольма 2-го рода. Уравнения Фредгольма с вырожденными ядрами. Теоремы Фредгольма.

ТЕМА 6. Неоднородное уравнение Фредгольма 2-го рода. Уравнения Фредгольма с вырожденными ядрами. Теоремы Фредгольма. ТЕМА 6 Неоднородное уравнение Фредгольма -го рода Уравнения Фредгольма с вырожденными ядрами Теоремы Фредгольма Основные определения и теоремы Рассмотрим неоднородное уравнение Фредгольма yx ( ) = λ Kxs

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Высшая математика»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Высшая математика» Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Высшая математика» Е Б Павельева В Я Томашпольский Линейная алгебра Методические указания

Подробнее

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Расчетные задания Варианты

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Стр. 1 из 17 26.10.2012 11:39 Аттестационное тестирование в сфере профессионального образования Специальность: 010300.62 Математика. Компьютерные науки Дисциплина: Дифференциальные уравнения Время выполнения

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ

ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ Методические указания к выполнению лабораторных работ ПЕНЗА 7 Приведена методика и

Подробнее

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

Вопросы и задачи. оретические вопросы. 1. Дайте определение линейного пространства.

Вопросы и задачи. оретические вопросы. 1. Дайте определение линейного пространства. Вопросы и задачи оретические вопросы ормулировки 1. Дайте определение линейного пространства. 2. Дайте определение подпространства линейного пространства и сформулируйте критерий линейного подпространства.

Подробнее

Тема 2-19: Билинейные и квадратичные формы

Тема 2-19: Билинейные и квадратичные формы Тема 2-19: Билинейные и квадратичные формы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА)

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Постановка задачи. Рассматривается задача о вычислении однократного интеграла J(F ) = F (x) dx. ()

Подробнее

Задача 396. Решить уравнение y = t +4. Решение: Заметим, что условие задачи исключает случай t = 4. dy dt = dt t +4 e y =ln t +4 + C 1,C 1 IR

Задача 396. Решить уравнение y = t +4. Решение: Заметим, что условие задачи исключает случай t = 4. dy dt = dt t +4 e y =ln t +4 + C 1,C 1 IR Пояснения к тексту: знак читается как "равносильно" и обозначает, что у уравнений справа от знака и слева от знака множество решений совпадает, знак IR обозначает ммножество вещественных чисел, знак IN

Подробнее

Задания на практические занятия по дисциплине «Вычислительная математика» Практическое занятие по теме Теория погрешностей

Задания на практические занятия по дисциплине «Вычислительная математика» Практическое занятие по теме Теория погрешностей Задания на практические занятия по дисциплине «Вычислительная математика» Практическое занятие по теме Теория погрешностей Контрольные вопросы Дайте определение вычислительного эксперимента Нарисуйте схему

Подробнее

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b,

1. Векторы Даны координаты векторов a, b, c, x в правом ортонормированном k. Показать, что векторы a, b, Векторы Даны координаты векторов a b c в правом ортонормированном базисе i j k Показать что векторы a b c тоже образуют базис и найти координаты вектора в базисе a b c ) ( ) a ( ) b ( ) c ( ) ) ( ) a (

Подробнее

Методы решения сеточных уравнений

Методы решения сеточных уравнений Методы решения сеточных уравнений 1 Прямые и итерационные методы В результате разностной аппроксимации краевых и начально-краевых задач математической физики получаются СЛАУ матрицы которых обладают следующими

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Государственное бюджетное образовательное учреждение среднего профессионального образования

Государственное бюджетное образовательное учреждение среднего профессионального образования Государственное бюджетное образовательное учреждение среднего профессионального образования «Владимирский авиамеханический колледж» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине ЧИСЛЕННЫЕ

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Вопросы, выносимые на опрос (для дискуссии) по Введению. Вопросы, выносимые на опрос (для дискуссии) по разделу 1

Вопросы, выносимые на опрос (для дискуссии) по Введению. Вопросы, выносимые на опрос (для дискуссии) по разделу 1 1. Оценочные средства текущего контроля. Вопросы, выносимые на опрос (для дискуссии) по Введению -Назовите виды погрешности. - Как рассчитывается абсолютная погрешность? - Как рассчитывается относительная

Подробнее

Московский государственный университет имени М. В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ. «Линейная алгебра»

Московский государственный университет имени М. В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ. «Линейная алгебра» Московский государственный университет имени М. В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Линейная алгебра» Направление 080100 Экономика для подготовки студентов бакалавров

Подробнее

Функциональный анализ

Функциональный анализ А. Ю. Пирковский Функциональный анализ Лекция 23 23.1. Компактные операторы в гильбертовом пространстве Про компактные операторы в банаховых пространствах нам уже довольно много известно (см. лекции 18

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. Лекции 1 2 Определители и матрицы. Лекция 1

ОГЛАВЛЕНИЕ ЧАСТЬ I. Лекции 1 2 Определители и матрицы. Лекция 1 ОГЛАВЛЕНИЕ ЧАСТЬ I Лекции 1 2 Определители и матрицы Лекция 1 1.1. Понятие матрицы. Виды матриц... 19 1.1.1. Основные определения... 19 1.1.2. Виды матриц... 19 1.2.* Перестановки и подстановки... 21 1.3.*

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Глава ЛИНЕЙНЫЕ ПРОСТРАНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Системы линейных уравнений и их решение методом Гаусса Система, состоящая из m линейных уравнений с n неизвестными или, как будем дальше говорить,

Подробнее

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ОДИНАКОВЫМИ КОРНЯМИ ХАРАКТЕРИСТИЧЕСКОГО ПОЛИНОМА

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ОДИНАКОВЫМИ КОРНЯМИ ХАРАКТЕРИСТИЧЕСКОГО ПОЛИНОМА 212 УДК 517926 АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ОДИНАКОВЫМИ КОРНЯМИ ХАРАКТЕРИСТИЧЕСКОГО ПОЛИНОМА БТ Поляк Институт проблем управления им ВА Трапезникова РАН Россия, 117997,

Подробнее

МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ. «Линейная алгебра» Направление Экономика

МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ. «Линейная алгебра» Направление Экономика Московский государственный университет им. М.В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Линейная алгебра» Направление 080100 Экономика для подготовки студентов-бакалавров очного

Подробнее

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Методические

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

МАТЕМАТИЧЕСКАЯ ФИЗИКА

МАТЕМАТИЧЕСКАЯ ФИЗИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Математика и теоретическая механика» Методические рекомендации

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Итеративные методы решения уравнений. Метод Ньютона.

Итеративные методы решения уравнений. Метод Ньютона. 1 Материалы к установочной лекции Вопрос 37. Итеративные методы решения уравнений. Метод Ньютона. 1. Решение скалярных уравнений. Метод Чебышева Рассмотрим уравнение f(x) =0,x [a, b], и пусть на указанном

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

Экзамен по ЛА для бакалавров экономики в уч. году, ДЕМОвариант 01

Экзамен по ЛА для бакалавров экономики в уч. году, ДЕМОвариант 01 Ne Экзамен по ЛА для бакалавров экономики в 04-0 уч году, Найдите вектор Ne (6 4 ; 6 8 ) и Ne ДЕМОвариант 0 (x ; y )(у которого Ne и x < 0) такой, чтобы система векторов (x ; y ) образовывала бы ортогональный

Подробнее

Численные методы линейной и нелинейной алгебры

Численные методы линейной и нелинейной алгебры ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского» А.И. Зинина В.И. Копнина Численные методы линейной и нелинейной алгебры Учебное пособие Саратов

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

Программа государственного экзамена по специальности "Математика" на 2013/2014 учебный год. 1. Алгебра

Программа государственного экзамена по специальности Математика на 2013/2014 учебный год. 1. Алгебра 1 Программа государственного экзамена по специальности "Математика" на 2013/2014 учебный год 1. Алгебра 1. Тригонометрическая форма комплексного числа. Умножение, деление и возведение в степень комплексных

Подробнее

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1)

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1) 8. Степенные ряды 8.. Функциональный ряд вида c n (z ) n, (8.) n= где c n числовая последовательность, R фиксированное число, а z R, называют степенным рядом с коэффициентами c n. Выполнив замену переменных

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE

ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE ЛИНЕЙНАЯ АЛГЕБРА ВМЕСТЕ С MAPLE Усов В.В. 1 Скалярное произведение в арифметическом пространстве 1.1 Определение. Основные свойства Скалярное произведение (X, Y ) векторов X = (x 1, x 2,..., x n ), Y =

Подробнее

Методы решения начальных задач для обыкновенных дифференциальных уравнений

Методы решения начальных задач для обыкновенных дифференциальных уравнений Методы решения начальных задач для обыкновенных дифференциальных уравнений Постановка задачи Рассмотрим обыкновенное дифференциальное уравнение сокращенно ОДУ первого порядка f,, [,b ] 6 с начальным условием

Подробнее

21. Проблема собственных значений в задаче Штурма-Лиувилля

21. Проблема собственных значений в задаче Штурма-Лиувилля Варианты задач 21. Проблема собственных значений в задаче Штурма-Лиувилля 21.1. Постановка задачи. Общие сведения Рассматривается краевая задача Ly = (p(x)y ) + q(x)y = λy, (1) где при x (, b) p(x) непрерывно

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации ПРОГРАММА-МИНИМУМ кандидатского экзамена по специальности 01.01.07 «Вычислительная математика» по физико-математическим наукам Программа-минимум содержит

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика»

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика» Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники ТУСУР Кафедра

Подробнее

3 Конечномерные гладкие задачи с равенствами

3 Конечномерные гладкие задачи с равенствами 3 Конечномерные гладкие задачи с равенствами и неравенствами В этом параграфе даются необходимые и достаточные условия экстремума в гладкой конечномерной задаче с ограничениями типа равенств и неравенств.

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы.

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. 1 Разностная аппроксимация уравнения теплопроводности Рассмотрим различные варианты разностной

Подробнее

Тема: Системы линейных уравнений

Тема: Системы линейных уравнений Линейная алгебра и аналитическая геометрия Тема: Системы линейных уравнений (Метод Гаусса. Системы линейных однородных уравнений) Лектор Рожкова С.В. 0 г. Метод Гаусса (метод исключения неизвестных) Две

Подробнее

x 1 = a 11 (t)x 1 + a 12 (t)x a 1n (t)x n + b 1 (t) x 2 = a 21 (t)x 1 + a 22 (t)x a 2n (t)x n + b 2 (t) (1)

x 1 = a 11 (t)x 1 + a 12 (t)x a 1n (t)x n + b 1 (t) x 2 = a 21 (t)x 1 + a 22 (t)x a 2n (t)x n + b 2 (t) (1) ЛЕКЦИИ ПО КУРСУ «Линейная алгебра, системы ДУ с устойчивостью» 2 курс, 2 семестр Лекторы: Мельников Ю.Б., Мельникова Н.В. Оглавление 1. Системы линейных дифференциальных уравнений 4 1.1. Определения................................

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Интегралы и дифференциальные уравнения. Лекции 12-13

Интегралы и дифференциальные уравнения. Лекции 12-13 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекции 1-13 Вычисление

Подробнее

ЛЕКТОР Доцент Скориков Александр Васильевич Кафедра высшей математики Веб- страница: Трубопроводный факультет.

ЛЕКТОР Доцент Скориков Александр Васильевич Кафедра высшей математики Веб- страница:  Трубопроводный факультет. ЛЕКТОР Доцент Скориков Александр Васильевич Кафедра высшей математики Веб- страница: http://kvm.gubkin.ru Трубопроводный факультет. 1 Литература по линейной и векторной алгебре и аналитической геометрии

Подробнее

Линейная алгебра и функции нескольких переменных. Литература

Линейная алгебра и функции нескольких переменных. Литература Линейная алгебра и функции нескольких переменных для студентов 1 курса 2 семестра на 2012/13 учебный год кроме специальностей факультетов ГУИМЦ, ИУ9, РК-6, ФН2, АКФ3, Юр Литература Основная литература

Подробнее

А. П. Иванов. Методические указания. Тема 5: Интерполирование функций. факультет ПМ ПУ СПбГУ 2007 г.

А. П. Иванов. Методические указания. Тема 5: Интерполирование функций. факультет ПМ ПУ СПбГУ 2007 г. А. П. Иванов Методические указания Тема 5: Интерполирование функций факультет ПМ ПУ СПбГУ 2007 г. Оглавление 1. Алгебраическое интерполирование. Полином Лагранжа............. 2 1.1. Погрешность метода.

Подробнее

Вопросы к зачету по дисциплине «ЛИНЕЙНАЯ АЛГЕБРА И МАТЕМАТИЧЕСКИЙ АНАЛИЗ» для студентов 1 курса направления «Бизнес-информатика»

Вопросы к зачету по дисциплине «ЛИНЕЙНАЯ АЛГЕБРА И МАТЕМАТИЧЕСКИЙ АНАЛИЗ» для студентов 1 курса направления «Бизнес-информатика» Утверждены на заседании кафедры «Математика и информатика» Протокол 2(25) «8» сентября 2015г. зав. кафедрой к.э.н. Тимшина Д.В. Вопросы к зачету по дисциплине «ЛИНЕЙНАЯ АЛГЕБРА И МАТЕМАТИЧЕСКИЙ АНАЛИЗ»

Подробнее

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО.

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО. ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО Понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пример: А множество натуральных чисел а В множество квадратов натуральных чисел

Подробнее

Лекция 3 Решение систем алгебраических уравнений в средах. MS Excel и Mathcad. Лектор. Ст. преподаватель Купо А.Н.

Лекция 3 Решение систем алгебраических уравнений в средах. MS Excel и Mathcad. Лектор. Ст. преподаватель Купо А.Н. Лекция Решение систем алгебраических уравнений в средах Лектор MS Ecel и Mthcd Ст. преподаватель Купо А.Н. .Понятие системы линейных алгебраических уравнений (СЛАУ). Постановка задачи..методы решения СЛАУ.(Метод

Подробнее

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина.

Раздел 1. ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ. Тема 1. Существование и единственность решения краевой задачи. Матричные функции Грина. 6 Раздел ЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ Тема Существование и единственность решения краевой задачи Матричные функции Грина Рассмотрим на отрезке по линейную краевую задачу для системы из обыкновенных дифференциальных

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений

Численные методы решения обыкновенных дифференциальных уравнений Численные методы решения обыкновенных дифференциальных уравнений Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Методические

Подробнее

П Р О Г Р А М М А ( С О Д Е Р Ж А Н И Е ) ( В О П Р О С Ы ) Э К З А М Е Н А

П Р О Г Р А М М А ( С О Д Е Р Ж А Н И Е ) ( В О П Р О С Ы ) Э К З А М Е Н А П Р О Г Р А М М А ( С О Д Е Р Ж А Н И Е ) ( В О П Р О С Ы ) Э К З А М Е Н А П О В Ы С Ш Е Й М А Т Е М А Т И К Е З А 4 С Е М Е С Т Р Д Л Я С Т У Д Е Н Т О В Г Ф 2 1-4, 7-8. Май 2011 г. Лектор Лисеев И.А.

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее