(a 1)(a + 2) (a + 4)(a 3) = (a 2 + a 2) (a 2 + a 6).

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "(a 1)(a + 2) (a + 4)(a 3) = (a 2 + a 2) (a 2 + a 6)."

Транскрипт

1 3.. Методы решения рациональных неравенств Числовые неравенства Сначала определим, что мы понимаем под утверждением a > b. Определение Число a больше числа b, если разность между ними положительна. Свойства числовых неравенств хорошо известны, но одно стоит напомнить, так как оно часто используется при решении неравенств: если a > b и c > 0, то ac > bc; если a > b и c < 0, то ac < bc. Пример 3..1 Докажите, что среднее арифметическое двух неотрицательных чисел больше либо равно среднему геометрическому: a + b ab. Решение. Запишем выражение в левой части неравенства как ( a) + ( b) из него ab. Тогда получаем очевидное неравенство для разности величин: и вычтем ( a) + ( b) ab = ( a b) 0. В соответствии с определением, приведенным выше, неравенство верно. Рассмотрим числовые неравенства с точки зрения сравнения двух величин. Пример 3...[6] Сравните выражения: (a 1)(a + ) и (a + 4)(a 3). Решение. Снова в соответствии с определением 3..1 рассмотрим разность этих чисел: (a 1)(a + ) (a + 4)(a 3) = (a + a ) (a + a 6). Очевидно, что эта разность больше 0, и поэтому первое число больше второго. При решении широкого круга сложных задач (особенно задач с параметрами) приходится пользоваться различными оценками величин, так как довольно часто решить задачу в лоб просто невозможно. Следующие несколько примеров служат подготовкой к такого рода исследованиям. Пример 3..3.[6] Докажите неравенство: a ab + b 0. Решение. 1. Воспользуемся методом выделения полного квадрата: ( a ab + b = a a b ) ( + b b b = a b ) + 3b 4 Неравенство верно, так как сумма двух неотрицательных чисел не может быть меньше нуля.. Теперь решим эту задачу иначе. Перенесем произведение ab в правую часть неравенства. Если ab < 0, то справедливость неравенства очевидна. Если ab 0, то используя 1 0.

2 соотношение между средним арифметическим и средним геометрическим, перепишем неравенство в виде a + b = a + b a + b что и требовалось доказать. a b = ( a b ) = a b = ab. Пример [6] Известно, что 1 < a <. Найдите область изменения выражения a и 3a + 4. Решение. 1 < a < 1 < a < 4 < a + 1 < 5; 1 < a < 3 < 3a < 6 7 < 3a + 4 < < 1 3a + 4 < 1 7. Подчеркнем, что получать, как показано выше, неравенство для обратных величин ( переворачивать дроби) допустимо только для положительных значений выражений в неравенствах. В рассмотренной задаче они не принимают отрицательных и нулевых значений. Пример Докажите, что сумма двух взаимно обратных величин обладает следующим свойством, которое часто используется при решении задач: + 1 при > 0 и + 1 при < 0. Доказательство. Докажем это утверждение сначала для > 0. Рассмотрим разность + 1 и покажем, что она неотрицательна: + 1 = + 1 = ( 1) Для доказательства соотношения при < 0, сведем задачу к предыдущей. Действительно, 0. предположим, что соотношение верно. Умножим обе его части на -1: Если обозначить y =, то приходим к уже доказанному неравенству для положительных значений переменной. Проводя преобразования в обратном порядке, получаем, что соотношение для отрицательных верно. (Равенство возможно только при = ±1.) 3... Решение неравенств. Метод интервалов Метод интервалов удобно применять для решения рациональных неравенств в случае, когда левая часть представляет собой дробь, числитель и знаменатель которой разложены на множители, а правая часть равна нулю. Для простоты изложения рассмотрим конкретный пример. Пример Решите неравенство ( 1) 6 ( + 5)( 5) 3 ( + 3) 4 ( + )( 4) 7 0.

3 Решение. Отметим на числовой прямой нули числителя и знаменателя, причем нули числителя будем изображать в виде черных точек, а нули знаменателя в виде белых точек ( дырок ) на оси абсцисс. Последнее обозначение связано с тем, что знаменатель не может обращаться в нуль, эти точки не могут быть решениями неравенства, и, следовательно, в них мы прокалываем числовую прямую Выберем какое-нибудь число, лежащее правее всех корней на числовой прямой, в нашем случае, например, число 10. При подстановке его в левую часть, каждый из множителей принимает положительное значение. Поскольку левая часть может менять знак только в точках, отмеченных на прямой, то на промежутке (5, + ) левая часть строго больше нуля. В точке = 5 она обращается в нуль (поскольку неравенство нестрогое, это означает, что = 5 является его решением), а на промежутке (4, 5) строго отрицательна, так как при прохождении через эту точку знак множителя ( 5) 3 меняется на противоположный, а знаки остальных множителей остаются неизменными. Отсюда вытекает, что (4, 5] является решением исходного неравенства. В точке = 4 также происходит смена знака, но = 4 не является решением неравенства, так как знаменатель не может обращаться в нуль. В точке = 1 смена знака не происходит, так как множитель ( 1) 6 не меняет знака при прохождении точки = 1, однако сама точка = 1 является решением неравенства, поскольку левая часть обращается в нуль, и неравенство оказывается выполненным. В остальных точках ситуация аналогична уже рассмотренным случаям. Выбирая промежутки, где правая часть неположительна и отдельные точки, где она обращается в нуль, получаем ответ: или в таком виде: [ 5, 3) ( 3, ) {0} {1} (4, 5] 5 < 3, 3 < <, = 0, = 1, 4 < 5. При выписывании ответа очень важно не забыть точки = 0 и = 1. Пример Решите неравенство + 1 < 3. Решение. Перенесем все слагаемые в левую часть и приведем к общему знаменателю: 5 1 < 0. 3

4 Далее применим метод интервалов. Отметим на числовой оси области знакопостоянства выражения. Отсюда получаем ответ: < 1, >, , 5 В общем случае рационального неравенства следует все слагаемые перенести в левую часть, привести к общему знаменателю, а затем разложить числитель и знаменатель получившейся дроби на множители. Пример [11] Решите неравенство > Решение. Перенесем все слагаемые в левую часть и преобразуем знаменатели ( 3)( + ) 9 5( 3) ( + ) > ( 3)( + ) > 0. Далее разложим числитель на множители. Согласно теореме целые корни числителя следует искать среди чисел ±1, ±3. Нетрудно видеть, что = 1 является корнем числителя. Разделим числитель уголком на 1: Отсюда вытекает ( 1)( ) ( 3)( + ) Поскольку квадратный трехчлен не имеет действительных корней, и поэтому выполнено +3+3 > 0, обе части неравенства можно разделить на +3+3, не меняя при этом знака неравенства. Тогда получаем Далее применим метод интервалов 1 ( 3)( + ) > 0. >

5 Отсюда получаем ответ: (, 1) (3, + ). ( ) Пример [6] Решите неравенство > Решение. Эта задача с небольшим подвохом. Про знаменатель, как правило не забывают и пишут, что 1. Однако кажется, что больше никаких условий нет, так как квадрат числа не может быть отрицательным. Но он может равняться нулю! А точки, в которых числитель равен нулю, не являются решением неравенства, так как знак в условии задачи строго больше нуля. В итоге получаем что любое число, не равное 1 или ±. Ответ: (, ) (, 1) ( 1, ) ( + ). При решении неравенств возможно применение многих приемов, описанных выше в разделе, посвященном решению уравнений. Это и группировка, и замена переменной и ряд других. Метод замены переменной рассмотрим на следующем примере. Пример [16] Решите неравенство ( + + 1)( + + ) < 1. Решение. Здесь замена очевидна: t = Тогда неравенство преобразуется к t(t + 1) < 1 (t 3)(t + 4) < 0 4 < t < 3. Возвращаясь к переменной, получаем для нее систему неравенств: > 4, < 3. Решая эти два простейших квадратных неравенства, получаем ответ. Ответ: < < 1. Пример [9] Разложите на множители многочлен Решение. Преобразуем данный многочлен: = = 5 5 ( 1 + ) + 4. Рассмотрим теперь многочлен a a ( 1 + ) + 4, который при a = 5 совпадает с данным. Полученный многочлен является квадратным относительно a, его корни легко найти по теореме Виета: a a ( 1 + ) + 4 = a a ( 1 + ) + ( 3 1 ) = = a a ( 1 + ) + ( 1) ( ). Следовательно, a 1 = ( 1), a = Значит, исходный многочлен разлагается на множители a a ( 1 + ) + 4 = ( a ( )) ( a ( )). 5

6 Вернемся к многочлену, данному в условии задачи, подставив a = 5. Получим: = ( 5 + ) ( 5 1 ) = ( 5 ) ( + 4 ) = ( 1 + ) ( 1 1 ) ( ) ( ). ( Ответ: 1 + ) ( 1 1 ) ( 1 1 ) ( 1 + ). 6

Знаки линейной функции

Знаки линейной функции И. В. Яковлев Материалы по математике MathUs.ru Метод интервалов Метод интервалов это метод решения так называемых рациональных неравенств. Общее понятие рационального неравенства мы обсудим позже, а сейчас

Подробнее

4. Решение и исследование квадратных уравнений

4. Решение и исследование квадратных уравнений КВАДРАТНЫЕ УРАВНЕНИЯ Оглавление КВАДРАТНЫЕ УРАВНЕНИЯ... 4. и исследование квадратных уравнений... 4.. Квадратное уравнение с числовыми коэффициентами... 4.. Решить и исследовать квадратные уравнения относительно

Подробнее

Учебный центр «Резольвента»

Учебный центр «Резольвента» ООО «Резольвента», www.resolventa.ru, resolventa@list.ru, (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ КВАДРАТНЫЙ ТРЕХЧЛЕН Учебно-методическое пособие

Подробнее

Указания, решения, ответы. нет, поэтому уравнение b 4ac имеет решений в целых числах. Третье решение. Перепишем уравнение УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ

Указания, решения, ответы. нет, поэтому уравнение b 4ac имеет решений в целых числах. Третье решение. Перепишем уравнение УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ Указания, решения, ответы УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ. Уравнение с одной неизвестной.. Решение. Подставим в уравнение. Получим равенство ( 4a b 4) (a b 8) 0. Равенство A B 0, где А и В целые, выполняется,

Подробнее

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями)

10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) 10 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Представьте выражение в виде многочлена стандартного вида и найдите его

Подробнее

Электронное методическое пособие для выполнения домашнего задания

Электронное методическое пособие для выполнения домашнего задания Действия с дробями: Электронное методическое пособие для выполнения домашнего задания Домашнее задание. «Преобразования степенны и иррациональны выражений. Вычисление значений числовы выражений» Формулы

Подробнее

Область определения левой части этих формул может быть шире области определения

Область определения левой части этих формул может быть шире области определения 7 ПОКАЗАТЕЛЬНЫЕ ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА Комментарий При решении логарифмических уравнений также как в случае иррациональных уравнений возможно появление посторонних корней Причина их появления

Подробнее

Математика 8 класс Многочлены

Математика 8 класс Многочлены МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 8 класс Многочлены Новосибирск Многочлены Рациональными

Подробнее

Глава 1 ВВЕДЕНИЕ В АЛГЕБРУ

Глава 1 ВВЕДЕНИЕ В АЛГЕБРУ Глава ВВЕДЕНИЕ В АЛГЕБРУ.. КВАДРАТНЫЙ ТРЕХЧЛЕН... Вавилонская задача о нахождении двух чисел по их сумме и произведению. Одна из древнейших задач алгебры была предложена в Вавилоне, где была распространена

Подробнее

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде:

В общем виде уравнение с n неизвестными х 1, х 2, х n может быть записано в виде: Уравнения В алгебре рассматривают два вида равенств тождества и уравнения Тождество это равенство которое выполняется при всех допустимых) значениях входящих в него букв Для тождества используют знаки

Подробнее

Тест по алгебре Арифметический квадратный корень I вариант 8В класс, 24 октября 2007

Тест по алгебре Арифметический квадратный корень I вариант 8В класс, 24 октября 2007 I вариант 8В класс, 4 октября 007 1 Вставьте пропущенные слова: Определение 1 Арифметическим квадратным корнем из число, которого равен a из числа a (a 0) обозначается так: выражением Действие нахождения

Подробнее

Тема 15 «Уравнения и неравенства с модулем».

Тема 15 «Уравнения и неравенства с модулем». Тема 15 «Уравнения и неравенства с модулем». Модуль действительного числа это абсолютная величина этого числа. Проще говоря, при взятии модуля нужно отбросить от числа его знак. Обозначается a. Например,

Подробнее

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА Пензенский государственный университет Физико-математический факультет «Очно-заочная физико-математическая школа» МАТЕМАТИКА Тождественные преобразования. Решение уравнений. Треугольники Задание 1 для

Подробнее

МОДУЛЬ 7 «Показательная и логарифмическая функции»

МОДУЛЬ 7 «Показательная и логарифмическая функции» МОДУЛЬ 7 «Показательная и логарифмическая функции». Обобщение понятия степени. Корень й степени и его свойства.. Иррациональные уравнения.. Степень с рациональным показателем.. Показательная функция..

Подробнее

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА Рациональные Рациональное уравнение с неизвестным x - это уравнение, левая и правая части которого есть рациональные выражения относительно переменной x. Пример. Целое

Подробнее

Иррациональные уравнения и неравенства 2

Иррациональные уравнения и неравенства 2 Иррациональные уравнения и неравенства Оглавление Иррациональные уравнения Метод возведения обеих частей уравнения в одну и ту же степень Задание Задание Задание Замена иррационального уравнения смешанной

Подробнее

Тема 1. Действительные числа и действия над ними

Тема 1. Действительные числа и действия над ними Тема 1 Действительные числа и действия над ними 4 часа 11 Развитие понятия о числе 1 Первоначально под числами понимали лишь натуральные числа, которых достаточно для счета отдельных предметов Множество

Подробнее

Иррациональные уравнения и неравенства 3

Иррациональные уравнения и неравенства 3 Иррациональные уравнения и неравенства Оглавление 4 Метод исключения радикалов в иррациональном уравнении умножением на сопряженный множитель Задание 7 4 5 Выделение полного квадрата (квадрата двучлена)

Подробнее

МАТЕМАТИКА. Квадратный трёхчлен. Иррациональные уравнения. Системы уравнений. Задание 2 для 9-х классов. ( учебный год)

МАТЕМАТИКА. Квадратный трёхчлен. Иррациональные уравнения. Системы уравнений. Задание 2 для 9-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Квадратный трёхчлен. Иррациональные

Подробнее

МАТЕМАТИКА. Многочлены. Простейшие уравнения и неравенства с модулем. Задание 3 для 9-х классов. ( учебный год)

МАТЕМАТИКА. Многочлены. Простейшие уравнения и неравенства с модулем. Задание 3 для 9-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Многочлены. Простейшие уравнения и

Подробнее

МАТЕМАТИКА. Квадратные корни

МАТЕМАТИКА. Квадратные корни МАТЕМАТИКА Квадратные корни Задание для 8-х классов (006-00 учебный год) 4 Введение Дорогие ребята! Вы получили очередное задание по математике. В этом задании мы знакомим вас с важным математическим понятием

Подробнее

Уравнения высших порядков

Уравнения высших порядков И. В. Яковлев Материалы по математике MathUs.ru Содержание Уравнения высших порядков 1 Непосредственная группировка............................. 1 2 Подбор корня........................................

Подробнее

11 класс, базовый уровень. Задание 1. Вариант 0 (демонстрационный, с решениями)

11 класс, базовый уровень. Задание 1. Вариант 0 (демонстрационный, с решениями) Заочная математическая школа 009/010 учебный год 1 Разложите на множители: 3 11 класс, базовый уровень Задание 1 Вариант 0 (демонстрационный, с решениями) b 3 + 1 Найдите числа A, B, C, при которых справедливо

Подробнее

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений».

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений». Тема 14 «Алгебраические уравнения и системы нелинейных уравнений» Многочленом степени n называется многочлен вида P n () a 0 n + a 1 n-1 + + a n-1 + a n, где a 0, a 1,, a n-1, a n заданные числа, a 0,

Подробнее

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей)

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей) МАТЕМАТИКА ЕГЭ Задания С5 7 Неравенства (метод областей) Указания и решения Справочный материал Источники Корянов А Г г Брянск Замечания и пожелания направляйте по адресу: korynov@milru ЗАДАЧИ С ПАРАМЕТРАМИ

Подробнее

Е. Н. ФИЛАТОВ АЛГЕБРА

Е. Н. ФИЛАТОВ АЛГЕБРА Заочный физико-математический лицей «Авангард» Е. Н. ФИЛАТОВ АЛГЕБРА 8 Экспериментальный учебник Часть МОСКВА 06 Заочный физико-математический лицей «Авангард» Е. Н. Филатов АЛГЕБРА 8 Экспериментальный

Подробнее

МАТЕМАТИКА. Квадратный трёхчлен. Иррациональные уравнения. Системы уравнений. Задание 2 для 9-х классов. ( учебный год)

МАТЕМАТИКА. Квадратный трёхчлен. Иррациональные уравнения. Системы уравнений. Задание 2 для 9-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Квадратный трёхчлен. Иррациональные

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Тождественные преобразования. Решение

Подробнее

МАТЕМАТИКА НЕРАВЕНСТВА

МАТЕМАТИКА НЕРАВЕНСТВА Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественно-научная школа при КрасГУ Математика: Неравенства Модуль для 0 класса Учебно-методическая

Подробнее

Тема 5 Рациональные системы уравнений

Тема 5 Рациональные системы уравнений Тема 5 Рациональные системы уравнений F ( x, x,..., ) 0, F ( x, x,..., ) 0, Система уравнений вида где... Fk ( x, x,..., ) 0, F i( x, x,..., ), i,..., k, некоторые многочлены, называется системой рациональных

Подробнее

Квадратные уравнения и неравенства с параметрами. 1

Квадратные уравнения и неравенства с параметрами. 1 И. В. Яковлев Материалы по математике MathUs.ru Квадратные уравнения и неравенства с параметрами. 1 Мы приступаем к изучению уравнений вида ax + bx + c = 0. (1) Если a 0, то уравнение (1) является квадратным.

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений. Задание 1 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Тождественные преобразования. Решение

Подробнее

b a b 5 Замечание. Можно было сначала найти синус угла с помощью формулы sin cos 1, а затем, тангенс угла с помощью формулы sin

b a b 5 Замечание. Можно было сначала найти синус угла с помощью формулы sin cos 1, а затем, тангенс угла с помощью формулы sin Так как то правильный ответ Система требует выполнения двух и более условий причем мы ищем те значения неизвестной величины которые удовлетворяют сразу всем условиям Изобразим решение каждого из неравенств

Подробнее

Основы алгебры. Числовые множества. Глава 1

Основы алгебры. Числовые множества. Глава 1 Глава 1 Основы алгебры Числовые множества Рассмотрим основные числовые множества. Множество натуральных чисел N включает числа вида 1, 2, 3 и т. д., которые используются для счета предметов. Множество

Подробнее

Решение уравнений в целых числах

Решение уравнений в целых числах Решение уравнений в целых числах Линейные уравнения. Метод прямого перебора Пример. В клетке сидят кролики и фазаны. Всего у них 8 ног. Узнать сколько в клетке тех и других. Укажите все решения. Решение.

Подробнее

3x x 2 + x = 0.

3x x 2 + x = 0. 4.. Метод замены переменной при решении алгебраических уравнений. В предыдущем пункте метод замены переменной был использован для разложения многочлена на множители. Данный метод широко применяется для

Подробнее

УРАВНЕНИЯ И НЕРАВЕНСТВА С МОДУЛЯМИ

УРАВНЕНИЯ И НЕРАВЕНСТВА С МОДУЛЯМИ УРАВНЕНИЯ И НЕРАВЕНСТВА С МОДУЛЯМИ Гущин Д. Д. www.mathnet.spb.ru 1 0. Простейшие уравнения. К простейшим (не обязательно простым) уравнениям мы будем относить уравнения, решаемые одним из нижеприведенных

Подробнее

Учебный центр «Резольвента»

Учебный центр «Резольвента» ООО «Резольвента», www.resolventa.ru, resolventa@list.ru, (495) 59-8- Учебный центр «Резольвента» Кандидат физико-математических наук, доцент С. С. САМАРОВА РЕШЕНИЕ ЛОГАРИФМИЧЕСКИХ НЕРАВЕНСТВ Учебно-методическое

Подробнее

МАТЕМАТИКА. Задание 1 для 9-х классов учебный год

МАТЕМАТИКА. Задание 1 для 9-х классов учебный год МАТЕМАТИКА Рациональные уравнения Системы уравнений Уравнения, содержащие модуль Задание для 9- классов 0-04 учебный год Составитель: кпн, доцент Марина ЕВ Пенза, 0 Введение Вспомним некоторые понятия

Подробнее

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x)

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x) ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

Подробнее

Тождественные преобразования алгебраических выражений

Тождественные преобразования алгебраических выражений Тождественные преобразования алгебраических выражений Алгебраические выражения выражения, содержащие числа и буквы, связанные алгебраическими действиями: сложением, вычитанием, умножением, делением и возведением

Подробнее

Алгоритм решения квадратных неравенств

Алгоритм решения квадратных неравенств Алгоритм решения квадратных неравенств 1) Привести неравенство к стандартному виду : 2) Решить квадратное уравнение (т.е. найти точки пересечения параболы с осью Ох):,, если D > 0, то (две точки пересечения

Подробнее

Показательные и логарифмические неравенства. 2

Показательные и логарифмические неравенства. 2 А. Г. Малкова. Подготовка к ЕГЭ по математике. Материалы сайта EGE-Study.ru Показательные и логарифмические неравенства. 2 Продолжим рассказ о решении показательных и логарифмических неравенств. В этой

Подробнее

Практическое занятие: «Решение иррациональных уравнений, неравенств. Метод интервалов. Степени».

Практическое занятие: «Решение иррациональных уравнений, неравенств. Метод интервалов. Степени». Практическое занятие: «Решение иррациональных уравнений, неравенств. Метод интервалов. Степени». Цель работы: Повторить для подготовки к экзамену следующие темы: 1. определение степени с рациональным показателем,

Подробнее

Задачи С1 Пример 1. (ЕГЭ 2010, С1). Решите систему уравнений

Задачи С1 Пример 1. (ЕГЭ 2010, С1). Решите систему уравнений Различные подходы к решению задач С С С5 ЕГЭ 9- года Подготовка к ЕГЭ (материал для лекции для учителей ) Прокофьев АА aaprokof@yaderu Задачи С Пример (ЕГЭ С) Решите систему уравнений y si ( si )(7 y )

Подробнее

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ по математике 8 класс

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ по математике 8 класс КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ по математике 8 класс урока Тема урока 1 Повторение. Действия с обыкновенными и десятичными дробями. Колво часов Элементы содержания Тема 1. Рациональные дроби и их

Подробнее

Повторение Алгебра 7 8. Вопросы. 1. Раскрытие скобок 2. Умножение многочленов. 3. График линейной функции. 4. Разложение многочлена на множители. 5.

Повторение Алгебра 7 8. Вопросы. 1. Раскрытие скобок 2. Умножение многочленов. 3. График линейной функции. 4. Разложение многочлена на множители. 5. Повторение Алгебра 7 8. Вопросы.. Раскрытие скобок. Умножение многочленов.. График линейной функции. 4. Разложение многочлена на множители. 5. Свойство степени с натуральным показателем. 6. Формулы сокращенного

Подробнее

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений

МАТЕМАТИКА. Тождественные преобразования. Решение уравнений Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение дополнительного образования детей «Заочная физико-техническая школа Московского физико-технического

Подробнее

Математика АРИФМЕТИКА. Действия с натуральными числами и обыкновенными дробями. 4. Техника обращения неправильной дроби в смешанное число

Математика АРИФМЕТИКА. Действия с натуральными числами и обыкновенными дробями. 4. Техника обращения неправильной дроби в смешанное число АРИФМЕТИКА Действия с натуральными числами и обыкновенными дробями. Порядок действий ) Если нет скобок, то сначала выполняются действия -й степени (возведение в натуральную степень), затем -й степени (умножение

Подробнее

Образовательный портал «Физ/Мат класс» МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ

Образовательный портал «Физ/Мат класс» МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ wwwfmclassru МЕТОДЫ СРАВНЕНИЯ ЧИСЕЛ Анализ величин, использование формул а) Сравните числа 6 6 и 5 7 5 4 8 6 б) Сравните числа ( + )( + )( + )( + )( + ) и 999 999 999 в) Сравните числа si0 cos0 и si 40

Подробнее

Календарно-тематическое планирование уроков алгебры в 8 классе по УМК Колягина Ю.М. ( *часов)

Календарно-тематическое планирование уроков алгебры в 8 классе по УМК Колягина Ю.М. ( *часов) Календарно-тематическое планирование уроков алгебры в 8 классе по УМК Колягина Ю.М. (102 + 16 *часов) урока Раздел тема урока Коли чество часов Требования к подготовке По плану фактически 8-А 8-Б 8-В 8-А

Подробнее

Государственное образовательное учреждение высшего профессионального образования "ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ"

Государственное образовательное учреждение высшего профессионального образования ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ Государственное образовательное учреждение высшего профессионального образования "ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ" В. В. Гарбарук, В. И. Родин, И. М. Соловьева, М. А. Шварц МАТЕМАТИКА

Подробнее

СПРАВОЧНИК. 1. Некоторые признаки делимости натуральных чисел Натуральные числа это числа, используемые для счёта:

СПРАВОЧНИК. 1. Некоторые признаки делимости натуральных чисел Натуральные числа это числа, используемые для счёта: СПРАВОЧНИК Некоторые признаки делимости натуральных чисел Натуральные числа это числа, используемые для счёта:,,,,, Натуральные числа образуют множество, называемое множеством натуральных чисел Множество

Подробнее

x 4 ; x log 6 - логарифмические неравенства

x 4 ; x log 6 - логарифмические неравенства Вопрос. Неравенства, система линейных неравенств Рассмотрим выражения, которые содержат знак неравенства и переменную:. >, - +х -это линейные неравенств с одной переменной х.. 0 - квадратное неравенство.

Подробнее

Представляю разбор контрольных работ из сборника «Л.А. Александрова. Алгебра 9 класс. Контрольные работы»

Представляю разбор контрольных работ из сборника «Л.А. Александрова. Алгебра 9 класс. Контрольные работы» Представляю разбор контрольных работ из сборника «Л.А. Александрова. Алгебра 9 класс. Контрольные работы» Иногда трудно самостоятельно разобраться со всеми заданиями, предлагаемыми на контрольных, особенно

Подробнее

Учебный центр «Резольвента»

Учебный центр «Резольвента» ООО «Резольвента», www.resolventa.ru, resolventa@list.ru, (495) 509-8-10 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ РЕШЕНИЕ ИРРАЦИОНАЛЬНЫХ НЕРАВЕНСТВ Учебно-методическое

Подробнее

Теоретический материал.

Теоретический материал. 0.5 Логарифмические уравнения и неравенства. Используемая литература:. Алгебра и начала анализа 0- под редакцией А.Н.Колмогорова. Самостоятельные и контрольные работы по алгебре 0- под редакцией Е.П.Ершова

Подробнее

Ответ. Вопрос. Что такое классы и разряды в записи чисел? Как называют числа при сложении?

Ответ. Вопрос. Что такое классы и разряды в записи чисел? Как называют числа при сложении? Вопрос Какие числа называют натуральными? Ответ Натуральными называют числа, которые используют при счете Что такое классы и разряды в записи чисел? Как называют числа при сложении? Сформулируйте сочетательный

Подробнее

Решения для 9 класса подготовительного варианта

Решения для 9 класса подготовительного варианта Решения для 9 класса подготовительного варианта. Тема Действия с дробями 7 4 0,5 :, 5 : 5 7 Выполните действия:.,5 :8 4 Решение. Выполним действия в следующем порядке: 5 4 ) 0,5 :,5 : :. 4 4 5 5 7 4 7

Подробнее

Программа занятий по математике заочной физико-математической школы.

Программа занятий по математике заочной физико-математической школы. Программа занятий по математике заочной физико-математической школы. Тема Алгебраические уравнения и неравенства. (8 занятий) Почти все необходимые теоретические сведения для решения предлагаемых задач

Подробнее

РЕШЕНИЕ УРАВНЕНИЙ НЕРАВЕНСТВ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. для учащихся заочного отделения. имени М. В. ЛОМОНОСОВА. Методическая разработка

РЕШЕНИЕ УРАВНЕНИЙ НЕРАВЕНСТВ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. для учащихся заочного отделения. имени М. В. ЛОМОНОСОВА. Методическая разработка МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М В ЛОМОНОСОВА МАЛЫЙ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ РЕШЕНИЕ УРАВНЕНИЙ и НЕРАВЕНСТВ Методическая разработка для учащихся заочного отделения МОСКВА 008 УДК

Подробнее

То из них, которое расположено левее всех, и является наименьшим. Это число 4. Ответ: 5.

То из них, которое расположено левее всех, и является наименьшим. Это число 4. Ответ: 5. Решения А Изобразим все данные числа на числовой оси То из них которое расположено левее всех и является наименьшим Это число 4 Ответ: 5 А Проанализируем неравенство На числовой оси множество чисел удовлетворяющих

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

Многочленом (полиномом) степени k называется функция вида. . Тогда x

Многочленом (полиномом) степени k называется функция вида. . Тогда x http://vk.ucoz.et/ Операции над многочленами k a k Многочленом (полиномом) степени k называется функция вида a, где переменная, a - числовые коэффициенты (=,.k), и. Любое ненулевое число можно рассматривать

Подробнее

МАТЕМАТИКА. Практикум для иностранных граждан подготовительного отделения

МАТЕМАТИКА. Практикум для иностранных граждан подготовительного отделения МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ОДЕССКИЙ НАЦИОНАЛЬНЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ МАТЕМАТИКА Практикум для иностранны граждан подготовительного отделения ОДЕССА ОНЭУ 4 ОГЛАВЛЕНИЕ Предисловие Условные

Подробнее

МАТЕМАТИКА. Квадратные корни. Задание 4 для 8-х классов. ( учебный год)

МАТЕМАТИКА. Квадратные корни. Задание 4 для 8-х классов. ( учебный год) Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Квадратные корни Задание 4 для 8-х

Подробнее

Иррациональные неравенства

Иррациональные неравенства Содержание И. В. Яковлев Материалы по математике MathUs.ru Иррациональные неравенства Учёт ОДЗ.......................................... Равносильные преобразования.............................. Двукратное

Подробнее

МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА АНАЛИЗА, ГЕОМЕТРИЯ

МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА АНАЛИЗА, ГЕОМЕТРИЯ десять способов решения Улевский С.А. ст. Егорлыкская, МБОУ ЕСОШ 11, 9 класс Научный руководитель: Шаповалова Л.А., учитель математики, ст. Егорлыкская, МБОУ ЕСОШ 11 75 Теория уравнений занимает ведущее

Подробнее

10.5 Логарифмические уравнения и неравенства. Используемая литература:

10.5 Логарифмические уравнения и неравенства. Используемая литература: 0.5 Логарифмические уравнения и неравенства. Используемая литература:. Алгебра и начала анализа 0- под редакцией А.Н.Колмогорова. Самостоятельные и контрольные работы по алгебре 0- под редакцией Е.П.Ершова

Подробнее

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА Гущин Д. Д. http://www.mthnet.spb.ru ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА Основные факты. Показательными уравнениями (неравенствами) называются уравнения (неравенства), содержащие переменную в показателе

Подробнее

Тема 1-8: Комплексные числа

Тема 1-8: Комплексные числа Тема 1-8: Комплексные числа А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (1 семестр)

Подробнее

Пределы. 6.1 Определение предела последовательности и

Пределы. 6.1 Определение предела последовательности и Студент должен знать: определение предела функции; свойства пределов; понятие бесконечно малых функций; понятие ограниченных и бесконечно больших функций; определение непрерывности функции в точке; сравнение

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАШИНОСТРОЕНИЯ ИИ Поспелов,

Подробнее

Авторы: М. И. Шабунин, М. В. Ткачёва, Н. Е. Фёдорова, О. Н. Доброва

Авторы: М. И. Шабунин, М. В. Ткачёва, Н. Е. Фёдорова, О. Н. Доброва УДК 7.8:[ + 7] ББК 7.6. А Авторы: М. И. Шабунин, М. В. Ткачёва, Н. Е. Фёдорова, О. Н. Доброва А Алгебра и начала математического анализа. Дидактические материалы. 0 класс : углубл. уровень / [М. И. Шабунин,

Подробнее

Иррациональные уравнения и неравенства

Иррациональные уравнения и неравенства И В Яковлев Материалы по математике MathUsru Иррациональные уравнения и неравенства Мы называем уравнение или неравенство иррациональным, если оно содержит переменную под радикалами, то есть под знаками

Подробнее

Алгебраические уравнения

Алгебраические уравнения Алгебраические уравнения где Определение. Алгебраическим называется уравнение вида 0, P () 0,,, некоторые действительные числа. 0 0 При этом переменная величина называется неизвестным, а числа 0,,, коэффициентами

Подробнее

Муниципальный этап. 8 класс. Условия задач 1

Муниципальный этап. 8 класс. Условия задач 1 Условия задач 1 Муниципальный этап 8 класс 1. На доске написаны два числа. Одно из них увеличили в 6 раз, а другое уменьшили на 2015, при этом сумма чисел не изменилась. Найдите хотя бы одну пару таких

Подробнее

Тригонометрические уравнения. 2

Тригонометрические уравнения. 2 И. В. Яковлев Материалы по математике MathUs.ru Тригонометрические уравнения. В статье «Тригонометрические уравнения. 1» мы рассмотрели стандартные методы решения весьма простых тригонометрических уравнений.

Подробнее

Иррациональные уравнения и неравенства 1

Иррациональные уравнения и неравенства 1 Иррациональные уравнения и неравенства Оглавление Свойства корней й степени Свойства корней Свойства степеней с рациональным показателем Примеры 5 Свойства корней -й степени Арифметическим корнем й степени

Подробнее

Параметры и квадратный трёхчлен. 1

Параметры и квадратный трёхчлен. 1 И. В. Яковлев Материалы по математике MathUs.ru Параметры и квадратный трёхчлен. 1 Мы начинаем с рассмотрения уравнений вида ax + bx + c = 0. 1 Если a 0, то уравнение 1 является квадратным. Не забываем,

Подробнее

Научно-исследовательская работа. «10 способов решения квадратных уравнений» Выполнил. Улевский Сергей Алексеевич. учащийся 9 класса МБОУ ЕСОШ 11

Научно-исследовательская работа. «10 способов решения квадратных уравнений» Выполнил. Улевский Сергей Алексеевич. учащийся 9 класса МБОУ ЕСОШ 11 Научно-исследовательская работа «10 способов решения квадратных уравнений» Выполнил Улевский Сергей Алексеевич учащийся 9 класса МБОУ ЕСОШ 11 Руководитель Шаповалова Людмила Алексеевна учитель математики

Подробнее

УЧЕБНОЕ ПОСОБИЕ. по алгебре и началам анализа для кадет I курса. Неравенства (подготовка к ГИА)

УЧЕБНОЕ ПОСОБИЕ. по алгебре и началам анализа для кадет I курса. Неравенства (подготовка к ГИА) ВОЕННО-ТЕХНИЧЕСКИЙ КАДЕТСКИЙ КОРПУС 3 Дисциплина: «Математика, основы информатики и вычислительной техники» УЧЕБНОЕ ПОСОБИЕ по алгебре и началам анализа для кадет I курса Неравенства (подготовка к ГИА)

Подробнее

Планируемые результаты освоения алгебры в 7 классе Алгебраические выражения. Уравнения

Планируемые результаты освоения алгебры в 7 классе Алгебраические выражения. Уравнения Программа по алгебре для 7 класса общеобразовательного учреждения. Пояснительная записка Структура программы Программа включает три раздела: 1.Планируемые результаты усвоения алгебры в 7 классе 2.Содержание

Подробнее

Городская олимпиада по математике г. Хабаровск, 1997 год 9 КЛАСС. (x + 2) 4 + x 4 = 82. (1) (y + 1) 4 + (y 1) 4 = 82.

Городская олимпиада по математике г. Хабаровск, 1997 год 9 КЛАСС. (x + 2) 4 + x 4 = 82. (1) (y + 1) 4 + (y 1) 4 = 82. Городская олимпиада по математике г. Хабаровск, 1997 год Задача 1. Найти решения уравнения 9 КЛАСС (x + 2) 4 + x 4 = 82. (1) Решение. После замены переменной x = y 1 уравнение (1) можно записать в виде

Подробнее

Оформление решения рационального неравенства следующее: xx x x x x. Итак: план решения рационального неравенства:

Оформление решения рационального неравенства следующее: xx x x x x. Итак: план решения рационального неравенства: РЕШЕНИЕ НЕРАВЕНСТВ МЕТОДОМ ИНТЕРВАЛОВ. I) х - 5> линейное неравенство. Решаем методом переноса: х>5, т.е. х>5, и т.д. II) х > можно решить перебором чисел. III) Более сложные неравенства (квадратные, дробные,

Подробнее

Пособие для подготовки к олимпиаде школьников по математике «Паруса надежды». В.Н. Деснянский, А.И. Камзолов

Пособие для подготовки к олимпиаде школьников по математике «Паруса надежды». В.Н. Деснянский, А.И. Камзолов ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Подробнее

10.4 Показательные уравнения и неравенства (10 класс). Пояснительная записка для родителей.

10.4 Показательные уравнения и неравенства (10 класс). Пояснительная записка для родителей. . Показательные уравнения и неравенства ( класс). Используемая литература:. Учебник «Алгебра и начала анализа - класс» под редакцией Ш.А.Алимова.. Учебник «Алгебра и начала анализа - класс» под редакцией

Подробнее

Вопросы по теории для экзамена по алгебре 8 класс профиль

Вопросы по теории для экзамена по алгебре 8 класс профиль Вопросы по теории для экзамена по алгебре 8 класс профиль. Многочлен, определение. Деление многочлена с остатком. Теорема Безу.. Иррациональные числа. Доказательство существования иррационального числа.

Подробнее

Тема 3. ПРЕДЕЛЫ ФУНКЦИЙ

Тема 3. ПРЕДЕЛЫ ФУНКЦИЙ Тема ПРЕДЕЛЫ ФУНКЦИЙ Число А называется пределом функции у=f), при х стремящемся к бесконечности, если для любого, сколь угодно малого числа ε>, найдется такое положительное числоs, что при всех >S, выполняется

Подробнее

МАТЕМАТИКА ЕГЭ Задания С6. УРАВНЕНИЯ И НЕРАВЕНСТВА В ЦЕЛЫХ ЧИСЛАХ (от учебных задач до олимпиадных задач)

МАТЕМАТИКА ЕГЭ Задания С6. УРАВНЕНИЯ И НЕРАВЕНСТВА В ЦЕЛЫХ ЧИСЛАХ (от учебных задач до олимпиадных задач) МАТЕМАТИКА ЕГЭ 00 Корянов А.Г. Задания С г. Брянск Замечания и пожелания направляйте по адресу: akoryanov@mail.ru УРАВНЕНИЯ И НЕРАВЕНСТВА В ЦЕЛЫХ ЧИСЛАХ (от учебных задач до олимпиадных задач) Линейные

Подробнее

Первые шаги в решении уравнений и неравенств с параметром

Первые шаги в решении уравнений и неравенств с параметром КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ МАТЕМАТИКИ И МЕХАНИКИ ИМ. Н.И.ЛОБАЧЕВСКОГО Кафедра теории и технологий преподавания математики и информатики Фалилеева М.В. Первые шаги в решении уравнений и

Подробнее

Федеральное агентство по образованию Московский физико технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА

Федеральное агентство по образованию Московский физико технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Федеральное агентство по образованию Московский физико технический институт (государственный университет) Заочная физико-техническая школа МАТЕМАТИКА Квадратные корни Задание для 8-х классов (00-00 учебный

Подробнее

В тесте проверяются теоретическая и практическая части.

В тесте проверяются теоретическая и практическая части. 8., 8., 8. класс, Математика (учебник Макарычев) 07-08 уч.год Тема модуля «Делимость чисел. Действительные числа, квадратный корень» В тесте проверяются теоретическая и практическая части. ТЕМА Знать Уметь

Подробнее

Алгебраическая форма комплексного числа. Учебная презентация

Алгебраическая форма комплексного числа. Учебная презентация Алгебраическая форма комплексного числа. Учебная презентация А. В. Лихацкий Руководитель: Е. А. Максименко Южный федеральный университет 14 апреля 2008 г. А. В. Лихацкий (ЮФУ) Алгебр. форма компл. числа

Подробнее

Тема 12 «Системы двух уравнений с двумя неизвестными».

Тема 12 «Системы двух уравнений с двумя неизвестными». Тема 1 «Системы двух уравнений с двумя неизвестными». Системой уравнений называется некоторое количество уравнений, которые должны выполняться одновременно. Решением системы уравнений с двумя переменными

Подробнее

Примеры и комментарии

Примеры и комментарии 72 Глава2 Многочлены Примеры и комментарии Алгоритмы А-01 Запись многочлена в стандартном виде А-02 Действия над многочленами А-03 Устные преобразования А-04 Формулы сокращенного умножения А-05 Бином Ньютона

Подробнее

21. Теорема Виета. д) 2x 2 2x. -9x-10=0; x =0; x 1 +x 2 = 2. е) 5x 2 +12x+7=0; x D1= x 1 +x 2 =- =-2,4; x1 x 2 =1,4;

21. Теорема Виета. д) 2x 2 2x. -9x-10=0; x =0; x 1 +x 2 = 2. е) 5x 2 +12x+7=0; x D1= x 1 +x 2 =- =-2,4; x1 x 2 =1,4; . Теорема Виета 7. a) -770 D7-769-086 D>0, значит, уравнение имеет два корня 7 7 б) -70 D - (-7)6886 D>0, значит, уравнение имеет два корня. По теореме Виета: - - -7 в) -00 0 0 г) -90 0-9 д) 9 0-9-00 0

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ 10 класс Модуль 4 МЕТОДЫ РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ 10 класс Модуль 4 МЕТОДЫ РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ АГЕНТСТВО ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ КРАСНОЯРСКОГО КРАЯ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЗАОЧНАЯ ЕСТЕСТВЕННО-НАУЧНАЯ ШКОЛА при КрасГУ ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ 10 класс Модуль 4 МЕТОДЫ РЕШЕНИЯ

Подробнее

Лекция 2: Многочлены

Лекция 2: Многочлены Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Понятие многочлена Определения Многочленом от одной переменной называется выражение вида

Подробнее